ANSWERS

CHAPTER 1
1.1 6 x 10° N (repulsive)
1.2 (a) 12 cm
(b) 0.2 N (attractive)
1.3 2.4 x 10%. This is the ratio of electric force to the gravitational force
(at the same distance) between an electron and a proton.
1.5 Charge is not created or destroyed. It is merely transferred from one
body to another.
1.6 Zero N
1.8 (a) 5.4 x 10°N C'along OB
(b) 8.1 x 107N along OA
1.9 Total charge is zero. Dipole moment = 7.5 x 10° C m along z-axis.
1.10 10* Nm
1.11 (a) 2 x 10", from wool to polythene.
(b) Yes, but of a negligible amount ( = 2 x 10™'® kg in the example).
1.12 (a) 1.5 x 10°N
(b) 0.24 N
1.13 Charges 1 and 2 are negative, charge 3 is positive. Particle 3 has
the highest charge to mass ratio.
1.14 (a) 30Nm?/C, (b) 15 Nm?*/C
1.15 Zero. The number of lines entering the cube is the same as the
number of lines leaving the cube.
1.16 (a) 0.07 nC
(b) No, only that the net charge inside is zero.
1.17 2.2 x 10° N m*/C
1.18 1.9 x 10° N m*/C
1.19 (a) -10° N m?/C; because the charge enclosed is the same in the
two cases.
(b) -8.8 nC
1.20 -6.67 nC
1.21 (a) 1.45x 10°C
(b) 1.6 x 10° Nm?/C
1.22 10 uC/m
1.23 (a) Zero, (b) Zero, (c) 1.9 N/C
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CHAPTER 2

2.1

2.2 27x10°V
2.3 (a) The plane normal to AB and passing through its mid-point has
zero potential everywhere.
(b) Normal to the plane in the direction AB.
2.4 (a) Zero
(b) 10°NC
() 4.4x10*NC!
2.5 96 pF
2.6 (a) 3 pF
(b) 40V
2.7 (a) 9 pF
(b) 2x107'°C, 3x10'°C, 4x10'°C
2.8 18pF, 1.8x10°C
2.9 (a) V=100V, C=108 pF, Q=1.08x10°C
(b) Q=1.8x10°C, C=108 pF, V=16.6 V
2.10 1.5x10°%J
2.11 6x10°%J
CHAPTER 3
3.1 30 A
3.2 17Q, 85V
3.3 1027 °C
3.4 20x107 Om
3.5 0.0039 °C!
3.6 867 °C
3.7 Current in branch AB = (4/17) A,
in BC = (6/17) A, in CD = (-4/17) A,
in AD = (6/17) A, in BD. = (-2/17) A, total current = (10/17) A.
3.8 11.5 V; the series resistor limits the current drawn from the external
source. In its absence, the current will be dangerously high.
3.9 27x10*s(7.5h)
CHAPTER 4
4.1 g7 10*T=~31 10*T
4.2 35x10°T

10 cm, 40 cm away from the positive charge on the side of the

negative charge.
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Answers
4.3  4x10°T, vertical up
4.4 1.2x107° T, towards south
4.5 0.6Nm"'
4.6 8.1 x 107 N; direction of force given by Fleming’s left-hand rule
4.7 2 x 10° N; attractive force normal to A towards B
4.8 81x10°T=~25x102T
4.9 0.96 N m
4.10 (a) 1.4, ()1
4.11 4.2 cm
4.12 18 MHz
4.13 (a) 3.1 Nm, (b) No, the answer is unchanged because the formula
t=NIA xB is true for a planar loop of any shape.
CHAPTER 5
5.1 0.36JT"
5.2 (a) m parallel to B; U= -mB = -4.8 x 1072 J: stable.
(b) m anti-parallel to B; U = +mB = +4.8 x 1072 J; unstable.
5.3 0.60 JT! along the axis of the solenoid determined by the sense of
flow of the current.
5.4 7.5x102J
5.5 (@) (i) 0.33J (ii) 0.66 J
(b) (i) Torque of magnitude 0.33 J in a direction that tends to align
the magnitude moment vector along B. (ii) Zero.
5.6 (a) 1.28 A m? along the axis in the direction related to the sense of
current via the right-handed screw rule.
(b) Force is zero in uniform field; torque = 0.048 Nm in a direction
that tends to align the axis of the solenoid (i.e., its magnetic
moment vector) along B.
5.7 (a) 0.96 g along S-N direction.
(b) 0.48 G along N-S direction.
CHAPTER 6
6.1 (a) Along qrpq

(b) Along prq, along yzx

(c) Along yzx

(d) Along zyx

(e) Along xry

(f) No induced current since field lines lie in the plane of the loop.
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6.2 (a) Along adcd (flux through the surface increases during shape
change, so induced current produces opposing flux).

(b) Along a'd’c’d’ (flux decreases during the process)
6.3 7.5x10°V
6.4 (1) 2.4x10"V, lasting 2 s

(2) 0.6x 10"V, lasting 8 s

6.5 100V

6.6 (@) 1.5 x 10V, (b) West to East, (c) Eastern end.
6.7 4H

6.8 30 Wb

CHAPTER 7

7.1 (a) 2.20A

(b) 484 W
300
7.2 (a) —==2121V
J2
(b) 1042 =14.1A
7.3 159A
7.4 249A

7.5 Zero in each case.
7.6 1.1x10%°s™!
7.7 2,000 W

7.8 (a) 50rads’!
(b) 400, 8.1 A

(© V,,.=14375V, V,

Crms

=1437.5V, V=230V

V =1 |]L— !
LCrms rmsg)o (DOC

|:l—O
5=

CHAPTER 8

8.1 (a) C=gA/d=8.00pF

d_Q:Cd_V

dt dt

dv _  0.15

At 80.1x1077 187 x10°Vs”
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8.2

8.3
8.4
8.5
8.6
8.7
8.8

8.9

Answers
(b) = 505 t.. Now across the capacitor @, = EA, ignoring end

corrections.

, d
Therefore, i = foAi

dt

Now, E = 9 . Therefore, 4E_ i , which implies i,= 1= 0.15 A.

VA dt ¢gA

(c) Yes, provided by ‘current’ we mean the sum of conduction and
displacement currents.

(@ I_=V_ oC=69uA

rms

(b) Yes. The derivation in Exercise 8.1(b) is true even if 7 is oscillating
in time.

(¢) The formula B= %’T é iy

goes through even if i, (and therefore B) oscillates in time. The

formula shows they oscillate in phase. Since i, = i, we have

- H

B. = o

° 2om

magnetic field and current, respectively. i=+2I = 9.76 pA. For
r=3cm, R=6cm, B,=1.63x10"'T.

L
R where B and i are the amplitudes of the oscillating

The speed in vacuum is the same for all: ¢= 3 x 10° m s™.

E and B in x-y plane and are mutually perpendicular, 10 m.
Wavelength band: 40 m - 25 m.

10° Hz

153 N/C

(a) 400 nT, 3.14 x 10° rad/s, 1.05 rad/m, 6.00 m.

(b) E = { (120 N/C) sin[(1.05 rad/m)]x — (3.14 x 10° rad/s)t]} j
B = { (400 nT) sin[(1.05 rad/m)]x — (3.14 x 10° rad/s)t]} k

Photon energy (for A = 1 m)

_ 6.63x107* x3x10°

- 1.6x107"
Photon energy for other wavelengths in the figure for electromagnetic
spectrum can be obtained by multiplying approximate powers of
ten. Energy of a photon that a source produces indicates the spacings
of the relevant energy levels of the source. For example, 1 = 107" m
corresponds to photon energy = 1.24 x 10° eV = 1.24 MeV. This
indicates that nuclear energy levels (transition between which causes

eV =1.24x10"%eV
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8.10

y-ray emission) are typically spaced by 1 MeV or so. Similarly, a
visible wavelength 2 = 5 x 107 m, corresponds to photon energy
= 2.5 eV. This implies that energy levels (transition between which
gives visible radiation) are typically spaced by a few eV.
(@ A=(c/v)=1.5x10%m
(b) B, =(E,/d=16x10"T
(c) Energy density in E field: u, = (1/2)¢, E?

Energy density in B field: u, = (1/2u,)B>

1
Using E = ¢B, and ¢ = . U, = U,
NHo&o
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FOREWORD

The National Curriculum Framework (NCF), 2005 recommends that children’s life at school must
be linked to their life outside the school. This principle marks a departure from the legacy of bookish
learning which continues to shape our system and causes a gap between the school, home and
community. The syllabi and textbooks developed on the basis of NCF signify an attempt to implement
this basic idea. They also attempt to discourage rote learning and the maintenance of sharp
boundaries between different subject areas. We hope these measures will take us significantly
further in the direction of a child-centred system of education outlined in the National Policy on
Education (NPE), 1986.

The success of this effort depends on the steps that school principals and teachers will take to
encourage children to reflect on their own learning and to pursue imaginative activities and questions.
We must recognise that, given space, time and freedom, children generate new knowledge by engaging
with the information passed on to them by adults. Treating the prescribed textbook as the sole basis
of examination is one of the key reasons why other resources and sites of learning are ignored.
Inculcating creativity and initiative is possible if we perceive and treat children as participants in
learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change in school routines and mode of functioning. Flexibility in
the daily time-table is as necessary as rigour in implementing the annual calendar so that the
required number of teaching days are actually devoted to teaching. The methods used for teaching
and evaluation will also determine how effective this textbook proves for making children’s life at
school a happy experience, rather than a source of stress or boredom. Syllabus designers have tried
to address the problem of curricular burden by restructuring and reorienting knowledge at different
stages with greater consideration for child psychology and the time available for teaching. The textbook
attempts to enhance this endeavour by giving higher priority and space to opportunities for
contemplation and wondering, discussion in small groups, and activities requiring hands-on
experience.

The National Council of Educational Research and Training (NCERT) appreciates the hard
work done by the textbook development committee responsible for this book. We wish to thank the
Chairperson of the advisory group in science and mathematics, Professor J.V. Narlikar and the
Chief Advisor for this book, Professor A.W. Joshi for guiding the work of this committee. Several
teachers contributed to the development of this textbook; we are grateful to their principals for
making this possible. We are indebted to the institutions and organisations which have generously
permitted us to draw upon their resources, material and personnel. We are especially grateful to
the members of the National Monitoring Committee, appointed by the Department of Secondary
and Higher Education, Ministry of Human Resource Development under the Chairpersonship of
Professor Mrinal Miri and Professor G.P. Deshpande, for their valuable time and contribution. As
an organisation committed to systemic reform and continuous improvement in the quality of its
products, NCERT welcomes comments and suggestions which will enable us to undertake further
revision and refinement.

Director
New Delhi National Council of Educational
20 December 2006 Research and Training
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RATIONALISATION OF CONTENT IN THE TEXTBOOKS

In view of the COVID-19 pandemic, it is imperative to reduce content load on
students. The National Education Policy 2020, also emphasises reducing the
content load and providing opportunities for experiential learning with creative
mindset. In this background, the NCERT has undertaken the exercise to rationalise
the textbooks across all classes. Learning Outcomes already developed by the NCERT
across classes have been taken into consideration in this exercise.

Contents of the textbooks have been rationalised in view of the following:

Overlapping with similar content included in other subject areas in the same
class

Similar content included in the lower or higher class in the same subject
Difficulty level

Content, which is easily accessible to students without much interventions
from teachers and can be learned by children through self-learning or peer-
learning

Content, which is irrelevant in the present context

This present edition, is a reformatted version after carrying out the changes
given above.
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Constitution of India

Part IV A (Article 51 A)

Fundamental Duties

It shall be the duty of every citizen of India —

(a)

(b)

(c)
(d)

(e)

(H
(2

(h)
(M)
)

*(k)

to abide by the Constitution and respect its ideals and institutions, the
National Flag and the National Anthem;

to cherish and follow the noble ideals which inspired our national struggle
for freedom,;

to uphold and protect the sovereignty, unity and integrity of India;

to defend the country and render national service when called upon to
do so;

to promote harmony and the spirit of common brotherhood amongst all
the people of India transcending religious, linguistic and regional or
sectional diversities; to renounce practices derogatory to the dignity of
women;

to value and preserve the rich heritage of our composite culture;

to protect and improve the natural environment including forests, lakes,
rivers, wildlife and to have compassion for living creatures;

to develop the scientific temper, humanism and the spirit of inquiry and
reform;

to safeguard public property and to abjure violence;

to strive towards excellence in all spheres of individual and collective
activity so that the nation constantly rises to higher levels of endeavour
and achievement;

who is a parent or guardian, to provide opportunities for education to
his child or, as the case may be, ward between the age of six and
fourteen years.

Note:

The Article 51A containing Fundamental Duties was inserted by the Constitution
(42nd Amendment) Act, 1976 (with effect from 3 January 1977).

*(k) was inserted by the Constitution (86th Amendment) Act, 2002 (with effect from
1 April 2010).
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CONSTITUTION OF INDIA

Part III (Articles 12 — 35)
(Subject to certain conditions, some exceptions
and reasonable restrictions)

guarantees these

Fundamental Rights

Right to Equality

e before law and equal protection of laws;

e irrespective of religion, race, caste, sex or place of birth;
e of opportunity in public employment;

e Dby abolition of untouchability and titles.

Right to Freedom

e ofexpression, assembly, association, movement, residence and profession;

e of certain protections in respect of conviction for offences;

o ofprotection of life and personal liberty;

o of free and compulsory education for children between the age of six and fourteen years;
e of protection against arrest and detention in certain cases.

Right against Exploitation
o for prohibition of traffic in human beings and forced labour;
o for prohibition of employment of children in hazardous jobs.

Right to Freedom of Religion

o freedom of conscience and free profession, practice and propagation of religion;
e freedom to manage religious affairs;

o freedom as to payment of taxes for promotion of any particular religion;

o freedom as to attendance at religious instruction or religious worship in educational
institutions wholly maintained by the State.

Cultural and Educational Rights
o for protection of interests of minorities to conserve their language, script and culture;
o for minorities to establish and administer educational institutions of their choice.

Right to Constitutional Remedies

e by issuance of directions or orders or writs by the Supreme Court and High
Courts for enforcement of these Fundamental Rights.
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PREFACE

It gives me pleasure to place this book in the hands of the students, teachers and the public at
large (Whose role cannot be overlooked). It is a natural sequel to the Class XI textbook which
was brought out in 2006. This book is also a trimmed version of the textbooks which existed so
far. The chapter on thermal and chemical effects of current has been cut out. This topic has also
been dropped from the CBSE syllabus. Similarly, the chapter on communications has been
substantially curtailed. It has been rewritten in an easily comprehensible form.

Although most other chapters have been based on the earlier versions, several parts and
sections in them have been rewritten. The Development Team has been guided by the feedback
received from innumerable teachers across the country.

In producing these books, Class XI as well as Class XII, there has been a basic change of
emphasis. Both the books present physics to students without assuming that they would pursue
this subject beyond the higher secondary level. This new view has been prompted by the various
observations and suggestions made in the National Curriculum Framework (NCF), 2005.
Similarly, in today’s educational scenario where students can opt for various combinations of
subjects, we cannot assume that a physics student is also studying mathematics. Therefore,
physics has to be presented, so to say, in a standalone form.

As in Class XI textbook, some interesting box items have been inserted in many chapters.
They are not meant for teaching or examinations. Their purpose is to catch the attention of the
reader, to show some applications in daily life or in other areas of science and technology, to
suggest a simple experiment, to show connection of concepts in different areas of physics, and
in general, to break the monotony and enliven the book.

Features like Summary, Points to Ponder, Exercises and Additional Exercises at the end of
each chapter, and Examples have been retained. Several concept-based Exercises have been
transferred from end-of-chapter Exercises to Examples with Solutions in the text. It is hoped
that this will make the concepts discussed in the chapter more comprehensible. Several new
examples and exercises have been added. Students wishing to pursue physics further would
find Points to Ponder and Additional Exercises very useful and thoughtful. To provide resources
beyond the textbook and to encourage elLearning, each chapter has been provided with
some relevant website addresses under the title ePhysics. These sites provide additional
material on specific topics and also provide learners with opportunites for interactive
demonstrations/experiments.

The intricate concepts of physics must be understood, comprehended and appreciated.
Students must learn to ask questions like ‘why’, ‘how’, ‘how do we know it’. They will find
almost always that the question ‘why’ has no answer within the domain of physics and science
in general. But that itself is a learning experience, is it not? On the other hand, the question
‘how’ has been reasonably well answered by physicists in the case of most natural phenomena.
In fact, with the understanding of how things happen, it has been possible to make use of many
phenomena to create technological applications for the use of humans.

For example, consider statements in a book, like ‘A negatively charged electron is attracted
by the positively charged plate’, or ‘In this experiment, light (or electron) behaves like a wave’.
You will realise that it is not possible to answer ‘why’. This question belongs to the domain of
philosophy or metaphysics. But we can answer ‘how’, we can find the force acting, we can find
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the wavelength of the photon (or electron), we can determine how things behave under different
conditions, and we can develop instruments which will use these phenomena to our advantage.

It has been a pleasure to work for these books at the higher secondary level, along with a
team of members. The Textbook Development Team, Review Team and Editing Teams involved
college and university teachers, teachers from Indian Institutes of Technology, scientists from
national institutes and laboratories, as well as, higher secondary teachers. The feedback and
critical look provided by higher secondary teachers in the various teams are highly laudable.
Most box items were generated by members of one or the other team, but three of them were
generated by friends and well-wishers not part of any team. We are thankful to Dr P.N. Sen of
Pune, Professor Roopmanjari Ghosh of Delhi and Dr Rajesh B Khaparde of Mumbai for allowing
us to use their box items, respectively, in Chapters 3, 4 (Part I) and 9 (Part II). We are thankful
to the members of the review and editing workshops to discuss and refine the first draft of the
textbook. We also express our gratitude to Prof. Krishna Kumar, Director, NCERT, for entrusting
us with the task of presenting this textbook as a part of the national effort for improving science
education. I also thank Prof. G. Ravindra, Joint Director, NCERT, for his help from time-to-
time. Prof. Hukum Singh, Head, Department of Education in Science and Mathematics, NCERT,
was always willing to help us in our endeavour in every possible way.

We welcome suggestions and comments from our valued users, especially students and
teachers. We wish our young readers a happy journey into the exciting realm of physics.

A. W. JosH1
Chief Advisor
Textbook Development Committee
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COVER DESIGN
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Different stages in the evolution of
the universe.

Back CovER

(Adapted from http://www.iter.org and
http://www.dae.gov.in)

Cut away view of International Thermonuclear Experimental Reactor (ITER)
device. The man in the bottom shows the scale.

ITER is a joint international research and development project that
aims to demonstrate the scientific and technical feasibility of fusion power.

India is one of the seven full partners in the project, the others being
the European Union (represented by EURATOM), Japan, the People’s
Republic of China, the Republic of Korea, the Russian Federation and the
USA. ITER will be constructed in Europe, at Cadarache in the South of
France and will provide 500 MW of fusion power.

Fusion is the energy source of the sun and the stars. On earth, fusion
research is aimed at demonstrating that this energy source can be used to
produce electricity in a safe and environmentally benign way, with
abundant fuel resources, to meet the needs of a growing world population.

For details of India’s role, see Nuclear India, Vol. 39, Nov. 11-12/
May-June 2006, issue available at Department of Atomic Energy (DAE)
website mentioned above.
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Chapter One

ELECTRIC CHARGES
AND FIELDS

AN N

1.1 INTRODUCTION

All of us have the experience of seeing a spark or hearing a crackle when
we take off our synthetic clothes or sweater, particularly in dry weather.
Have you ever tried to find any explanation for this phenomenon? Another
common example of electric discharge is the lightning that we see in the
sky during thunderstorms. We also experience a sensation of an electric
shock either while opening the door of a car or holding the iron bar of a
bus after sliding from our seat. The reason for these experiences is
discharge of electric charges through our body, which were accumulated
due to rubbing of insulating surfaces. You might have also heard that
this is due to generation of static electricity. This is precisely the topic we
are going to discuss in this and the next chapter. Static means anything
that does not move or change with time. Electrostatics deals with
the study of forces, fields and potentials arising from
static charges.

1.2 ELEcTRIC CHARGE

Historically the credit of discovery of the fact that amber rubbed with
wool or silk cloth attracts light objects goes to Thales of Miletus, Greece,
around 600 BC. The name electricity is coined from the Greek word
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FIGURE 1.1 Rods: like charges repel and unlike charges attract each other.

elektron meaning amber. Many such pairs of materials were known which
on rubbing could attract light objects like straw, pith balls and bits of
papers.

It was observed that if two glass rods rubbed with wool or silk cloth
are brought close to each other, they repel each other [Fig. 1.1(a)]. The
two strands of wool or two pieces of silk cloth, with which the rods were
rubbed, also repel each other. However, the glass rod and wool attracted
each other. Similarly, two plastic rods rubbed with cat’s fur repelled each
other [Fig. 1.1(b)] but attracted the fur. On the other hand, the plastic
rod attracts the glass rod [Fig. 1.1(c)] and repel the silk or wool with
which the glass rod is rubbed. The glass rod repels the fur.

These seemingly simple facts were established from years of efforts
and careful experiments and their analyses. It was concluded, after many
careful studies by different scientists, that there were only two kinds of
an entry which is called the electric charge. We say that the bodies like
glass or plastic rods, silk, fur and pith balls are electrified. They acquire
an electric charge on rubbing. There are two kinds of electrification and
we find that (i) like charges repel and (ii) unlikke charges attract each
other. The property which differentiates the two kinds of charges is called
the polarity of charge.

When a glass rod is rubbed with silk, the rod acquires one kind of
charge and the silk acquires the second kind of charge. This is true for
any pair of objects that are rubbed to be electrified. Now if the electrified
glass rod is brought in contact with silk, with which it was rubbed, they
no longer attract each other. They also do not attract or repel other light
objects as they did on being electrified.

Thus, the charges acquired after rubbing are lost when the charged
bodies are brought in contact. What can you conclude from these
observations? It just tells us that unlike charges acquired by the objects
neutralise or nullify each other’s effect. Therefore, the charges were named
as positive and negative by the American scientist Benjamin Franklin.
By convention, the charge on glass rod or cat’s fur is called positive and
that on plastic rod or silk is termed negative. If an object possesses an
electric charge, it is said to be electrified or charged. When it has no charge
it is said to be electrically neutral.

2024-25



Electric Charges
and Fields

A simple apparatus to detect charge on a body is the gold-leaf
electroscope [Fig. 1.2(a)]. It consists of a vertical metal rod housed in a
box, with two thin gold leaves attached to its bottom end. When a charged
object touches the metal knob at the top of the rod, charge flows on to
the leaves and they diverge. The degree of divergance is an indicator of
the amount of charge.

Try to understand why material bodies acquire charge. You know that
all matter is made up of atoms and/or molecules. Although normally the
materials are electrically neutral, they do contain charges; but their charges
are exactly balanced. Forces that hold the molecules together, forces that
hold atoms together in a solid, the adhesive force of glue, forces associated
with surface tension, all are basically electrical in nature, arising from the
forces between charged particles. Thus the electric force is all pervasive and
it encompasses almost each and every field associated with our life. It is
therefore essential that we learn more about such a force.

To electrify a neutral body, we need to add or remove one kind of
charge. When we say that a body is charged, we always refer to this
excess charge or deficit of charge. In solids, some of the electrons, being
less tightly bound in the atom, are the charges which are transferred
from one body to the other. A body can thus be charged positively by
losing some of its electrons. Similarly, a body can be charged negatively
by gaining electrons. When we rub a glass rod with silk, some of the
electrons from the rod are transferred to the silk cloth. Thus the rod gets
positively charged and the silk gets negatively charged. No new charge is
created in the process of rubbing. Also the number of electrons, that are
transferred, is a very small fraction of the total number of electrons in the
material body.

1.3 CoNDUCTORS AND INSULATORS

Some substances readily allow passage of electricity through them, others
do not. Those which allow electricity to pass through them easily are
called conductors. They have electric charges (electrons) that are
comparatively free to move inside the material. Metals, human and animal
bodies and earth are conductors. Most of the non-metals like glass,
porcelain, plastic, nylon, wood offer high resistance to the passage of
electricity through them. They are called insulators. Most substances
fall into one of the two classes stated above*.

When some charge is transferred to a conductor, it readily gets
distributed over the entire surface of the conductor. In contrast, if some
charge is put on an insulator, it stays at the same place. You will learn
why this happens in the next chapter.

This property of the materials tells you why a nylon or plastic comb
gets electrified on combing dry hair or on rubbing, but a metal article

* There is a third category called semiconductors, which offer resistance to the
movement of charges which is intermediate between the conductors and
insulators.
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like spoon does not. The charges on metal leak through
NS our body to the ground as both are conductors of
electricity. However, if a metal rod with a wooden or plastic

handle is rubbed without touching its metal part, it shows

; signs of charging.
"“‘ 1.4 BAasic PROPERTIES OF ELECTRIC
CHARGE

We have seen that there are two types of charges, namely
positive and negative and their effects tend to cancel each
other. Here, we shall now describe some other properties
of the electric charge.

If the sizes of charged bodies are very small as
compared to the distances between them, we treat them
as point charges. All the charge content of the body is
assumed to be concentrated at one point in space.

1.4.1 Additivity of charges

FIGURE 1.2 Electroscopes: (a) We have not as yet given a quantitative definition of a
The gold leaf electroscope, (b) charge; we shall follow it up in the next section. We shall
Schematics of a simple tentatively assume that this can be done and proceed. If

electroscope.

a system contains two point charges g, and q,, the total

charge of the system is obtained simply by adding
algebraically g, and g, .i.e., charges add up like real numbers or they
are scalars like the mass of a body. If a system contains n charges q,,
4y Gy ---» 4, then the total charge of the systemis q, +q, + q, +... + q,
. Charge has magnitude but no direction, similar to mass. However,
there is one difference between mass and charge. Mass of a body is
always positive whereas a charge can be either positive or negative.
Proper signs have to be used while adding the charges in a system. For
example, the total charge of a system containing five charges +1, +2, -3,
+4 and -5, in some arbitrary unit, is (+1) + (+2) + (-3) + (+4) + (-5) =-1in
the same unit.

1.4.2 Charge is conserved

We have already hinted to the fact that when bodies are charged by
rubbing, there is transfer of electrons from one body to the other; no new
charges are either created or destroyed. A picture of particles of electric
charge enables us to understand the idea of conservation of charge. When
we rub two bodies, what one body gains in charge the other body loses.
Within an isolated system consisting of many charged bodies, due to
interactions among the bodies, charges may get redistributed but it is
found that the total charge of the isolated system is always conserved.
Conservation of charge has been established experimentally.

It is not possible to create or destroy net charge carried by any isolated
system although the charge carrying particles may be created or destroyed
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in a process. Sometimes nature creates charged particles: a neutron turns
into a proton and an electron. The proton and electron thus created have
equal and opposite charges and the total charge is zero before and after
the creation.

1.4.3 Quantisation of charge

Experimentally it is established that all free charges are integral multiples
of a basic unit of charge denoted by e. Thus charge g on a body is always
given by

q=ne
where nis any integer, positive or negative. This basic unit of charge is
the charge that an electron or proton carries. By convention, the charge
on an electron is taken to be negative; therefore charge on an electron is
written as —e and that on a proton as +e.

The fact that electric charge is always an integral multiple of e is termed
as quantisation of charge. There are a large number of situations in physics
where certain physical quantities are quantised. The quantisation of charge
was first suggested by the experimental laws of electrolysis discovered by
English experimentalist Faraday. It was experimentally demonstrated by
Millikan in 1912.

In the International System (SI) of Units, a unit of charge is called a
coulomb and is denoted by the symbol C. A coulomb is defined in terms
the unit of the electric current which you are going to learn in a
subsequent chapter. In terms of this definition, one coulomb is the charge
flowing through a wire in 1 s if the current is 1 A (ampere), (see Chapter 1
of Class XI, Physics Textbook , Part I). In this system, the value of the
basic unit of charge is

e=1.602192 x 10°°C

Thus, there are about 6 x 10'® electrons in a charge of -1C. In
electrostatics, charges of this large magnitude are seldom encountered
and hence we use smaller units 1 pC (micro coulomb) = 10°Cor 1 mC
(milli coulomb) = 107 C.

If the protons and electrons are the only basic charges in the
universe, all the observable charges have to be integral multiples of e.
Thus, if a body contains n, electrons and n, protons, the total amount
of charge on the body is n, X e + n, X (-e) = (n, - n,) e. Since n, and n,
are integers, their difference is also an integer. Thus the charge on any
body is always an integral multiple of e and can be increased or
decreased also in steps of e.

The step size e is, however, very small because at the macroscopic
level, we deal with charges of a few uC. At this scale the fact that charge of
abody can increase or decrease in units of eis not visible. In this respect,
the grainy nature of the charge is lost and it appears to be continuous.

This situation can be compared with the geometrical concepts of points
and lines. A dotted line viewed from a distance appears continuous to
us but is not continuous in reality. As many points very close to
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ExampLE 1.1

ExampLE 1.2

each other normally give an impression of a continuous line, many
small charges taken together appear as a continuous charge distribution.

At the macroscopic level, one deals with charges that are enormous
compared to the magnitude of charge e. Since e= 1.6 X 107'° C, a charge
of magnituOde, say 1 uC, contains something like 10'® times the electronic
charge. At this scale, the fact that charge can increase or decrease only in
units of eis not very different from saying that charge can take continuous
values. Thus, at the macroscopic level, the quantisation of charge has no
practical consequence and can be ignored. However, at the microscopic
level, where the charges involved are of the order of a few tens or hundreds
of e, i.e., they can be counted, they appear in discrete lumps and
quantisation of charge cannot be ignored. It is the magnitude of scale
involved that is very important.

Example 1.1 If 10° electrons move out of a body to another body
every second, how much time is required to get a total charge of 1 C
on the other body?

Solution In one second 10° electrons move out of the body. Therefore
the charge given out in one second is 1.6 x 107'® x 10°C = 1.6 x 107'°C.
The time required to accumulate a charge of 1 C can then be estimated
tobe 1 C+ (1.6 x 10'°C/s) = 6.25 x 10° s =6.25 x 10° + (365 x 24 X
3600) years = 198 years. Thus to collect a charge of one coulomb,
from a body from which 10° electrons move out every second, we will
need approximately 200 years. One coulomb is, therefore, a very large
unit for many practical purposes.

It is, however, also important to know what is roughly the number of
electrons contained in a piece of one cubic centimetre of a material.
A cubic piece of copper of side 1 cm contains about 2.5 x 10%*
electrons.

Example 1.2 How much positive and negative charge is there in a
cup of water?

Solution Let us assume that the mass of one cup of water is
250 g. The molecular mass of water is 18g. Thus, one mole
(= 6.02 x 10%® molecules) of water is 18 g. Therefore the number of
molecules in one cup of water is (250/18) X 6.02 X 10%,

Each molecule of water contains two hydrogen atoms and one oxygen
atom, i.e., 10 electrons and 10 protons. Hence the total positive and
total negative charge has the same magnitude. It is equal to

(250/18) X 6.02 x 10 x 10 x 1.6 x 10 ¢ = 1.34 x 107 C.

1.5 CouLomB’s Law

Coulomb’s law is a quantitative statement about the force between two
point charges. When the linear size of charged bodies are much smaller
than the distance separating them, the size may be ignored and the
charged bodies are treated as point charges. Coulomb measured the
force between two point charges and found that it varied inversely as
the square of the distance between the charges and was directly
proportional to the product of the magnitude of the two charges and
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acted along the line joining the two charges. Thus, if two
point charges q,, g, are separated by a distance rin vacuum,
the magnitude of the force (F) between them is given by

9, 4|

F=k Th (1.1)
How did Coulomb arrive at this law from his experiments?
Coulomb used a torsion balance* for measuring the force
between two charged metallic spheres. When the separation
between two spheres is much larger than the radius of each
sphere, the charged spheres may be regarded as point charges.
However, the charges on the spheres were unknown, to begin
with. How then could he discover a relation like Eq. (1.1)?
Coulomb thought of the following simple way: Suppose the
charge on a metallic sphere is g. If the sphere is put in contact
with an identical uncharged sphere, the charge will spread over
the two spheres. By symmetry, the charge on each sphere will
be q/2*. Repeating this process, we can get charges q/2, q/4,
etc. Coulomb varied the distance for a fixed pair of charges and
measured the force for different separations. He then varied the
charges in pairs, keeping the distance fixed for each pair.
Comparing forces for different pairs of charges at different
distances, Coulomb arrived at the relation, Eq. (1.1).

Coulomb’s law, a simple mathematical statement, was
initially experimentally arrived at in the manner described
above. While the original experiments established it at a
macroscopic scale, it has also been established down to
subatomic level (r~ 107!° m).

Coulomb discovered his law without knowing the explicit
magnitude of the charge. In fact, it is the other way round:
Coulomb’s law can now be employed to furnish a definition
for a unit of charge. In the relation, Eq. (1.1), k is so far
arbitrary. We can choose any positive value of k. The choice

of k determines the size of the unit of charge. In SI units, the
2

Nm
value of k is about 9 x 10° oz The unit of charge that

results from this choice is called a coulomb which we defined
earlier in Section 1.4. Putting this value of kin Eq. (1.1), we
see thatforq, =q,=1C,r=1m

F=9x 10°N

Thatis, 1 Cis the charge that when placed at a distance
of 1 m from another charge of the same magnitude in vacuum
experiences an electrical force of repulsion of magnitude

Charles Augustin de
Coulomb (1736 - 1806)
Coulomb, a French
physicist, began his
career as a military
engineer in the West
Indies. In 1776, he
returned to Paris and
retired to a small estate
to do his scientific
research. He invented a
torsion balance to
measure the quantity of
a force and used it for
determination of forces
of electric attraction or
repulsion between small
charged spheres. He
thus arrived in 1785 at
the inverse square law
relation, now known as
Coulomb’s law. The law
had been anticipated by
Priestley and also by
Cavendish earlier,
though Cavendish
never published his
results. Coulomb also
found the inverse
square law of force
between unlike and like
magnetic poles.

* A torsion balance is a sensitive device to measure force. It was also used later
by Cavendish to measure the very feeble gravitational force between two objects,

to verify Newton’s Law of Gravitation.

* Implicit in this is the assumption of additivity of charges and conservation:

two charges (q/2 each) add up to make a total charge q.
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9 x 10 N. One coulomb is evidently too big a unit to
be used. In practice, in electrostatics, one uses
smaller units like 1 mC or 1 pC.

The constant k in Eq. (1.1) is usually put as
k= 1/4ne, for later convenience, so that Coulomb’s
law is written as

1 q, d
% F:4T[€ | 1r22| (1.2)
S, - E, °

4@ __--" . P

" aaso g, is ?alled tl}e permlttlvlty of free space . The value
F, %, of g, in SI units is
i -
et o £,=8.854 x 107 C> N"'m™>

°/Fl; dh<0 Since force is a vector, it is better to write
@ Coulomb’s law in the vector notation. Let the position
) vectors of charges g, and g, be r, and r, respectively
[see Fig.1.3(a)]. We denote force on g, due to g, by
FIGURE 1.3 (a) Geometry and F,, and force on g, due to g, by F,,. The two point

(b) Forces between charges. charges g, and g, have been numbered 1 and 2 for

convenience and the vector leading from 1 to 2 is
denoted by r,:

Iy =T~ I

In the same way, the vector leading from 2 to 1 is denoted by r ,:

T =T L, =T,

The magnitude of the vectors r,, and r,, is denoted by r,, and r,,
respectively (r , = r,,). The direction of a vector is specified by a unit

vector along the vector. To denote the direction from 1 to 2 (or from 2 to
1), we define the unit vectors:

~ ) O ~ T ~ ~
pp = — T =—=, Ty Iy
Ta1 Mg
Coulomb’s force law between two point charges q, and g, located at
r, and r,, respectively is then expressed as

1 .
_ 4 9 . (1.3)

F. =
2 ang,

Some remarks on Eq. (1.3) are relevant:

e Equation (1.3) is valid for any sign of g, and g, whether positive or
negative. If g, and g, are of the same sign (either both positive or both
negative), F,, is along r ,,, which denotes repulsion, as it should be for
like charges. If g, and g, are of opposite signs, F, isalong —¢,,(=¢ ,,).
which denotes attraction, as expected for unlike charges. Thus, we do
not have to write separate equations for the cases of like and unlike
charges. Equation (1.3) takes care of both cases correctly [Fig. 1.3(b)].
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e The force F , on charge g, due to charge g,, is obtained from Eq. (1.3),
by simply interchanging 1 and 2, i.e.,

1 .
F12 - 4 ql 2q2
&  Ip

12 = ~Fy,

Thus, Coulomb’s law agrees with the Newton’s third law.

e Coulomb’s law [Eq. (1.3)] gives the force between two charges g, and
q, in vacuum. If the charges are placed in matter or the intervening
space has matter, the situation gets complicated due to the presence
of charged constituents of matter. We shall consider electrostatics in
matter in the next chapter.

Example 1.3 Coulomb’s law for electrostatic force between two point
charges and Newton’s law for gravitational force between two stationary
point masses, both have inverse-square dependence on the distance
between the charges and masses respectively. (a) Compare the strength
of these forces by determining the ratio of their magnitudes (i) for an
electron and a proton and (ii) for two protons. (b) Estimate the
accelerations of electron and proton due to the electrical force of their
mutual attraction when they are 1 A (= 10'° m) apart? (mp = 1.67 X
10°"kg, m,=9.11 x 10" kg)

Solution
(a) (i) The electric force between an electron and a proton at a distance
r apart is:
1 €
4TE, =
where the negative sign indicates that the force is attractive. The
corresponding gravitational force (always attractive) is:

e

m, m

= p e
F, = —G—r2
where m, and m, are the masses of a proton and an electron
respectively.

2

Flo € -94x10®
Fo| 4ng,Gm,m,

(ii) On similar lines, the ratio of the magnitudes of electric force
to the gravitational force between two protons at a distance r

apart is:

F e>
—fl=—————=1.3x%x10%
Fs| 4mne,Gm,m,

However, it may be mentioned here that the signs of the two forces
are different. For two protons, the gravitational force is attractive
in nature and the Coulomb force is repulsive. The actual values
of these forces between two protons inside a nucleus (distance
between two protons is ~ 10'° m inside a nucleus) are F_~ 230 N,
whereas, F, ~ 1.9 x 10°*N.

The (dimensionless) ratio of the two forces shows that electrical
forces are enormously stronger than the gravitational forces.
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(b) The electric force F exerted by a proton on an electron is same in
magnitude to the force exerted by an electron on a proton; however,
the masses of an electron and a proton are different. Thus, the
magnitude of force is

2

e
IF| = 4 ;2 = 8.987 X 10° Nm?/C? x (1.6 x107'°C)? / (107'°m)?
(0]
=2.3x 10°N

Using Newton’s second law of motion, F = ma, the acceleration
that an electron will undergo is

a=2.3%x10°N /9.11 x10°%' kg = 2.5 x 10> m/s”

Comparing this with the value of acceleration due to gravity, we
can conclude that the effect of gravitational field is negligible on
the motion of electron and it undergoes very large accelerations
under the action of Coulomb force due to a proton.

The value for acceleration of the proton is

2.3x 10%N / 1.67 x 10*"kg = 1.4 x 10" m/s®

ExampLE 1.3

Example 1.4 A charged metallic sphere A is suspended by a nylon
thread. Another charged metallic sphere B held by an insulating

10 cm

v

()

B
-
c b
A:: :
|
’

(b)

B

(==

5 cm »|
(c)

FIGURE 1.4

ExamprLE 1.4
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handle is brought close to A such that the distance between their
centres is 10 cm, as shown in Fig. 1.4(a). The resulting repulsion of A
is noted (for example, by shining a beam of light and measuring the
deflection of its shadow on a screen). Spheres A and B are touched
by uncharged spheres C and D respectively, as shown in Fig. 1.4(b).
C and D are then removed and B is brought closer to A to a
distance of 5.0 cm between their centres, as shown in Fig. 1.4(c).
What is the expected repulsion of A on the basis of Coulomb’s law?
Spheres A and C and spheres B and D have identical sizes. Ignore
the sizes of A and B in comparison to the separation between their
centres.

Solution Let the original charge on sphere A be gand that on B be

q'. At a distance r between their centres, the magnitude of the

electrostatic force on each is given by

F = 1 %
4ame, r

neglecting the sizes of spheres A and B in comparison to r. When an
identical but uncharged sphere C touches A, the charges redistribute
on A and C and, by symmetry, each sphere carries a charge q/2.
Similarly, after D touches B, the redistributed charge on each is
q'/2. Now, if the separation between A and B is halved, the magnitude
of the electrostatic force on each is

=1 @/20q/2)_ 1 @q)_ L
ame, (r/2)? 4me, r?

Thus the electrostatic force on A, due to B, remains unaltered.

P°T ATANVXF

1.6 FoRCES BETWEEN MUuULTIPLE CHARGES

The mutual electric force between two charges is given by
Coulomb’s law. How to calculate the force on a charge where
there are not one but several charges around? Consider a
system of n stationary charges q,, q,. g, ..., g, in vacuum.
What is the force on g, due to q,, g5, ..., q,? Coulomb’s law is
not enough to answer this question. Recall that forces of
mechanical origin add according to the parallelogram law of
addition. Is the same true for forces of electrostatic origin?

Experimentally, it is verified that force on any charge due
to a number of other charges is the vector sum of all the forces
on that charge due to the other charges, taken one at a time.
The individual forces are unaffected due to the presence of
other charges. This is termed as the principle of superposition.

To better understand the concept, consider a system of
three charges q, g, and g, as shown in Fig. 1.5(a). The force
on one charge, say q,, due to two other charges q,, g, can
therefore be obtained by performing a vector addition of the
forces due to each one of these charges. Thus, if the force on g,
due to g, is denoted by F,,, F , is given by Eq. (1.3) even
though other charges are present.

(b)
FIGURE 1.5 A system of

1 qq, . (a) three charges

Thus, F,=——--1, (b) multiple charges.

= 11
2 ame, 1,
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In the same way, the force on g, due to g,, denoted by F,,, is given by

1 q.9s .
F. = I
13 4"80 r123 13
which again is the Coulomb force on g, due to g,, even though other
charge q, is present.
Thus the total force F, on g, due to the two charges g, and q, is
given as

1 qq, . 1 aqaqs .
F, =F, +F; = L2, +—— "2
1 12 13 ame, 12 ame, 2 13 (1.4)

The above calculation of force can be generalised to a system of
charges more than three, as shown in Fig. 1.5(b).

The principle of superposition says that in a system of charges q,,
4y ---» 4, the force on g, due to g, is the same as given by Coulomb’s law,
i.e., it is unaffected by the presence of the other charges q,, q,, ..., q,. The
total force F, on the charge q,, due to all other charges, is then given by

the vector sum of the forces F,, F,,, ..., F,:
ie.,
1 g, . a9 . a9, . L
F,=F, +F,+..+ F = D2 f, + 22 L+ S,
1 12 13 1n 4T, Erlzz 12 r123 13 12n lnE
- 4 o« D
= ane, 22 (1.5)

The vector sum is obtained as usual by the parallelogram law of
addition of vectors. All of electrostatics is basically a consequence of
Coulomb’s law and the superposition principle.

Example 1.5 Consider three charges q,, q,, g, each equal to g at the
vertices of an equilateral triangle of side . What is the force on a
charge Q (with the same sign as g) placed at the centroid of the
triangle, as shown in Fig. 1.6?

%=q = : 4:=q
FIGURE 1.6

Solution In the given equilateral triangle ABC of sides of length [, if
we draw a perpendicular AD to the side BC,
AD = AC cos 30° = (\/§ /2) | and the distance AO of the centroid O
from A is (2/3) AD = (1/4/3) L By symmatry AO = BO = CO.

2024-25



Electric Charges
and Fields

Thus,
- 3 99
Force F, on Q due to charge gat A = =~ along AO
4me, 1
3 9q
Force F, on Q due to charge gat B = 4t 2 along BO
0
3 9q

Force F; on Q due to charge g at C ATE. 2 along CO
0

3 9q
The resultant of forces F, and F, is ame. 12 along OA, by the
0

3 9435

parallelogram law. Therefore, the total force on Q = ame. 12
0
= 0, where F is the unit vector along OA.
It is clear also by symmetry that the three forces will sum to zero.
Suppose that the resultant force was non-zero but in some direction.

Consider what would happen if the system was rotated through 60°
about O.

G 1T ITdNVXH

Example 1.6 Consider the charges g, q, and —qg placed at the vertices
of an equilateral triangle, as shown in Fig. 1.7. What is the force on
each charge?

|F,|=|F,/=F
|F| =3 F

FIGURE 1.7

Solution The forces acting on charge q at A due to charges q at B
and —q at C are F,, along BA and F,, along AC respectively, as shown
in Fig. 1.7. By the parallelogram law, the total force F, on the charge
q at A is given by

F, =F 1, where T, is a unit vector along BC.

The force of attraction or repulsion for each pair of charges has the
2

q

o F=——
same magnitude 4Te, 12

The total force F, on charge g at B is thus F, =F i'z, where i'2 is a
unit vector along AC.

O°T ATdNVXH

2024-25



" Physics

(a)

ExampLE 1.6

FIGURE 1.8 Electric

(b)

field (a) due to a

charge Q, (b) due to a

14

charge -Q.

Similarly the total force on charge g at C is F, = V3 F n, where fis
the unit vector along the direction bisecting the ZBCA.

It is interesting to see that the sum of the forces on the three charges
is zero, i.e.,

F,+F,+F,=0

The result is not at all surprising. It follows straight from the fact
that Coulomb’s law is consistent with Newton’s third law. The proof
is left to you as an exercise.

1.7 ELeEctrIC FIELD

Let us consider a point charge @ placed in vacuum, at the origin O. If we
place another point charge g at a point P, where OP =r, then the charge Q
will exert a force on g as per Coulomb’s law. We may ask the question: If
charge q is removed, then what is left in the surrounding? Is there
nothing? If there is nothing at the point P, then how does a force act
when we place the charge g at P. In order to answer such questions, the
early scientists introduced the concept of field. According to this, we say
that the charge Q produces an electric field everywhere in the surrounding.
When another charge g is brought at some point P, the field there acts on
it and produces a force. The electric field produced by the charge Q ata
point r is given as

1 9 i= 1 Q.

E(r) - 4me, r? B 4T, r_2r (1.6)

where r = r/r, is a unit vector from the origin to the point r. Thus, Eq.(1.6)
specifies the value of the electric field for each value of the position
vector r. The word “field” signifies how some distributed quantity (which
could be a scalar or a vector) varies with position. The effect of the charge
has been incorporated in the existence of the electric field. We obtain the
force F exerted by a charge Q on a charge g, as

1 ;

f 4TE, %r (1.7)

Note that the charge g also exerts an equal and opposite force on the
charge Q. The electrostatic force between the charges Q and g can be
looked upon as an interaction between charge g and the electric field of

@ and vice versa. If we denote the position of charge g by the vector r, it

experiences a force F equal to the charge g multiplied by the electric

field E at the location of g. Thus,
F(r) = g E(r) (1.8)
Equation (1.8) defines the SI unit of electric field as N/C*.
Some important remarks may be made here:

() From Eq. (1.8), we can infer that if q is unity, the electric field due to
a charge @ is numerically equal to the force exerted by it. Thus, the
electric field due to a charge @ at a point in space may be defined
as the force that a unit positive charge would experience if placed

* An alternate unit V/m will be introduced in the next chapter.
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at that point. The charge Q, which is producing the electric field, is
called a source charge and the charge g, which tests the effect of a
source charge, is called a test charge. Note that the source charge Q
must remain at its original location. However, if a charge q is brought
at any point around @, Q itself is bound to experience an electrical
force due to g and will tend to move. A way out of this difficulty is to
make g negligibly small. The force F is then negligibly small but the
ratio F/qis finite and defines the electric field:

o
A practical way to get around the problem (of keeping @ undisturbed
in the presence of g) is to hold Q to its location by unspecified forces!

This may look strange but actually this is what happens in practice.

When we are considering the electric force on a test charge g due to a

charged planar sheet (Section 1.14), the charges on the sheet are held to

their locations by the forces due to the unspecified charged constituents
inside the sheet.

(i) Note that the electric field E due to Q, though defined operationally in
terms of some test charge g, is independent of g. This is because
F is proportional to g, so the ratio F/q does not depend on q. The
force F on the charge g due to the charge Q depends on the particular
location of charge g which may take any value in the space around
the charge Q. Thus, the electric field E due to Q is also dependent on
the space coordinate r. For different positions of the charge g all over
the space, we get different values of electric field E. The field exists at
every point in three-dimensional space.

(i) For a positive charge, the electric field will be directed radially
outwards from the charge. On the other hand, if the source charge is
negative, the electric field vector, at each point, points radially inwards.

(iv) Since the magnitude of the force F on charge q due to charge Q
depends only on the distance r of the charge g from charge Q,
the magnitude of the electric field E will also depend only on the
distance r. Thus at equal distances from the charge Q, the magnitude
of its electric field E is same. The magnitude of electric field E due to
a point charge is thus same on a sphere with the point charge at its
centre; in other words, it has a spherical symmetry.

1.7.1 Electric field due to a system of charges

Consider a system of charges q,, q,, ..., q, with position vectors r,,
r,, ..., r relative to some origin O. Like the electric field at a point in
space due to a single charge, electric field at a point in space due to the
system of charges is defined to be the force experienced by a unit
test charge placed at that point, without disturbing the original
positions of charges q,, q,, ..., q,. We can use Coulomb’s law and the
superposition principle to determine this field at a point P denoted by
position vector r.
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Electric field E| at r due to g, atr| is given by

1 gq, .
E = —
U 4ne r?

[0 1P

1P

where 1, is a unit vector in the direction from g, to P,

and r  is the distance between g, and P.
In the same manner, electric field E, at r due to g, at
r,is

1 gq,.

E, = — 2f
2 4ne rr

0 "2P

where I,, is a unit vector in the direction from g, to P

FIGURE 1.9 Electric field at a point ~ and r,, is the distance between g, and P. Similar

due to a system of charges is the expressions hold good for fields E,, E

4 s B due to

vector sum of the electric fields at charges q,, q,, ..., q,.
the point due to individual charges. By the superposition principle, the electric field E at r

16

due to the system of charges is (as shown in Fig. 1.9)
E(r) =E (r)+ E,(r) +... + E (1)

1 ql = 1 q2 = qn -
= Ar o +—— 2+, + —=r
4Tie, r12P ' ¢ 4Tie, r22P 2P 4Tie, rnzP e
n q
E() = —Fip (1.10)
4Te, i:zlrizp

E is a vector quantity that varies from one point to another point in space
and is determined from the positions of the source charges.

1.7.2 Physical significance of electric field

You may wonder why the notion of electric field has been introduced
here at all. After all, for any system of charges, the measurable quantity
is the force on a charge which can be directly determined using Coulomb’s
law and the superposition principle [Eq. (1.5)]. Why then introduce this
intermediate quantity called the electric field?

For electrostatics, the concept of electric field is convenient, but not
really necessary. Electric field is an elegant way of characterising the
electrical environment of a system of charges. Electric field at a point in
the space around a system of charges tells you the force a unit positive
test charge would experience if placed at that point (without disturbing
the system). Electric field is a characteristic of the system of charges and
is independent of the test charge that you place at a point to determine
the field. The term field in physics generally refers to a quantity that is
defined at every point in space and may vary from point to point. Electric
field is a vector field, since force is a vector quantity.

The true physical significance of the concept of electric field, however,
emerges only when we go beyond electrostatics and deal with time-
dependent electromagnetic phenomena. Suppose we consider the force
between two distant charges q,, g, in accelerated motion. Now the greatest
speed with which a signal or information can go from one point to another
is ¢, the speed of light. Thus, the effect of any motion of g, on g, cannot
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arise instantaneously. There will be some time delay between the effect
(force on g,) and the cause (motion of g,). It is precisely here that the
notion of electric field (strictly, electromagnetic field) is natural and very
useful. The field picture is this: the accelerated motion of charge q,
produces electromagnetic waves, which then propagate with the speed
¢, reach q, and cause a force on q,. The notion of field elegantly accounts
for the time delay. Thus, even though electric and magnetic fields can be
detected only by their effects (forces) on charges, they are regarded as
physical entities, not merely mathematical constructs. They have an
independent dynamics of their own, i.e., they evolve according to laws
of their own. They can also transport energy. Thus, a source of time-
dependent electromagnetic fields, turned on for a short interval of time
and then switched off, leaves behind propagating electromagnetic fields
transporting energy. The concept of field was first introduced by Faraday
and is now among the central concepts in physics.

Example 1.7 An electron falls through a distance of 1.5 cm in a
uniform electric field of magnitude 2.0 x 10* N C™! [Fig. 1.10(a)]. The
direction of the field is reversed keeping its magnitude unchanged
and a proton falls through the same distance [Fig. 1.10(b)]. Compute
the time of fall in each case. Contrast the situation with that of ‘free
fall under gravity’.

- - = @ + +
4 * _e +e
+ + B _ K _
@ (b)
FIGURE 1.10

Solution In Fig. 1.10(a) the field is upward, so the negatively charged
electron experiences a downward force of magnitude eE where E is
the magnitude of the electric field. The acceleration of the electron is

a, = eE/m,

where m, is the mass of the electron.

Starting from rest, the time required by the electron to fall through a

_|2h _ [2hm,
distance h is given by f.= a A\ ek

Fore= 1.6 x 10'°C, m_=9.11 x 10" kg,
E=20%x10*NC"', h=15x10"m,
t,=2.9x107%

In Fig. 1.10 (b), the field is downward, and the positively charged
proton experiences a downward force of magnitude eE. The
acceleration of the proton is

a, = eE/mp

where m, is the mass of the proton; m, = 1.67 x 107 kg. The time of
fall for the proton is

L' T 91dNVXYH
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2hm
t, = /% = /—" =1.3x107s
a, eE

Thus, the heavier particle (proton) takes a greater time to fall through
the same distance. This is in basic contrast to the situation of ‘free
fall under gravity’ where the time of fall is independent of the mass of
the body. Note that in this example we have ignored the acceleration
due to gravity in calculating the time of fall. To see if this is justified,

let us calculate the acceleration of the proton in the given electric
field:

(1.6 x 107" C) x (2.0 x 10* NC™)
1.67 x 10 kg

=19 x 10? ms™

which is enormous compared to the value of g (9.8 m s2), the
acceleration due to gravity. The acceleration of the electron is even

greater. Thus, the effect of acceleration due to gravity can be ignored
in this example.

Example 1.8 Two point charges g, and qg,, of magnitude +10® C and
-10® C, respectively, are placed 0.1 m apart. Calculate the electric
fields at points A, B and C shown in Fig. 1.11.

EIC
C, é’Ec
// E2é\
0.1m,/ N 0.1m
EB B q / A EA N\ G,
B et
: - .
0.05 m 0.05 m 0.05 m
FIGURE 1.11

Solution The electric field vector E,, at A due to the positive charge

q, points towards the right and has a magnitude

E. = (9 x10°Nm>C?) x(107°C) _
" (0.05m)*

The electric field vector E,, at A due to the negative charge g, points

towards the right and has the same magnitude. Hence the magnitude
of the total electric field E, at A is

E,=E,+E, =72%x10*NC"
E, is directed toward the right.

3.6 x10* NC!
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The electric field vector E,; at B due to the positive charge g, points

towards the left and has a magnitude

9 22 -8
Eyg = BRI NG )ZX O =3.6x 10*N C!
(0.05m)

The electric field vector E,; at B due to the negative charge g, points

towards the right and has a magnitude

=9 10°Nm*C?)x(107°C) _
2 (0.15m)*

The magnitude of the total electric field at B is

E,=E - E,;,=32x10*NC"

E, is directed towards the left.

4x10° NC*

The magnitude of each electric field vector at point C, due to charge

q, and q, is

(9 x10°Nm’C ) x(10°°C) _

Eic = Eyc = (0.10m)?

The directions in which these two vectors point are indicated in

Fig. 1.11. The resultant of these two vectors is
Tt Tt
E. = E,_ cos §+E20cos z= 9x 10° N C!

E. points towards the right.

1.8 ELEcTRrIC FIELD LINES

9x10° NC*!

8° 1T ITdNVXH

We have studied electric field in the last section. It is a vector quantity
and can be represented as we represent vectors. Let us try to represent E
due to a point charge pictorially. Let the point charge be placed at the

origin. Draw vectors pointing along the direction of the
electric field with their lengths proportional to the strength
of the field at each point. Since the magnitude of electric
field at a point decreases inversely as the square of the
distance of that point from the charge, the vector gets
shorter as one goes away from the origin, always pointing
radially outward. Figure 1.12 shows such a picture. In
this figure, each arrow indicates the electric field, i.e., the
force acting on a unit positive charge, placed at the tail of
that arrow. Connect the arrows pointing in one direction
and the resulting figure represents a field line. We thus
get many field lines, all pointing outwards from the point
charge. Have we lost the information about the strength
or magnitude of the field now, because it was contained
in the length of the arrow? No. Now the magnitude of the
field is represented by the density of field lines. E is strong
near the charge, so the density of field lines is more near
the charge and the lines are closer. Away from the charge,
the field gets weaker and the density of field lines is less,
resulting in well-separated lines.

Another person may draw more lines. But the number of lines is not
important. In fact, an infinite number of lines can be drawn in any region.

2024-25
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FIGURE 1.12 Field of a point charge.

19



" Physics

Region of
weak field

Region of

strong field

r,= OP,
Ok > >
q AQ r,= OP,

FIGURE 1.13 Dependence of
electric field strength on the
distance and its relation to the
number of field lines.

It is the relative density of lines in different regions which is
important.

We draw the figure on the plane of paper, i.e., in two-
dimensions but we live in three-dimensions. So if one wishes
to estimate the density of field lines, one has to consider the
number of lines per unit cross-sectional area, perpendicular
to the lines. Since the electric field decreases as the square of
the distance from a point charge and the area enclosing the
charge increases as the square of the distance, the number
of field lines crossing the enclosing area remains constant,
whatever may be the distance of the area from the charge.

We started by saying that the field lines carry information
about the direction of electric field at different points in space.
Having drawn a certain set of field lines, the relative density
(i.e., closeness) of the field lines at different points indicates
the relative strength of electric field at those points. The field
lines crowd where the field is strong and are spaced apart
where it is weak. Figure 1.13 shows a set of field lines. We

can imagine two equal and small elements of area placed at points R and
S normal to the field lines there. The number of field lines in our picture
cutting the area elements is proportional to the magnitude of field at
these points. The picture shows that the field at R is stronger than at S.

To understand the dependence of the field lines on the area, or rather
the solid angle subtended by an area element, let us try to relate the
area with the solid angle, a generalisation of angle to three dimensions.
Recall how a (plane) angle is defined in two-dimensions. Let a small
transverse line element Albe placed at a distance r from a point O. Then
the angle subtended by Al at O can be approximated as A0 = Al/r.
Likewise, in three-dimensions the solid angle* subtended by a small
perpendicular plane area AS, at a distance r, can be written as
AQ = AS/7*. We know that in a given solid angle the number of radial
field lines is the same. In Fig. 1.13, for two points P, and P, at distances
r, and r, from the charge, the element of area subtending the solid angle
AQ is 17 AQ at P, and an element of area r AQ at P,, respectively. The
number of lines (say n) cutting these area elements are the same. The
number of field lines, cutting unit area element is therefore n/(r? AQ) at
P, and n/ (r22 AQ) at P,, respectively. Since n and AQ are common, the
strength of the field clearly has a 1/r*> dependence.

The picture of field lines was invented by Faraday to develop an
intuitive non-mathematical way of visualising electric fields around
charged configurations. Faraday called them lines of force. This term is
somewhat misleading, especially in case of magnetic fields. The more
appropriate term is field lines (electric or magnetic) that we have
adopted in this book.

Electric field lines are thus a way of pictorially mapping the electric
field around a configuration of charges. An electric field line is, in general,

* Solid angle is a measure of a cone. Consider the intersection of the given cone
with a sphere of radius R. The solid angle AQ of the cone is defined to be equal

20

to AS/R’, where AS is the area on the sphere cut out by the cone.
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a curve drawn in such a way that the tangent to it at each
point is in the direction of the net field at that point. An
arrow on the curve is obviously necessary to specify the
direction of electric field from the two possible directions
indicated by a tangent to the curve. A field line is a space
curve, i.e., a curve in three dimensions.

Figure 1.14 shows the field lines around some simple
charge configurations. As mentioned earlier, the field lines
are in 3-dimensional space, though the figure shows them
only in a plane. The field lines of a single positive charge
are radially outward while those of a single negative
charge are radially inward. The field lines around a system
of two positive charges (q, q) give a vivid pictorial
description of their mutual repulsion, while those around
the configuration of two equal and opposite charges
(g, —q), a dipole, show clearly the mutual attraction
between the charges. The field lines follow some important
general properties:

() Field lines start from positive charges and end at
negative charges. If there is a single charge, they may
start or end at infinity.

(i) Inacharge-free region, electric field lines can be taken
to be continuous curves without any breaks.

(iii) Two field lines can never cross each other. (If they did,
the field at the point of intersection will not have a
unique direction, which is absurd.)

(iv) Electrostatic field lines do not form any closed loops.
This follows from the conservative nature of electric
field (Chapter 2).

1.9 ELecTtRrIC FLUX

Consider flow of a liquid with velocity v, through a small
flat surface dS, in a direction normal to the surface. The
rate of flow of liquid is given by the volume crossing the
area per unit time v dS and represents the flux of liquid
flowing across the plane. If the normal to the surface is
not parallel to the direction of flow of liquid, i.e., to v, but
makes an angle 0 with it, the projected area in a plane
perpendicular to vis §dS cos 6. Therefore, the flux going
out of the surface dSis v. n dS. For the case of the electric
field, we define an analogous quantity and call it electric
Sflux. We should, however, note that there is no flow of a
physically observable quantity unlike the case of
liquid flow.

In the picture of electric field lines described above,
we saw that the number of field lines crossing a unit area,
placed normal to the field at a point is a measure of the
strength of electric field at that point. This means that if
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FIGURE 1.14 Field lines due to
some simple charge configurations.
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we place a small planar element of area AS

FIGURE 1.15 Dependence of flux on the
inclination 6 between E and

> normal to E at a point, the number of field lines
" |, g crossing it is proportional* to E AS. Now
_> .
~ —|— suppose we tilt the area element by angle 6.
AS —|=48 Clearly, the number of field lines crossing the
’ area element will be smaller. The projection of
—_

the area element normal to E is AS cos6. Thus,
the number of field lines crossing AS is
proportional to E AS cosf. When 6 = 90°, field
lines will be parallel to AS and will not cross it
at all (Fig. 1.15).

The orientation of area element and not
merely its magnitude is important in many
contexts. For example, in a stream, the amount
of water flowing through a ring will naturally
depend on how you hold the ring. If you hold
it normal to the flow, maximum water will flow
through it than if you hold it with some other
orientation. This shows that an area element
should be treated as a vector. It has a
magnitude and also a direction. How to specify the direction of a planar
area? Clearly, the normal to the plane specifies the orientation of the
plane. Thus the direction of a planar area vector is along its normal.

How to associate a vector to the area of a curved surface? We imagine
dividing the surface into a large number of very small area elements.

-

FIGURE 1.16

Convention for

defining normal
and AS.
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Each small area element may be treated as planar and a vector associated
with it, as explained before.

Notice one ambiguity here. The direction of an area element is along
its normal. But a normal can point in two directions. Which direction do
we choose as the direction of the vector associated with the area element?
This problem is resolved by some convention appropriate to the given
context. For the case of a closed surface, this convention is very simple.
The vector associated with every area element of a closed surface is taken
to be in the direction of the outward normal. This is the convention used
in Fig. 1.16. Thus, the area element vector AS at a point on a closed

surface equals AS n where ASis the magnitude of the area element and

n is a unit vector in the direction of outward normal at that point.

We now come to the definition of electric flux. Electric flux A¢ through
an area element AS is defined by

Ap=E-AS = EAS cosf (1.11)
which, as seen before, is proportional to the number of field lines cutting
the area element. The angle 8 here is the angle between E and AS. For a
closed surface, with the convention stated already, 0is the angle between
E and the outward normal to the area element. Notice we could look at
the expression E AS cosf in two ways: E (AS cos@) i.e., E times the

* It will not be proper to say that the number of field lines is equal to EAS. The
number of field lines is after all, a matter of how many field lines we choose to
draw. What is physically significant is the relative number of field lines crossing
a given area at different points.
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projection of area normal to E, or E, AS, i.e., component of E along the
normal to the area element times the magnitude of the area element. The
unit of electric flux is N C™' m?.

The basic definition of electric flux given by Eq. (1.11) can be used, in
principle, to calculate the total flux through any given surface. All we
have to do is to divide the surface into small area elements, calculate the
flux at each element and add them up. Thus, the total flux ¢ through a
surface Sis

¢~ ZE-AS (1.12)

The approximation sign is put because the electric field E is taken to
be constant over the small area element. This is mathematically exact
only when you take the limit AS - 0 and the sum in Eq. (1.12) is written
as an integral.

1.10 ELEcTRIC DIPOLE

An electric dipole is a pair of equal and opposite point charges g and —q,
separated by a distance 2a. The line connecting the two charges defines
a direction in space. By convention, the direction from —q to q is said to
be the direction of the dipole. The mid-point of locations of —q and q is
called the centre of the dipole.

The total charge of the electric dipole is obviously zero. This does not
mean that the field of the electric dipole is zero. Since the charge g and
—q are separated by some distance, the electric fields due to them, when
added, do not exactly cancel out. However, at distances much larger than
the separation of the two charges forming a dipole (r >> 2a), the fields
due to g and —q nearly cancel out. The electric field due to a dipole
therefore falls off, at large distance, faster than like 1/ r2 (the dependence
on r of the field due to a single charge g). These qualitative ideas are
borne out by the explicit calculation as follows:

1.10.1 The field of an electric dipole

The electric field of the pair of charges (~q and g) at any point in space
can be found out from Coulomb’s law and the superposition principle.
The results are simple for the following two cases: (i) when the point is on
the dipole axis, and (ii) when it is in the equatorial plane of the dipole,
i.e., on a plane perpendicular to the dipole axis through its centre. The
electric field at any general point P is obtained by adding the electric
fields E_  due to the charge —q and E, due to the charge g, by the
parallelogram law of vectors.

(i) For points on the axis

Let the point P be at distance r from the centre of the dipole on the side of
the charge q, as shown in Fig. 1.17(a). Then
- q

BT i var® [1.13(a)]

where p is the unit vector along the dipole axis (from —q to g). Also

4 2 P [1.13(b)]

Y 4mey(r-a)
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E E 1 2a I The total field at P is
+q -q P
- L ©)
P q -q g 0O 1 1 O
: r > E=E, +E_ = 2 7 [P
4 Te, Br—a] (r+a)’ O
(a)
_ q dar
5 4Te, ( 2 — a2 P (1.14)
! Forr>>a
4qa .
N E =
/\/ Eat P 4T[£Or3 P (r>>a) (1.15)

(ii) For points on the equatorial plane

The magnitudes of the electric fields due to the two
charges +q and —q are given by

Q.
A
D .
N
A
,ﬂ'““:x“““‘:\"u
L
FJ\\ /,
N .
2 " -
~ .

-q _q 1
> 5a > T e, Pt @ [1.16(a)]
q 1
4 4me, 12+ a® [1.16(b)]
(b)
FIGURE 1.17 Electric field of a dipole and are equal.
at (a) a point on the axis, (b) a point The directions of E, and E__ are as shown in

on the equatorial plane of the dipole. Fig.
P is the dipole moment vector of
magnitude p = g X 2a and
directed from —q to q.

1.17(b). Clearly, the components normal to the dipole
axis cancel away. The components along the dipole axis
add up. The total electric field is opposite to P. We have

E=—(E+q+E_q)COS9 P

_ 2qa
__4T[8 (r2+a2)3/Zp (1.17)
At large distances (r >> a), this reduces to
2qga .
E:—m (r>>a) (1.18)

From Egs. (1.15) and (1.18), it is clear that the dipole field at large
distances does not involve g and a separately; it depends on the product
ga. This suggests the definition of dipole moment. The dipole moment
vector p of an electric dipole is defined by

pPp=gx2abP (1.19)
that is, it is a vector whose magnitude is charge g times the separation
2a (between the pair of charges g, —q) and the direction is along the line
from —q to q. In terms of p, the electric field of a dipole at large distances
takes simple forms:

At a point on the dipole axis

__2p
ane,r®

r>>a) (1.20)

At a point on the equatorial plane

E=-—P
24 e >>a (1.21)
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Notice the important point that the dipole field at large distances
falls off not as 1/r* but as1/r°. Further, the magnitude and the direction
of the dipole field depends not only on the distance r but also on the
angle between the position vector r and the dipole moment p.

We can think of the limit when the dipole size 2a approaches zero,
the charge g approaches infinity in such a way that the product
p = q X 2a is finite. Such a dipole is referred to as a point dipole. For a
point dipole, Egs. (1.20) and (1.21) are exact, true for any r.

1.10.2 Physical significance of dipoles

In most molecules, the centres of positive charges and of negative charges*
lie at the same place. Therefore, their dipole moment is zero. CO, and
CH, are of this type of molecules. However, they develop a dipole moment
when an electric field is applied. But in some molecules, the centres of
negative charges and of positive charges do not coincide. Therefore they
have a permanent electric dipole moment, even in the absence of an electric
field. Such molecules are called polar molecules. Water molecules, H,0O,
is an example of this type. Various materials give rise to interesting
properties and important applications in the presence or absence of
electric field.

Example 1.9 Two charges +10 uC are placed 5.0 mm apart. Determine
the electric field at (a) a point P on the axis of the dipole 15 cm away
from its centre O on the side of the positive charge, as shown in Fig.
1.18(a), and (b) a point Q, 15 cm away from O on a line passing through
O and normal to the axis of the dipole, as shown in Fig. 1.18(b).

Q
A O B P
N B SR N g PR P
~10 +10 P [
wC wC g i
@ P
! 1 \+ H
A O B
-10C  +10 iC
o)
=
FIGURE 1.18 (b) ]
=
©

* Centre of a collection of positive point charges is defined much the same way
I,
%ql 15

as the centre of mass: r, =
ya
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Solution (a) Field at P due to charge +10 uC

10°C 1

= X
T 4m(8.854x102C? N 'm™?) (15-0.25)°x107* m?

4.13 x 10° N C* along BP

Field at P due to charge —10 pC

10°C 1

= X
4m(8.854x102C*N'm™@) (15+0.25)> x10™* m*

3.86 x 10° N C' along PA

The resultant electric field at P due to the two charges at A and B is

2.7 x 10° N C' along BP.

In this example, the ratio OP/OB is quite large (= 60). Thus, we can
expect to get approximately the same result as above by directly using
the formula for electric field at a far-away point on the axis of a dipole.
For a dipole consisting of charges + g, 2a distance apart, the electric
field at a distance r from the centre on the axis of the dipole has a

magnitude

(r/fa>>1)

where p = 2a g is the magnitude of the dipole moment.

The direction of electric field on the dipole axis is always along the
direction of the dipole moment vector (i.e., from —q to g). Here,
p=10°Cx5x10°m =5x10°Cm

Therefore,

2x5x10° Cm h 1

T 4m(8.854x102C?N'm™?) (15)°x10°m®

=26x10° NC*

along the dipole moment direction AB, which is close to the result
obtained earlier.
(b) Field at Q due to charge + 10 uC at B

10° C 1

— X
T4m@B.854x102 C2N'm?) [15%+ (0.25)?%] x10™* m?

3.99 x 10° N C™' along BQ

Field at Q due to charge -10 uC at A

10°C 1

— X
T4m(8.854x10°2C*N'm?) [15°+(0.25)°]x10*m®

3.99 x 10° N C! along QA.

Clearly, the components of these two forces with equal magnitudes
cancel along the direction OQ but add up along the direction parallel
to BA. Therefore, the resultant electric field at Q@ due to the two
charges at A and B is

ExamprLE 1.9

0.25

2 X
J15% + (0.25)°

1.33 x 10° N C™ along BA.

As in (a), we can expect to get approximately the same result by
directly using the formula for dipole field at a point on the normal to
the axis of the dipole:

x 3.99 x 10°N C_lalong BA
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__ b
E= e (r/a>> 1)

_ 5x10° Cm " 1

4m(8.854x10*C*N"'m™) (15)° x10° m® o
= 1.33x10° NC™. g
The direction of electric field in this case is opposite to the direction &
of the dipole moment vector. Again, the result agrees with that obtained -
before. ©

1.11 DiroLE IN A UNIFORM EXTERNAL FIELD

Consider a permanent dipole of dipole moment p in a uniform gE

external field E, as shown in Fig. 1.19. (By permanent dipole, we
mean that p exists irrespective of E; it has not been induced by E.)

There is a force gE on g and a force —gE on —q. The net force on
the dipole is zero, since E is uniform. However, the charges are
separated, so the forces act at different points, resulting in a torque
on the dipole. When the net force is zero, the torque (couple) is
independent of the origin. Its magnitude equals the magnitude of
each force multiplied by the arm of the couple (perpendicular

distance between the two antiparallel forces).
Magnitude of torque = q E X 2 a sinf
=2 qaFEsind

_qE

FIGURE 1.19 Dipole in a
uniform electric field.

Its direction is normal to the plane of the paper, coming out of it.

The magnitude of p X E is also p E sinf and its direction
is normal to the paper, coming out of it. Thus,

1 =pXE (1.22)

This torque will tend to align the dipole with the field
E. When p is aligned with E, the torque is zero.

What happens if the field is not uniform? In that case,
the net force will evidently be non-zero. In addition there
will, in general, be a torque on the system as before. The
general case is involved, so let us consider the simpler
situations when p is parallel to E or antiparallel to E. In
either case, the net torque is zero, but there is a net force
on the dipole if E is not uniform.

Figure 1.20 is self-explanatory. It is easily seen that
when p is parallel to E, the dipole has a net force in the
direction of increasing field. When p is antiparallel to E,
the net force on the dipole is in the direction of decreasing
field. In general, the force depends on the orientation of p
with respect to E.

This brings us to a common observation in frictional
electricity. A comb run through dry hair attracts pieces of
paper. The comb, as we know, acquires charge through
friction. But the paper is not charged. What then explains
the attractive force? Taking the clue from the preceding

2024-25
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e ——

Force on —q
4—

Force on q

@ ——@

- P q

Direction of net force = —»
Direction of increasing field = ——»
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E
..... —Q
q P 4
Force on q
_> 4—

Force on —q

Direction of net force = «—
Direction of increasing field = ——»

(b)
FIGURE 1.20 Electric force on a
dipole: (a) E parallel to p, (b) E
antiparallel to p.
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Line charge AQ =1 Al

Volume charge AQ=PAV

FIGURE 1.21
Definition of linear,
surface and volume

charge densities.
In each case, the
element (Al, AS, AV)
chosen is small on
the macroscopic
scale but contains
a very large number
of microscopic
constituents.
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discussion, the charged comb ‘polarises’ the piece of paper, i.e., induces
a net dipole moment in the direction of field. Further, the electric field
due to the comb is not uniform. This non-uniformity of the field makes a
dipole to experience a net force on it. In this situation, it is easily seen
that the paper should move in the direction of the comb!

1.12 ContiNuous CHARGE DISTRIBUTION

We have so far dealt with charge configurations involving discrete charges
4, 9, ---» q,- One reason why we restricted to discrete charges is that the
mathematical treatment is simpler and does not involve calculus. For
many purposes, however, it is impractical to work in terms of discrete
charges and we need to work with continuous charge distributions. For
example, on the surface of a charged conductor, it is impractical to specify
the charge distribution in terms of the locations of the microscopic charged
constituents. It is more feasible to consider an area element AS (Fig. 1.21)
on the surface of the conductor (which is very small on the macroscopic
scale but big enough to include a very large number of electrons) and
specify the charge AQ on that element. We then define a surface charge
density o at the area element by
AQ

g=—
AS (1.23)

We can do this at different points on the conductor and thus arrive at
a continuous function o, called the surface charge density. The surface
charge density o so defined ignores the quantisation of charge and the
discontinuity in charge distribution at the microscopic level*. o represents
macroscopic surface charge density, which in a sense, is a smoothed out
average of the microscopic charge density over an area element AS which,
as said before, is large microscopically but small macroscopically. The
units for ¢ are C/m?.

Similar considerations apply for a line charge distribution and a volume
charge distribution. The linear charge density A of a wire is defined by

_ AQ

1 =222
Al (1.24)

where Al is a small line element of wire on the macroscopic scale that,
however, includes a large number of microscopic charged constituents,
and AQ is the charge contained in that line element. The units for A are
C/m. The volume charge density (sometimes simply called charge density)
is defined in a similar manner:

AQ

p:ﬁ (1.25)

where AQ is the charge included in the macroscopically small volume
element AV that includes a large number of microscopic charged
constituents. The units for p are C/m°®.

The notion of continuous charge distribution is similar to that we
adopt for continuous mass distribution in mechanics. When we refer to

* At the microscopic level, charge distribution is discontinuous, because they are
discrete charges separated by intervening space where there is no charge.
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the density of a liquid, we are referring to its macroscopic density. We
regard it as a continuous fluid and ignore its discrete molecular
constitution.

The field due to a continuous charge distribution can be obtained in
much the same way as for a system of discrete charges, Eq. (1.10). Suppose
a continuous charge distribution in space has a charge density p. Choose
any convenient origin O and let the position vector of any point in the
charge distribution be r. The charge density p may vary from point to
point, i.e., it is a function of r. Divide the charge distribution into small
volume elements of size AV. The charge in a volume element AVis pAV.

Now, consider any general point P (inside or outside the distribution)
with position vector R (Fig. 1.21). Electric field due to the charge pAVis
given by Coulomb’s law:

1 pAV
ine, r° r (1.26)

where r’is the distance between the charge element and P, and r'is a
unit vector in the direction from the charge element to P. By the
superposition principle, the total electric field due to the charge
distribution is obtained by summing over electric fields due to different
volume elements:

1 pAV _,
4me, allZAV r2 r (1.27)

Note that p, r’, §' all can vary from point to point. In a strict
mathematical method, we should let AV—0 and the sum then becomes
an integral; but we omit that discussion here, for simplicity. In short,
using Coulomb’s law and the superposition principle, electric field can
be determined for any charge distribution, discrete or continuous or part
discrete and part continuous.

1.13 Gauss’s Law

As a simple application of the notion of electric flux, let us consider the
total flux through a sphere of radius r, which encloses a point charge g
at its centre. Divide the sphere into small area elements, as shown in

AE =

EO

Fig. 1.22.
The flux through an area element AS is
q .
Ap=E.AS = I AS
@ AT, 12 (1.28)

where we have used Coulomb’s law for the electric field due to a single
charge q. The unit vector T is along the radius vector from the centre to
the area element. Now, since the normal to a sphere at every point is
along the radius vector at that point, the area element AS and T have
the same direction. Therefore,

q
Ap= AS

? amg, r? (1.29)
since the magnitude of a unit vector is 1.

The total flux through the sphere is obtained by adding up flux
through all the different area elements:

2024-25

FIGURE 1.22 Flux

through a sphere

enclosing a point
charge q at its centre.
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= —A
¢ aUZAS 4me, r’ S
K 2 Since each area element of the sphere is at the same
- distance r from the charge,
FIGURE 1.23 Calculation of the 0= q AS = q S
flux of uniform electric fie.ld 4TE, 2 allas 4T, r2
through the surface of a cylinder. 5
Now S, the total area of the sphere, equals 4nr~. Thus,
a 2 _ 9
= = _X41mmr° =—
@ 4TiE, 12 & (1.30)
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Equation (1.30) is a simple illustration of a general result of
electrostatics called Gauss’s law.

We state Gauss’s law without proof:

Electric flux through a closed surface S

=q/g, (1.31)

q = total charge enclosed by S.

The law implies that the total electric flux through a closed surface is
zero if no charge is enclosed by the surface. We can see that explicitly in
the simple situation of Fig. 1.23.

Here the electric field is uniform and we are considering a closed
cylindrical surface, with its axis parallel to the uniform field E. The total
flux ¢ through the surface is ¢ = ¢, + ¢, + ¢,, where ¢, and ¢, represent
the flux through the surfaces 1 and 2 (of circular cross-section) of the
cylinder and ¢, is the flux through the curved cylindrical part of the
closed surface. Now the normal to the surface 3 at every point is
perpendicular to E, so by definition of flux, ¢, = 0. Further, the outward
normal to 2 is along E while the outward normal to 1 is opposite to E.
Therefore,

¢, =-ES,, ¢,=+ES,
S =S,=S

where Sis the area of circular cross-section. Thus, the total flux is zero,

as expected by Gauss’s law. Thus, whenever you find that the net electric

flux through a closed surface is zero, we conclude that the total charge
contained in the closed surface is zero.

The great significance of Gauss’s law Eq. (1.31), is that it is true in
general, and not only for the simple cases we have considered above. Let
us note some important points regarding this law:

() Gauss’s law is true for any closed surface, no matter what its shape
or size.

(i) The term q on the right side of Gauss’s law, Eq. (1.31), includes the
sum of all charges enclosed by the surface. The charges may be located
anywhere inside the surface.

(iii) In the situation when the surface is so chosen that there are some
charges inside and some outside, the electric field [whose flux appears
on the left side of Eq. (1.31)] is due to all the charges, both inside and
outside S. The term g on the right side of Gauss’s law, however,
represents only the total charge inside S.
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(iv) The surface that we choose for the application of Gauss’s law is called

(Y]

the Gaussian surface. You may choose any Gaussian surface and
apply Gauss’s law. However, take care not to let the Gaussian surface
pass through any discrete charge. This is because electric field due
to a system of discrete charges is not well defined at the location of
any charge. (As you go close to the charge, the field grows without
any bound.) However, the Gaussian surface can pass through a
continuous charge distribution.

Gauss’s law is often useful towards a much easier calculation of the
electrostatic field when the system has some symmetry. This is
facilitated by the choice of a suitable Gaussian surface.

(vi) Finally, Gauss’s law is based on the inverse square dependence on

distance contained in the Coulomb’s law. Any violation of Gauss’s
law will indicate departure from the inverse square law.

Example 1.10 The electric field components in Fig. 1.24 are
E_= ax'/?, E,=E, = 0, in which a = 800 N/C m'/2. Calculate (a) the
flux through the cube, and (b) the charge within the cube. Assume
that a= 0.1 m.

a
n; T

a

FIGURE 1.24
Solution
(a) Since the electric field has only an x component, for faces
perpendicular to x direction, the angle between E and AS is
+ n/2. Therefore, the flux ¢ = E.AS is separately zero for each face
of the cube except the two shaded ones. Now the magnitude of
the electric field at the left face is
EL= axl/Z - aal/Z
(x = a at the left face).
The magnitude of electric field at the right face is
E,=a x'?=q2a)'?
(x = 2a at the right face).
The corresponding fluxes are

¢,= E-AS = ASE, [h, =E, AS cosf = -E, AS, since 6 = 180°
=-Ed

0= EL-AS = E; AS cosO = E, AS, since 0 = 0°
= E &

Net flux through the cube

2024-25
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ExampLE 1.10

ExamprLE 1.11

= ¢pt ¢, = Egd® - E @ = a® (Ex- E) = ad® [2a)'/* - a'?]

 aa? (V2-1)

= 800 (0.)** (v2-1)
=1.05 Nm? C!

(b) We can use Gauss’s law to find the total charge g inside the cube.
We have ¢ = q/¢, or q = ¢¢,. Therefore,

q=1.05x8.854 x 102 C =9.27 x 10°"% C.

Example 1.11 An electric field is uniform, and in the positive x
direction for positive x, and uniform with the same magnitude but in
the negative x direction for negative x. It is given that E = 200 i N/C
for x> 0 and E = 200 i N/C for x < 0. A right circular cylinder of
length 20 cm and radius 5 cm has its centre at the origin and its axis
along the x-axis so that one face is at x = +10 cm and the other is at
x =-10 cm (Fig. 1.25). (a) What is the net outward flux through each
flat face? (b) What is the flux through the side of the cylinder?
(c) What is the net outward flux through the cylinder? (d) What is the
net charge inside the cylinder?

Solution

(a) We can see from the figure that on the left face E and AS are

parallel. Therefore, the outward flux is

¢,= B-AS = — 200 i-AS

+200 AS, since i-AS=-AS
= +200 X 1 (0.05)* =+ 1.57 Nm® C'

On the right face, E and AS are parallel and therefore
¢.= E-AS= +1.57 Nm>C™".

(b) For any point on the side of the cylinder E is perpendicular to
AS and hence E-AS = 0. Therefore, the flux out of the side of the
cylinder is zero.

(¢) Net outward flux through the cylinder
¢=157+1.57+0=3.14 Nm? C"

y
AS
5 cm
Le
E<«— /\ —E
0 —» X
AS \/ AS i
x=-10 cm 20 cm x =10 cm

FIGURE 1.25

(d) The net charge within the cylinder can be found by using Gauss’s
law which gives
q= &

3.14 x 8.854 x 10°"* C

2.78 x 107" C
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1.14 AprprLICATIONS OF GAuss’s Law

The electric field due to a general charge distribution is, as seen above,
given by Eq. (1.27). In practice, except for some special cases, the
summation (or integration) involved in this equation cannot be carried
out to give electric field at every point in
space. For some symmetric charge
configurations, however, it is possible to
obtain the electric field in a simple way using
the Gauss’s law. This is best understood by
some examples.

1.14.1 Field due to an infinitely
long straight uniformly
charged wire

Consider an infinitely long thin straight wire

with uniform linear charge density 1. The wire

is obviously an axis of symmetry. Suppose we

take the radial vector from O to P and rotate it

around the wire. The points P, P’, P" so

obtained are completely equivalent with

respect to the charged wire. This implies that

the electric field must have the same magnitude ;

at these points. The direction of electric field at @

every point must be radial (outward if 4 > 0O,

inward if A < 0). This is clear from Fig. 1.26.

Consider a pair of line elements P, and P,

of the wire, as shown. The electric fields

produced by the two elements of the pair when R

summed give a resultant electric field which (\
I
I
I
I
I
I
1
I

is radial (the components normal to the radial
vector cancel). This is true for any such pair
and hence the total field at any point P is
radial. Finally, since the wire is infinite, P r
electric field does not depend on the position E
of P along the length of the wire. In short, the

electric field is everywhere radial in the plane

cutting the wire normally, and its magnitude

depends only on the radial distance r. \

To calculate the field, imagine a cylindrical S~
Gaussian surface, as shown in the Fig. 1.26(b).
Since the field is everywhere radial, flux
through the two ends of the cylindrical
Gaussian surface is zero. At the cylindrical
part of the surface, E is normal to the surface

R L ] |

{

(b)

FIGURE 1.26 (a) Electric field due to an
infinitely long thin straight wire is radial,

at every point, and its magnitude is constant, (b) The Gaussian surface for a long thin
since it depends only on r. The surface area wire of uniform linear charge density.

of the curved partis 2nrl, where lis the length

of the cylinder. 33
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Flux through the Gaussian surface

flux through the curved cylindrical part of the surface

E X 2nrl

The surface includes charge equal to 4 I. Gauss’s law then gives
EX2nrl= Al/¢,

A
2me,r

ie E =
Vectorially, E at any point is given by
A -
n
2me,r

E =

(1.32)

where n is the radial unit vector in the plane normal to the wire passing
through the point. E is directed outward if 1 is positive and inward if 1 is
negative.

Note that when we write a vector A as a scalar multiplied by a unit
vector, i.e., as A=A a, the scalar A is an algebraic number. It can be
negative or positive. The direction of A will be the same as that of the unit
vector aif A > 0 and opposite to a if A < 0. When we want to restrict to
non-negative values, we use the symbol |A|and call it the modulus of A.
Thus, |A[z20.

Also note that though only the charge enclosed by the surface (1)
was included above, the electric field E is due to the charge on the entire
wire. Further, the assumption that the wire is infinitely long is crucial.
Without this assumption, we cannot take E to be normal to the curved
part of the cylindrical Gaussian surface. However, Eq. (1.32) is
approximately true for electric field around the central portions of a long
wire, where the end effects may be ignored.

1.14.2 Field due to a uniformly charged infinite plane sheet

Let o be the uniform surface charge density of an infinite plane sheet

(Fig. 1.27). We take the x-axis normal to the given plane. By symmetry,

the electric field will not depend on y and z coordinates and its direction

at every point must be parallel to the x-direction.

Surface We can take the Gaussian surface to be a

z  charge density o rectangular parallelepiped of cross-sectional area

A, as shown. (A cylindrical surface will also do.) As

seen from the figure, only the two faces 1 and 2 will

contribute to the flux; electric field lines are parallel

to the other faces and they, therefore, do not
contribute to the total flux.

The unit vector normal to surface 1 is in —x
direction while the unit vector normal to surface 2
“——x——— pE——x ——>» is in the +x direction. Therefore, flux E.AS through
both the surfaces are equal and add up. Therefore
the net flux through the Gaussian surface is 2 EA.
The charge enclosed by the closed surface is cA.
34 Therefore by Gauss’s law,

FIGURE 1.27 Gaussian surface for a
uniformly charged infinite plane sheet.
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2 EA=cA/g,
or, E= 6/280
Vectorically,
o .
E=—n
2, (1.33)

where n is a unit vector normal to the plane and going away from it.

E is directed away from the plate if o is positive and toward the plate
if o is negative. Note that the above application of the Gauss’ law has
brought out an additional fact: E is independent of x also.

For a finite large planar sheet, Eq. (1.33) is approximately true in the
middle regions of the planar sheet, away from the ends.

1.14.3 Field due to a uniformly charged thin spherical shell

Let o be the uniform surface charge density of a thin spherical shell of
radius R (Fig. 1.28). The situation has obvious spherical symmetry. The
field at any point P, outside or inside, can depend only on r (the radial
distance from the centre of the shell to the point) and must be radial (i.e.,
along the radius vector).

(i) Field outside the shell: Consider a point P outside the Gaussian surface
shell with radius vector r. To calculate E at P, we take the g rface charge .-~~~
Gaussian surface to be a sphere of radius rand with centre densityc i )
O, passing through P. All points on this sphere are equivalent
relative to the given charged configuration. (That is what we
mean by spherical symmetry.) The electric field at each point
of the Gaussian surface, therefore, has the same magnitude
E and is along the radius vector at each point. Thus, E and

AS at every point are parallel and the flux through each e
element is E AS. Summing over all AS, the flux through the (@)
Gaussian surface is E X 4 «n r?. The charge enclosed is '

o X 4 1 R®. By Gauss’s law slél(;frallgf tycgarge G;‘;rslegél

o
Ex4nr?=—_—4TR
é‘0
oR*> _ ¢q
& r’ 4Angr?

Or, E=

where q = 4 7 R® 5is the total charge on the spherical shell.

Vectorially, (b)
E = %f (1.34) FIGURE 1.28 Gaussian
T, 1 surfaces for a point with

The electric field is directed outward if g > O and inward if @r>R (b r<R

g < 0. This, however, is exactly the field produced by a charge

g placed at the centre O. Thus for points outside the shell, the field due
to a uniformly charged shell is as if the entire charge of the shell is
concentrated at its centre.

(ii) Field inside the shell: In Fig. 1.28(b), the point P is inside the
shell. The Gaussian surface is again a sphere through P centred at O. 35
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The flux through the Gaussian surface, calculated as before, is
E x 4 n r*. However, in this case, the Gaussian surface encloses no
charge. Gauss’s law then gives

Ex4nr’=0
ie, E=0

(r<R) (1.35)

that is, the field due to a uniformly charged thin shell is zero at all points
inside the shell*. This important result is a direct consequence of Gauss’s
law which follows from Coulomb’s law. The experimental verification of
this result confirms the 1/r* dependence in Coulomb’s law.

ExawvprLE 1.12

Example 1.12 An early model for an atom considered it to have a
positively charged point nucleus of charge Ze, surrounded by a
uniform density of negative charge up to a radius R. The atom as a
whole is neutral. For this model, what is the electric field at a distance
r from the nucleus?

Y
P

FIGURE 1.29

Solution The charge distribution for this model of the atom is as
shown in Fig. 1.29. The total negative charge in the uniform spherical
charge distribution of radius R must be —Z e, since the atom (nucleus
of charge Z e + negative charge) is neutral. This immediately gives us
the negative charge density p, since we must have

4TR®

p=0-Ze

3 Ze
4R

To find the electric field E(r) at a point P which is a distance r away
from the nucleus, we use Gauss’s law. Because of the spherical
symmetry of the charge distribution, the magnitude of the electric
field E(r) depends only on the radial distance, no matter what the
direction of r. Its direction is along (or opposite to) the radius vector r
from the origin to the point P. The obvious Gaussian surface is a
spherical surface centred at the nucleus. We consider two situations,
namely, r< Rand r > R.

(i) r < R : The electric flux ¢ enclosed by the spherical surface is

¢=E@x4nr?

or P=-

Compare this with a uniform mass shell discussed in Section 7.5 of Class XI

Textbook of Physics.
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where E (r) is the magnitude of the electric field at r. This is because
the field at any point on the spherical Gaussian surface has the
same direction as the normal to the surface there, and has the same
magnitude at all points on the surface.
The charge g enclosed by the Gaussian surface is the positive nuclear
charge and the negative charge within the sphere of radius r,

4mrd

ie.,q=Ze +

Substituting for the charge density p obtained earlier, we have
3
7
q= Ze—-2Z GF

Gauss’s law then gives,

Ze 1 r
4mg, r R
The electric field is directed radially outward.

(i) r > R: In this case, the total charge enclosed by the Gaussian
spherical surface is zero since the atom is neutral. Thus, from Gauss’s
law,

E(Mx4n r’=0 or E(r)=0; r>R
At r = R, both cases give the same result: E = 0.

E(r)= ; T <R

C1° 1 91dNvXy

SUMMARY

1. Electric and magnetic forces determine the properties of atoms,
molecules and bulk matter.

2. From simple experiments on frictional electricity, one can infer that
there are two types of charges in nature; and that like charges repel
and unlike charges attract. By convention, the charge on a glass rod
rubbed with silk is positive; that on a plastic rod rubbed with fur is
then negative.

3. Conductors allow movement of electric charge through them,
insulators do not. In metals, the mobile charges are electrons; in
electrolytes both positive and negative ions are mobile.

4. Electric charge has three basic properties: quantisation, additivity
and conservation.

Quantisation of electric charge means that total charge (g) of a body
is always an integral multiple of a basic quantum of charge (e) i.e.,
q=ne, where n=0, £1, +2, +3, .... Proton and electron have charges
+e, —e, respectively. For macroscopic charges for which nis a very large
number, quantisation of charge can be ignored.

Additivity of electric charges means that the total charge of a system
is the algebraic sum (i.e., the sum taking into account proper signs)
of all individual charges in the system.

Conservation of electric charges means that the total charge of an
isolated system remains unchanged with time. This means that when
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bodies are charged through friction, there is a transfer of electric charge
from one body to another, but no creation or destruction
of charge.

Coulomb’s Law: The mutual electrostatic force between two point
charges g, and g, is proportional to the product q,q, and inversely
proportional to the square of the distance r,, separating them.
Mathematically,

-k @) .
F,, = force on g, due to g, = % I,
21
. 1
where I,; is a unit vector in the direction from g, to g, and k = .
0

is the constant of proportionality.

In SI units, the unit of charge is coulomb. The experimental value of
the constant ¢, is

£, =8.854x 10> C*N "' m™
The approximate value of k is

k=9x10°Nm®C?
The ratio of electric force and gravitational force between a proton
and an electron is

k e’
G m,m,

024 x 10%

Superposition Principle: The principle is based on the property that the
forces with which two charges attract or repel each other are not
affected by the presence of a third (or more) additional charge(s). For
an assembly of charges q,. q,, g, ..., the force on any charge, say q,, is
the vector sum of the force on g, due to g,, the force on g, due to g,
and so on. For each pair, the force is given by the Coulomb’s law for
two charges stated earlier.

The electric field E at a point due to a charge configuration is the
force on a small positive test charge g placed at the point divided by
the magnitude of the charge. Electric field due to a point charge g has
a magnitude | q|/ 4nsor2; it is radially outwards from g, if g is positive,
and radially inwards if g is negative. Like Coulomb force, electric field
also satisfies superposition principle.

An electric field line is a curve drawn in such a way that the tangent
at each point on the curve gives the direction of electric field at that
point. The relative closeness of field lines indicates the relative strength
of electric field at different points; they crowd near each other in regions
of strong electric field and are far apart where the electric field is
weak. In regions of constant electric field, the field lines are uniformly
spaced parallel straight lines.

. Some of the important properties of field lines are: (i) Field lines are

continuous curves without any breaks. (ii) Two field lines cannot cross
each other. (iii) Electrostatic field lines start at positive charges and
end at negative charges —they cannot form closed loops.

. An electric dipole is a pair of equal and opposite charges g and —q

separated by some distance 2a. Its dipole moment vector p has
magnitude 2qga and is in the direction of the dipole axis from —q to g.
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Field of an electric dipole in its equatorial plane (i.e., the plane
perpendicular to its axis and passing through its centre) at a distance
r from the centre:

_ P 1
4me, (a®+r?)p?

P

e forr >>a
o

Dipole electric field on the axis at a distance r from the centre:

— 2pr
4 g, (r* - a*)?
O 2—p3 for r >> a
4 TE T

The 1/r° dependence of dipole electric fields should be noted in contrast
to the 1/r* dependence of electric field due to a point charge.

In a uniform electric field E, a dipole experiences a torque T given by
T=p*XE
but experiences no net force.
The flux A¢ of electric field E through a small area element AS is
given by
Ap = E-AS
The vector area element AS is

AS =AS N

where AS is the magnitude of the area element and A is normal to the
area element, which can be considered planar for sufficiently small AS.

For an area element of a closed surface, R is taken to be the direction
of outward normal, by convention.
Gauss’s law: The flux of electric field through any closed surface Sis
1/¢,times the total charge enclosed by S. The law is especially useful
in determining electric field E, when the source distribution has simple
symmetry:
(i) Thin infinitely long straight wire of uniform linear charge density A

A

E = n
2TE, T

where r is the perpendicular distance of the point from the wire and

N is the radial unit vector in the plane normal to the wire passing
through the point.

(i) Infinite thin plane sheet of uniform surface charge density o

E--Z &
2 ¢,

where M is a unit vector normal to the plane, outward on either side.
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(iii) Thin spherical shell of uniform surface charge density o
— g S
E=———Tr1 r 2 R
4 e, ( )
E=0 (r < R)

where ris the distance of the point from the centre of the shell and R
the radius of the shell. g is the total charge of the shell: q = 47R%.

The electric field outside the shell is as though the total charge is
concentrated at the centre. The same result is true for a solid sphere
of uniform volume charge density. The field is zero at all points inside
the shell.

Physical quantity Symbol Dimensions Unit Remarks

AS

& POINTS TO PONDER

(V2

You might wonder why the protons, all carrying positive charges,
are compactly residing inside the nucleus. Why do they not fly away?
You will learn that there is a third kind of a fundamental force,
called the strong force which holds them together. The range of
distance where this force is effective is, however, very small ~10™'*
m. This is precisely the size of the nucleus. Also the electrons are
not allowed to sit on top of the protons, i.e. inside the nucleus,
due to the laws of quantum mechanics. This gives the atoms their
structure as they exist in nature.

Coulomb force and gravitational force follow the same inverse-square
law. But gravitational force has only one sign (always attractive), while
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Coulomb force can be of both signs (attractive and repulsive), allowing
possibility of cancellation of electric forces. This is how gravity, despite
being a much weaker force, can be a dominating and more pervasive
force in nature.

The constant of proportionality k in Coulomb’s law is a matter of
choice if the unit of charge is to be defined using Coulomb’s law. In SI
units, however, what is defined is the unit of current (A) via its magnetic
effect (Ampere’s law) and the unit of charge (coulomb) is simply defined
by (1C =1 A s). In this case, the value of k is no longer arbitrary; it is
approximately 9 x 10° N m> C™2.

The rather large value of k, i.e., the large size of the unit of charge
(1C) from the point of view of electric effects arises because (as
mentioned in point 3 already) the unit of charge is defined in terms of
magnetic forces (forces on current-carrying wires) which are generally
much weaker than the electric forces. Thus while 1 ampere is a unit
of reasonable size for magnetic effects, 1 C =1 A s, is too big a unit for
electric effects.

The additive property of charge is not an ‘obvious’ property. It is related
to the fact that electric charge has no direction associated with it;
charge is a scalar.

Charge is not only a scalar (or invariant) under rotation; it is also
invariant for frames of reference in relative motion. This is not always
true for every scalar. For example, kinetic energy is a scalar under
rotation, but is not invariant for frames of reference in relative
motion.

Conservation of total charge of an isolated system is a property
independent of the scalar nature of charge noted in point 6.
Conservation refers to invariance in time in a given frame of reference.
A quantity may be scalar but not conserved (like kinetic energy in an
inelastic collision). On the other hand, one can have conserved vector
quantity (e.g., angular momentum of an isolated system).

Quantisation of electric charge is a basic (unexplained) law of nature;
interestingly, there is no analogous law on quantisation of mass.

Superposition principle should not be regarded as ‘obvious’, or
equated with the law of addition of vectors. It says two things:
force on one charge due to another charge is unaffected by the
presence of other charges, and there are no additional three-body,
four-body, etc., forces which arise only when there are more than
two charges.

The electric field due to a discrete charge configuration is not defined
at the locations of the discrete charges. For continuous volume
charge distribution, it is defined at any point in the distribution.
For a surface charge distribution, electric field is discontinuous
across the surface.

The electric field due to a charge configuration with total charge zero
is not zero; but for distances large compared to the size of
the configuration, its field falls off faster than 1/r?, typical of field
due to a single charge. An electric dipole is the simplest example of
this fact.
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EXERCISES

What is the force between two small charged spheres having
charges of 2 X 107C and 3 x 107°C placed 30 cm apart in air?

The electrostatic force on a small sphere of charge 0.4 uC due to

another small sphere of charge —0.8 puC in air is 0.2 N. (a) What is

the distance between the two spheres? (b) What is the force on the

second sphere due to the first?

Check that the ratio ke?/G m,m_ is dimensionless. Look up a Table

of Physical Constants and determine the value of this ratio. What

does the ratio signify?

(a) Explain the meaning of the statement ‘electric charge of a body
is quantised’.

(b) Why can one ignore quantisation of electric charge when dealing
with macroscopic i.e., large scale charges?

When a glass rod is rubbed with a silk cloth, charges appear on

both. A similar phenomenon is observed with many other pairs of

bodies. Explain how this observation is consistent with the law of

conservation of charge.

Four point charges q, = 2 pC, g, =-5 uC, q. =2 nC, and q, = -5 uC are

located at the corners of a square ABCD of side 10 cm. What is the

force on a charge of 1 uC placed at the centre of the square?

(a) An electrostatic field line is a continuous curve. That is, a field
line cannot have sudden breaks. Why not?

(b) Explain why two field lines never cross each other at any point?

Two point charges g, = 3 uC and g, = -3 pC are located 20 cm apart

in vacuum.

(a) What is the electric field at the midpoint O of the line AB joining
the two charges?

(b) If a negative test charge of magnitude 1.5 x 10° C is placed at
this point, what is the force experienced by the test charge?

A system has two charges g, =2.5x 10" Cand g, = -2.5x 107 C

located at points A: (0, O, -15 cm) and B: (0,0, +15 cm), respectively.

What are the total charge and electric dipole moment of the system?

An electric dipole with dipole moment 4 x 10° C m is aligned at 30°

with the direction of a uniform electric field of magnitude 5 x 10* NC™.

Calculate the magnitude of the torque acting on the dipole.

A polythene piece rubbed with wool is found to have a negative
charge of 3 x 107 C.

(a) Estimate the number of electrons transferred (from which to
which?)

(b) Is there a transfer of mass from wool to polythene?

(a) Two insulated charged copper spheres A and B have their centres
separated by a distance of 50 cm. What is the mutual force of
electrostatic repulsion if the charge on each is 6.5 x 10”7 C? The
radii of A and B are negligible compared to the distance of
separation.

(b) What is the force of repulsion if each sphere is charged double
the above amount, and the distance between them is halved?

Figure 1.30 shows tracks of three charged particles in a uniform

electrostatic field. Give the signs of the three charges. Which particle

has the highest charge to mass ratio?
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FIGURE 1.30

1.14 Consider a uniform electric field E = 3 x 10°i N/C. (a) What is the
flux of this field through a square of 10 cm on a side whose plane is
parallel to the yz plane? (b) What is the flux through the same
square if the normal to its plane makes a 60° angle with the x-axis?

1.15 What is the net flux of the uniform electric field of Exercise 1.14
through a cube of side 20 cm oriented so that its faces are parallel
to the coordinate planes?

1.16 Careful measurement of the electric field at the surface of a black
box indicates that the net outward flux through the surface of the
box is 8.0 x 10° Nm?/C. (a) What is the net charge inside the box?
(b) If the net outward flux through the surface of the box were zero,
could you conclude that there were no charges inside the box? Why
or Why not?

1.17 A point charge +10 pC is a distance 5 cm directly above the centre
of a square of side 10 cm, as shown in Fig. 1.31. What is the
magnitude of the electric flux through the square? (Hint: Think of
the square as one face of a cube with edge 10 cm.)

®
5 cm

A

10 cm

. o
«——— 10 cm

FIGURE 1.31

1.18 A point charge of 2.0 uC is at the centre of a cubic Gaussian
surface 9.0 cm on edge. What is the net electric flux through the
surface?

1.19 A point charge causes an electric flux of —-1.0 X 10 Nm2/C to pass
through a spherical Gaussian surface of 10.0 cm radius centred on
the charge. (a) If the radius of the Gaussian surface were doubled,
how much flux would pass through the surface? (b) What is the
value of the point charge?

1.20 A conducting sphere of radius 10 cm has an unknown charge. If
the electric field 20 cm from the centre of the sphere is 1.5 x 10° N/C
and points radially inward, what is the net charge on the sphere?
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1.21

1.22

1.23

A uniformly charged conducting sphere of 2.4 m diameter has a
surface charge density of 80.0 pC/mZ. (a) Find the charge on the
sphere. (b) What is the total electric flux leaving the surface of the
sphere?

An infinite line charge produces a field of 9 X 10* N/C at a distance
of 2 cm. Calculate the linear charge density.

Two large, thin metal plates are parallel and close to each other. On
their inner faces, the plates have surface charge densities of opposite
signs and of magnitude 17.0 X 1022 C/m?2. What is E: (a) in the outer
region of the first plate, (b) in the outer region of the second plate,
and (c) between the plates?
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ELECTROSTATIC
POTENTIAL AND
CAPACITANCE

.
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2.1 INTRODUCTION

In Chapters 5 and 7 (Class XI), the notion of potential energy was
introduced. When an external force does work in taking a body from a
point to another against a force like spring force or gravitational force,
that work gets stored as potential energy of the body. When the external
force is removed, the body moves, gaining kinetic energy and losing
an equal amount of potential energy. The sum of kinetic and
potential energies is thus conserved. Forces of this kind are called
conservative forces. Spring force and gravitational force are examples of
conservative forces.

Coulomb force between two (stationary) charges is also a conservative
force. This is not surprising, since both have inverse-square dependence
on distance and differ mainly in the proportionality constants — the
masses in the gravitational law are replaced by charges in Coulomb’s
law. Thus, like the potential energy of a mass in a gravitational
field, we can define electrostatic potential energy of a charge in an
electrostatic field.

Consider an electrostatic field E due to some charge configuration.
First, for simplicity, consider the field E due to a charge Q placed at the
origin. Now, imagine that we bring a test charge q from a point R to a
point P against the repulsive force on it due to the charge Q. With reference
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k toFig. 2.1, this will happen if @ and g are both positive
q or both negative. For definiteness, let us take Q, g> 0.
Two remarks may be made here. First, we assume

that the test charge g is so small that it does not disturb
the original configuration, namely the charge Q at the
origin (or else, we keep Q fixed at the origin by some

FIGURE 2.1 A test charge q (> 0) is unspecified force). Second, in bringing the charge q from

moved from the point R to the R to P, we apply an external force F_ just enough to
point P against the repulsive counter the repulsive electric force F (i.e, F_ = -F_).
force on it by the charge Q (> 0) This means there is no net force on or acceleration of
placed at the origin. the charge g when it is brought from R to P, i.e., it is

46

brought with infinitesimally slow constant speed. In
this situation, work done by the external force is the negative of the work
done by the electric force, and gets fully stored in the form of potential
energy of the charge q. If the external force is removed on reaching P, the
electric force will take the charge away from Q — the stored energy (potential
energy) at P is used to provide kinetic energy to the charge g in such a
way that the sum of the kinetic and potential energies is conserved.
Thus, work done by external forces in moving a charge q from Rto P is
P
WRP = JFext -dr

R

P
- _IFM.dr (2.1)
R

This work done is against electrostatic repulsive force and gets stored
as potential energy.

At every point in electric field, a particle with charge g possesses a
certain electrostatic potential energy, this work done increases its potential
energy by an amount equal to potential energy difference between points
Rand P.

Thus, potential energy difference

AU =U, -Ug = W, (2.2)

(Note here that this displacement is in an opposite sense to the electric
force and hence work done by electric field is negative, i.e., -W,.)

Therefore, we can define electric potential energy difference between
two points as the work required to be done by an external force in moving
(without accelerating) charge g from one point to another for electric field
of any arbitrary charge configuration.

Two important comments may be made at this stage:

(i) The right side of Eq. (2.2) depends only on the initial and final positions
of the charge. It means that the work done by an electrostatic field in
moving a charge from one point to another depends only on the initial
and the final points and is independent of the path taken to go from
one point to the other. This is the fundamental characteristic of a
conservative force. The concept of the potential energy would not be
meaningful if the work depended on the path. The path-independence
of work done by an electrostatic field can be proved using the
Coulomb’s law. We omit this proof here.
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(i) Equation (2.2) defines potential energy difference in terms
of the physically meaningful quantity work. Clearly,
potential energy so defined is undetermined to within an
additive constant.What this means is that the actual value
of potential energy is not physically significant; it is only
the difference of potential energy that is significant. We can
always add an arbitrary constant o to potential energy at
every point, since this will not change the potential energy
difference:

Up+a)-(Ugz +a)=U, -U,

Put it differently, there is a freedom in choosing the point
where potential energy is zero. A convenient choice is to have
electrostatic potential energy zero at infinity. With this choice,
if we take the point R at infinity, we get from Eq. (2.2)

W,, =U, -U, =U, 2.3)

Since the point P is arbitrary, Eq. (2.3) provides us with a
definition of potential energy of a charge q at any point.
Potential energy of charge q at a point (in the presence of field
due to any charge configuration) is the work done by the
external force (equal and opposite to the electric force) in
bringing the charge q from infinity to that point.

2.2 ELECTROSTATIC POTENTIAL

Consider any general static charge configuration. We define
potential energy of a test charge g in terms of the work done
on the charge q. This work is obviously proportional to g, since
the force at any point is gE, where E is the electric field at that
point due to the given charge configuration. It is, therefore,
convenient to divide the work by the amount of charge g, so
that the resulting quantity is independent of g. In other words,
work done per unit test charge is characteristic of the electric
field associated with the charge configuration. This leads to
the idea of electrostatic potential V due to a given charge
configuration. From Eq. (2.1), we get:

Work done by external force in bringing a unit positive
charge from point R to P

vV, FU U

Count Alessandro Volta
(1745 - 1827) Italian
physicist, professor at
Pavia. Volta established
that the animal electri-
city observed by Luigi
Galvani, 1737-1798, in
experiments with frog
muscle tissue placed in
contact with dissimilar
metals, was not due to
any exceptional property
of animal tissues but
was also generated
whenever any wet body
was sandwiched between
dissimilar metals. This
led him to develop the
first voltaic pile, or
battery, consisting of a
large stack of moist disks
of cardboard (electro-
lyte) sandwiched
between disks of metal
(electrodes).

(2.4)
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where V,and V,, are the electrostatic potentials at P and R, respectively.
Note, as before, that it is not the actual value of potential but the potential
difference that is physically significant. If, as before, we choose the
potential to be zero at infinity, Eq. (2.4) implies:
Work done by an external force in bringing a unit positive charge
from infinity to a point = electrostatic potential (V) at that point. 47
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FIGURE 2.2 Work done on a test charge g
by the electrostatic field due to any given
charge configuration is independent
of the path, and depends only on
its initial and final positions.

1

In other words, the electrostatic potential (V)
at any point in a region with electrostatic field is
the work done in bringing a unit positive
charge (without acceleration) from infinity to
that point.

The qualifying remarks made earlier regarding
potential energy also apply to the definition of
potential. To obtain the work done per unit test
charge, we should take an infinitesimal test charge
0q, obtain the work done 6W in bringing it from
infinity to the point and determine the ratio
6W/5q. Also, the external force at every point of the
path is to be equal and opposite to the electrostatic
force on the test charge at that point.

2.3 POTENTIAL DUE TO A POoINT CHARGE

Consider a point charge Q at the origin (Fig. 2.3). For definiteness, take Q
to be positive. We wish to determine the potential at any point P with

-~

.9‘ ///dj
/.f/
,%7\
O

///
/[ ]-C
Q

FIGURE 2.3 Work done in bringing a unit
positive test charge from infinity to the
point P, against the repulsive force of
charge Q (@Q > 0), is the potential at P due to
the charge Q.

(0]

AW = - 9

4TE, T

I
——Ar

position vector r from the origin. For that we must
calculate the work done in bringing a unit positive
test charge from infinity to the point P. For Q > 0,
the work done against the repulsive force on the
test charge is positive. Since work done is
independent of the path, we choose a convenient
path — along the radial direction from infinity to
the point P.

At some intermediate point P’ on the path, the
electrostatic force on a unit positive charge is

x1
9x1

4.,.[501. 12 (2. 5]

where r'is the unit vector along OP’. Work done
against this force from r’' tor’' + Ar' is

(2.6)

The negative sign appears because for Ar’ < 0, AW is positive. Total
work done (W) by the external force is obtained by integrating Eq. (2.6)

fromr'=wtor'=r,

-9 4.- 9 |'__9
W - _J-4 12 r = ] - (2.7]
) ATiE,r Aneyr' |« 4ATEr
This, by definition is the potential at P due to the charge Q
__9
48 VIO= e r 2.8)
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Equation (2.8) is true for any 5 — T
sign of the charge @, though we 451 — 1/
considered Q > O in its derivation. 4l ]
For Q<0, V<O, i.e., work done (by
the external force) per unit positive 351 ]
test charge in bringing it from . 3} .
infinity to the point is negative. This  or 4 5| i
is equivalent to saying that work V
done by the electrostatic force in 2r )
bringing the unit positive charge 1.5 .
form infinity to the point P is 1k 4
positive. [This is as it should be,
since for @ < 0, the force on a unit O’s i

positive test charge is attractive, so
that the electrostatic force and the
displacement (from infinity to P) are FIGURE 2.4 Variation of potential V with r [in units of
(Q/4ne,) m™'] (blue curve) and field with r [in units
of (Q/4ney) m?] (black curve) for a point charge Q.

Il Il L
o 05 1 1.5 2 25 3 3.5 4 45

in the same direction.] Finally, we
note that Eq. (2.8) is consistent with
the choice that potential at infinity
be zero.

Figure (2.4) shows how the electrostatic potential (« 1/r) and the
electrostatic field (o« 1/r?) varies with r.

Example 2.1

(a) Calculate the potential at a point P due to a charge of 4 x 107'C
located 9 cm away.

(b) Hence obtain the work done in bringing a charge of 2 x 10° C
from infinity to the point P. Does the answer depend on the path
along which the charge is brought?

Solution
-7
@ V= L 9_9.10°Nm? c2x 219 C
4ne, T 0.09m
=4x10*V
(b) W=qV=2x10°C x 4 x 10*V
=8x10°J
No, work done will be path independent. Any arbitrary infinitesimal
path can be resolved into two perpendicular displacements: One along
r and another perpendicular to r. The work done corresponding to
the later will be zero.

1'% ANV

2.4 POTENTIAL DUE TO AN ELECTRIC DIPOLE

As we learnt in the last chapter, an electric dipole consists of two charges
g and —q separated by a (small) distance 2a. Its total charge is zero. It is
characterised by a dipole moment vector p whose magnitude is g X 2a
and which points in the direction from —q to g (Fig. 2.5). We also saw that
the electric field of a dipole at a point with position vector r depends not
just on the magnitude r, but also on the angle between r and p. Further, 49
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---7p the field falls off, at large distance, not as

ISt :’: » ;'; 1/r? (typical of field due to a single charge)
5/,/”' P but as 1/r®. We, now, determine the electric
g - /,-/ /// potential due to a dipole and contrast it
A ®- o T s with the potential due to a single charge.
; /1}"' e As before, we take the origin at the
‘a PR d centre of the dipole. Now we know that the
i,\e e /// electric field obeys the superposition
2a e 7 principle. Since potential is related to the
Pl 0 RN work done by the field, electrostatic
e potential also follows the superposition
a7 principle. Thus, the potential due to the
: s . . .
R dipole is the sum of potentials due to the
v A charges gand —q
1 Og qU
FIGURE 2.5 ities i i i V= 5, rB (2.9)
.5 Quantities involved in the calculation 4TE, O 1,
of potential due to a dipole. where r; and r, are the distances of the
point P from g and —q, respectively.
Now, by geometry,
r2 =r? +a® - 2ar cosf
r22 =r?2 +a® +2ar cos (2.10)
We take r much greater than a (» >> a) and retain terms only upto
the first order in a/r
U 2acos 6, a 20
r2=r? 4+
' H - "7 R
2acos0
Or? al -\ (2.11)
-
Similarly,
2acos0(
2 2
+
r, Ur %l — (2.12)
Using the Binomial theorem and retaining terms upto the first order
in a/r; we obtain,
2acos6 D
= D a =7 D §+—COSBH [2.13(a)]
2acos6 D
= D %{ - D %{——COSOE [2.13(b)]
Usmg Egs. (2.9) and (2.13) and p = 2qa, we get
v=_d 2acos6 _ pcosf
ame, r? 4me,r? (2.14)
50 Now, p cos 6= p.r
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where r is the unit vector along the position vector OP.
The electric potential of a dipole is then given by
__1 p
ame, r?

(r>>a (2.15)

Equation (2.15) is, as indicated, approximately true only for distances
large compared to the size of the dipole, so that higher order terms in
a/r are negligible. For a point dipole p at the origin, Eq. (2.15) is, however,
exact.

From Eq. (2.15), potential on the dipole axis (0= 0, n ) is given by

1
£2 (2.16)

V==
4TE, T
(Positive sign for 6 = 0, negative sign for 6 = n.) The potential in the
equatorial plane (0 = n/2) is zero.
The important contrasting features of electric potential of a dipole
from that due to a single charge are clear from Eqgs. (2.8) and (2.15):
(i) The potential due to a dipole depends not just on r but also on the
angle between the position vector r and the dipole moment vector p.
(It is, however, axially symmetric about p. That is, if you rotate the
position vector r about p, keeping 6 fixed, the points corresponding
to P on the cone so generated will have the same potential as at P.)
(i) The electric dipole potential falls off, at large distance, as 1/ r2, not as
1/r, characteristic of the potential due to a single charge. (You can
refer to the Fig. 2.5 for graphs of 1/r® versus r and 1/r versus r,
drawn there in another context.)

2.5 POTENTIAL DUE TO A SYSTEM OF CHARGES

Consider a system of charges q,, q,...., g, with position vectors r|, r,....,
r relative to some origin (Fig. 2.6). The potential V| at P due to the charge
q, is

I q

'ang n,
where r,, is the distance between g, and P. O
Similarly, the potential V, at P due to g, and o
V, due to g, are given by <
1 1
:4MOZ_1,V__q_3 b

A

2 3~
4TE, Typ

where r,, and r,, are the distances of P from
charges q, and q,, respectively; and so on for the

potential due to other charges. By the
superposition principle, the potential Vat P due
to the total charge configuration is the algebraic
sum of the potentials due to the individual
charges

V=V, +V,+...+V, (2.17)

FIGURE 2.6 Potential at a point due to a
system of charges is the sum of potentials
due to individual charges.

51
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ExAMPLE 2.2

1 Og, ¢
P = i + (2.18)

AT, Op  Typ Top

If we have a continuous charge distribution characterised by a charge
density p (r), we divide it, as before, into small volume elements each of
size AU and carrying a charge pAv. We then determine the potential due
to each volume element and sum (strictly speaking , integrate) over all
such contributions, and thus determine the potential due to the entire
distribution.

We have seen in Chapter 1 that for a uniformly charged spherical shell,
the electric field outside the shell is as if the entire charge is concentrated
at the centre. Thus, the potential outside the shell is given by

1

q
“ame, r 2R [2.19(2)]

where q is the total charge on the shell and Rits radius. The electric field
inside the shell is zero. This implies (Section 2.6) that potential is constant
inside the shell (as no work is done in moving a charge inside the shell),
and, therefore, equals its value at the surface, which is

_ 1 q
V= e, R [2.19(b)]

Example 2.2 Two charges 3 x 10® C and -2 x 10® C are located
15 cm apart. At what point on the line joining the two charges is the
electric potential zero? Take the potential at infinity to be zero.

Solution Let us take the origin O at the location of the positive charge.
The line joining the two charges is taken to be the x-axis; the negative
charge is taken to be on the right side of the origin (Fig. 2.7).

0 P A
@ @
3x10°C 15 cm -2x10°C
FIGURE 2.7

Let P be the required point on the x-axis where the potential is zero.
If x is the x-coordinate of P, obviously x must be positive. (There is no
possibility of potentials due to the two charges adding up to zero for
x < 0.) If x lies between O and A, we have

1 O03x10° 2x10° O

=0
4me, Hxx107  (15-xx102H

where x is in cm. That is,
3 2

x 15-x
which gives x = 9 cm.
If x lies on the extended line OA, the required condition is

3 2

x x-15
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which gives

X =45 cm

Thus, electric potential is zero at 9 cm and 45 cm away from the
positive charge on the side of the negative charge. Note that the
formula for potential used in the calculation required choosing
potential to be zero at infinity.

Example 2.3 Figures 2.8 (a) and (b) show the field lines of a positive
and negative point charge respectively.

(a)
(b)

(c)
(d)

(e)

SVARN

/
TN

@ (b)

FIGURE 2.8

Give the signs of the potential difference V,- V,: V- V,.

Give the sign of the potential energy difference of a small negative
charge between the points Q and P; A and B.

Give the sign of the work done by the field in moving a small
positive charge from Q to P.

Give the sign of the work done by the external agency in moving
a small negative charge from B to A.

Does the kinetic energy of a small negative charge increase or
decrease in going from B to A?

Solution

(a)

(b)

(c)

(d)

(e)

As VO % , Vp> V. Thus, (V- V) is positive. Also V, is less negative
than V, . Thus, V, >V, or (V,- V,) is positive.

A small negative charge will be attracted towards positive charge.
The negative charge moves from higher potential energy to lower
potential energy. Therefore the sign of potential energy difference
of a small negative charge between Q and P is positive.
Similarly, (P.E.), > (P.E.); and hence sign of potential energy
differences is positive.

In moving a small positive charge from Q to P, work has to be
done by an external agency against the electric field. Therefore,
work done by the field is negative.

In moving a small negative charge from B to A work has to be
done by the external agency. It is positive.

Due to force of repulsion on the negative charge, velocity decreases
and hence the kinetic energy decreases in going from B to A.

2024-25

Z°T TTINVXG

€° ¢ YIdNVXYH

PHYSICS

/785 L-s90ens-|enuajodinbs

-P|21}-9A1}BAISSUOD-AD-A19UD-0110[9-|e13UR)0d-D118)50.1303 |- f/ydrem/npa-iw-oapia/:dpy

:sa0eyIns [enuajodinba ‘enuajod o11291g

53



= Physics

(a)

(b)

FIGURE 2.9 For a
single charge g
(a) equipotential

surfaces are
spherical surfaces
centred at the
charge, and
(b) electric field
lines are radial,
starting from the
charge if g > 0.

54

2.6 EQUIPOTENTIAL SURFACES

An equipotential surface is a surface with a constant value of potential
at all points on the surface. For a single charge g, the potential is given
by Eq. (2.8):

1 g
4Te, r

This shows that Vis a constant if r is constant. Thus, equipotential
surfaces of a single point charge are concentric spherical surfaces centred
at the charge.

Now the electric field lines for a single charge q are radial lines starting
from or ending at the charge, depending on whether qis positive or negative.
Clearly, the electric field at every point is normal to the equipotential surface
passing through that point. This is true in general: for any charge
configuration, equipotential surface through a point is normal to the
electric field at that point. The proof of this statement is simple.

If the field were not normal to the equipotential surface, it would
have non-zero component along the surface. To move a unit test charge
against the direction of the component of the field, work would have to
be done. But this is in contradiction to the definition of an equipotential
surface: there is no potential difference between any two points on the
surface and no work is required to move a test charge on the surface.
The electric field must, therefore, be normal to the equipotential surface
at every point. Equipotential surfaces offer an alternative visual picture
in addition to the picture of electric field lines around a charge

configuration.
\4’

V=

N

FIGURE 2.10 Equipotential surfaces for a uniform electric field.
For a uniform electric field E, say, along the x-axis, the equipotential

surfaces are planes normal to the x-axis, i.e., planes parallel to the y-z
plane (Fig. 2.10). Equipotential surfaces for (a) a dipole and (b) two
identical positive charges are shown in Fig. 2.11.

@ (b)

FIGURE 2.11 Some equipotential surfaces for (a) a dipole,
(b) two identical positive charges.
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2.6.1 Relation between field and potential

Consider two closely spaced equipotential surfaces A and B (Fig. 2.12)
with potential values Vand V + §V, where 6V is the change in V in the
direction of the electric field E. Let P be a point on the
surface B. 61 is the perpendicular distance of the
surface A from P. Imagine that a unit positive charge
is moved along this perpendicular from the surface B
to surface A against the electric field. The work done
in this process is |E| 5L

This work equals the potential difference
V-V,

Thus,

|E|5l= V- (V+6V)=-56V

AE

ie., [E[=-%Y (2.20)
ol
Equipotentials
Since 6V is negative, 6V = - |6V|. we can rewrite FIGURE 2.12 From the
Eq (2.20) as potential to the field.
||:_5_V:+M (2.21)
ol ol ¢

We thus arrive at two important conclusions concerning the relation

between electric field and potential:

(i) Electric field is in the direction in which the potential decreases
Steepest.

(i) Its magnitude is given by the change in the magnitude of potential
per unit displacement normal to the equipotential surface at the point.

2.7 POTENTIAL ENERGY OF A SYSTEM OF CHARGES

Consider first the simple case of two charges g ,and g, with position vector
r, and r, relative to some origin. Let us calculate the work done
(externally) in building up this configuration. This means that we consider
the charges q, and g, initially at infinity and determine the work done by
an external agency to bring the charges to the given locations. Suppose,
first the charge q, is brought from infinity to the point r,. There is no
external field against which work needs to be done, so work done in
bringing g, from infinity to r, is zero. This charge produces a potential in
space given by

-1 a
4T[£0 rlP
where r, is the distance of a point P in space from the location of q,.
From the definition of potential, work done in bringing charge q, from
infinity to the point r, is g, times the potential at r, due to q,:
1 q4q,

work done on g, = 4—]_[8()? 55

1
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where r , is the distance between points 1 and 2.

Since electrostatic force is conservative, this work gets
stored in the form of potential energy of the system. Thus,
a the potential energy of a system of two charges g, and g, is
FIGURE 2.13 Potential energy of a U= 1 g9,

system of charges q, and g, is - 4Te, Ty, (2.22)

directly proportional to the product . . . . .
of charges and inversely to the Obviously, if g, was brought first to its present location and

distance between them. q, brought later, the potential energy Uwould be the same.
More generally, the potential energy expression,
Eq. (2.22), is unaltered whatever way the charges are brought to the specified

locations, because of path-independence of work for electrostatic force.

Equation (2.22) is true for any sign of g,and q,. If q,q, > O, potential
energy is positive. This is as expected, since for like charges (q,q, > 0),
electrostatic force is repulsive and a positive amount of work is needed to
be done against this force to bring the charges from infinity to a finite
distance apart. For unlike charges (q, g, < 0), the electrostatic force is
attractive. In that case, a positive amount of work is needed against this
force to take the charges from the given location to infinity. In other words,
a negative amount of work is needed for the reverse path (from infinity to
the present locations), so the potential energy is negative.

Equation (2.22) is easily generalised for a system of any number of
point charges. Let us calculate the potential energy of a system of three
charges q,, q, and g, located at r,, r,, r,, respectively. To bring q, first
from infinity to r , no work is required. Next we bring g, from infinity to
r,. As before, work done in this step is

1 qq,

V.(r,) =
q, V(1) it .,

(2.23)
The charges g, and g, produce a potential, which at any point P is
given by

1 g, D 0
4T, % Top
Work done next in bringing g, from infinity to the point r,is g, times
atr,

(2.24)

1,2

\%

1,2

1 Ebqu + q2q3 0 (225]
4T, & N3 T3
@ The total work done in assembling the charges
I at the given locations is obtained by adding the work
done in different steps [Eq. (2.23) and Eq. (2.25)],

Tos a5V, ,(13) =

4

U=_t W% 49 , 990

FIGURE 2.14 Potential energy of a ame, H

system of three charges is given by

Eq. (2.26), with the notation given
in the figure.

(2.26)
D) Ns T3

Again, because of the conservative nature of the
electrostatic force (or equivalently, the path
independence of work done), the final expression for
U, Eq. (2.26), is independent of the manner in which

56 the configuration is assembled. The potential energy
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is characteristic of the present state of configuration, and not the way
the state is achieved.

Example 2.4 Four charges are arranged at the corners of a square
ABCD of side d, as shown in Fig. 2.15.(a) Find the work required to
put together this arrangement. (b) A charge q, is brought to the centre
E of the square, the four charges being held fixed at its corners. How
much extra work is needed to do this?

+4 -4q
AO OB

Qo d

D O O C
-4 FIGURE 2.15 4

Solution

(a) Since the work done depends on the final arrangement of the
charges, and not on how they are put together, we calculate work
needed for one way of putting the charges at A, B, C and D. Suppose,
first the charge +q is brought to A, and then the charges —q, +q, and

—q are brought to B, C and D, respectively. The total work needed can
be calculated in steps:

(i) Work needed to bring charge +gq to A when no charge is present
elsewhere: this is zero.

(i) Work needed to bring —q to B when +q is at A. This is given by
(charge at B) X (electrostatic potential at B due to charge +q at A)
0qg O__ ¢
= —qg X - —
K H4T[£0dH 41e,d
(iii) Work needed to bring charge +q to C when +q is at A and —q is at
B. This is given by (charge at C) X (potential at C due to charges

at A and B)
0 +q —q O
=+ +
a E4Tl'£‘od\/§ 4Tr£odH
_-¢ 4 _10
ame,d B 28

(iv) Work needed to bring —q to D when +q at A,—q at B, and +q at C.
This is given by (charge at D) X (potential at D due to charges at A,
B and C)
O +q —q q U
- + +
Bime,d " ame,av2 - ame,dH

.7 EZ—LD
ame,d 2B

P° g TTANVXG
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ExaAmPLE 2.4

Add the work done in steps (i), (ii), (iii) and (iv). The total work
required is

= E(O)+(1)+§ ;%% %%

= d(4 J2)

The work done depends only on the arrangement of the charges, and
not how they are assembled. By definition, this is the total
electrostatic energy of the charges.

(Students may try calculating same work/energy by taking charges
in any other order they desire and convince themselves that the energy
will remain the same.)

(b) The extra work necessary to bring a charge g, to the point E when
the four charges are at A, B, C and D is g, X (electrostatic potential at
E due to the charges at A, B, C and D). The electrostatic potential at
E is clearly zero since potential due to A and C is cancelled by that
due to B and D. Hence, no work is required to bring any charge to
point E.

2.8 PoTENTIAL ENERGY IN AN EXTERNAL FIELD
2.8.1 Potential energy of a single charge

In Section 2.7, the source of the electric field was specified — the charges
and their locations - and the potential energy of the system of those charges
was determined. In this section, we ask a related but a distinct question.
What is the potential energy of a charge qin a given field? This question
was, in fact, the starting point that led us to the notion of the electrostatic
potential (Sections 2.1 and 2.2). But here we address this question again
to clarify in what way it is different from the discussion in Section 2.7.
The main difference is that we are now concerned with the potential
energy of a charge (or charges) in an external field. The external field E is
not produced by the given charge(s) whose potential energy we wish to
calculate. E is produced by sources external to the given charge(s).The
external sources may be known, but often they are unknown or
unspecified; what is specified is the electric field E or the electrostatic
potential V due to the external sources. We assume that the charge g
does not significantly affect the sources producing the external field. This
is true if g is very small, or the external sources are held fixed by other
unspecified forces. Even if g is finite, its influence on the external sources
may still be ignored in the situation when very strong sources far away
at infinity produce a finite field E in the region of interest. Note again that
we are interested in determining the potential energy of a given charge q
(and later, a system of charges) in the external field; we are not interested
in the potential energy of the sources producing the external electric field.
The external electric field E and the corresponding external potential
V may vary from point to point. By definition, V at a point P is the work
done in bringing a unit positive charge from infinity to the point P.
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(We continue to take potential at infinity to be zero.) Thus, work done in
bringing a charge g from infinity to the point P in the external field is qV.
This work is stored in the form of potential energy of q. If the point P has
position vector r relative to some origin, we can write:

Potential energy of g at r in an external field

=qV(r) (2.27)
where V(r) is the external potential at the pointr.

Thus, if an electron with charge q= e = 1.6x10"'° C is accelerated by
a potential difference of AV = 1 volt, it would gain energy of gAV = 1.6 X
107'°J. This unit of energy is defined as 1 electron volt or 1€V, i.e.,
1 eV=1.6 x 107'°J. The units based on eV are most commonly used in
atomic, nuclear and particle physics, (1 keV = 10°%V = 1.6 x 107'°J, 1 MeV
=10%V = 1.6 x 107'°J, 1 GeV = 10%V = 1.6 x 10'%J and 1 TeV = 10'%eV
= 1.6 x 107°J). [This has already been defined on Page 117, XI Physics
Part I, Table 6.1.]

2.8.2 Potential energy of a system of two charges in an
external field

Next, we ask: what is the potential energy of a system of two charges q,
and g, located at r,and r,, respectively, in an external field? First, we
calculate the work done in bringing the charge g, from infinity to r,.
Work done in this step is g, V(r,), using Eq. (2.27). Next, we consider the
work done in bringing g, to r,,. In this step, work is done not only against
the external field E but also against the field due to q,.

Work done on g, against the external field

=q, V(r,)

Work done on g, against the field due to q,

= 49

4T[€or12

where r,is the distance between q, and g,. We have made use of Egs.
(2.27) and (2.22). By the superposition principle for fields, we add up
the work done on g, against the two fields (E and that due to q,):

Work done in bringing g, to r,

4,9,

or12

=q,V(r,) +

(2.28)

Thus,
Potential energy of the system
= the total work done in assembling the configuration

4,9,

=q,V(r)+q,V(r,)+
q,V(r)+q,V(r,) ame,r,

(2.29)

Example 2.5

(a) Determine the electrostatic potential energy of a system consisting
of two charges 7 uC and -2 pC (and with no external field) placed
at (9 cm, O, 0) and (9 cm, O, 0) respectively.

(b) How much work is required to separate the two charges infinitely
away from each other?
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(c) Suppose that the same system of charges is now placed in an
external electric field E= A (1/r%); A= 9 x 10° NC' m?. What would
the electrostatic energy of the configuration be?

Solution

_ -12
(a) U:L%:gxlog w *(2)x1077 _ —0.7 J.
4me, T 0.18

b) W=U,-U, =0-U=0-(-0.7) =0.7 J.

(c) The mutual interaction energy of the two charges remains
unchanged. In addition, there is the energy of interaction of the
two charges with the external electric field. We find,

_ . 7uC —2uC
SR S e e

and the net electrostatic energy is

qV(n)+qV(s)+ Dy _ o THC | 4 “2UC
4TE T, 0.09m 0.09m

=70-20-0.7 =49.3J

0.7J

ExampPLE 2.5

2.8.3 Potential energy of a dipole in an external field

Consider a dipole with charges g, = +q and g, = —q placed in a uniform
electric field E, as shown in Fig. 2.16.

As seen in the last chapter, in a uniform electric field,
the dipole experiences no net force; but experiences a
. torque t given by

t=pXE (2.30)
which will tend to rotate it (unless p is parallel or
antiparallel to E). Suppose an external torque t_, is
applied in such a manner that it just neutralises this
torque and rotates it in the plane of paper from angle 6,
to angle 0, at an infinitesimal angular speed and without
angular acceleration. The amount of work done by the
external torque will be given by

»
»

v

»

W = Jel t.(0)do = Jel pE sinb d6
FIGURE 2.16 Potential energy of a o0 00

dipole in a uniform external field.
= pE(cos g, — cos 6?1) (2.31)

This work is stored as the potential energy of the system. We can
then associate potential energy U(0) with an inclination 6 of the dipole.
Similar to other potential energies, there is a freedom in choosing the
angle where the potential energy U is taken to be zero. A natural choice
is to take 6,=n /2. (An explanation for it is provided towards the end of
discussion.) We can then write,

U(e)= pE(cosg - cose) = pEcosg =-p.E (2.32)
60
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This expression can alternately be understood also from Eq. (2.29).
We apply Eq. (2.29) to the present system of two charges +q and —q. The
potential energy expression then reads

2
U'()=atv(n)-v(e)- gt 2.33)
Here, r, and r, denote the position vectors of +q and -q. Now, the
potential difference between positions r, and r, equals the work done
in bringing a unit positive charge against field from r, to r,. The
displacement parallel to the force is 2a cos6. Thus, [V(r)-V (r,)] =
—-E X 2a cos6 . We thus obtain,

o) = a q’

U'(6) = -pEcos 6 pr— p.E pr— (2.34)

We note that U’(0) differs from U(6) by a quantity which is just a constant
for a given dipole. Since a constant is insignificant for potential energy, we
can drop the second term in Eq. (2.34) and it then reduces to Eq. (2.32).

We can now understand why we took 6,=n/2. In this case, the work
done against the external field E in bringing +q and - g are equal and
opposite and cancel out, i.e., [V (r,) -V (r,)]=0.

Example 2.6 A molecule of a substance has a permanent electric

dipole moment of magnitude 102° C m. A mole of this substance is

polarised (at low temperature) by applying a strong electrostatic field

of magnitude 10° V. m™'. The direction of the field is suddenly changed

by an angle of 60°. Estimate the heat released by the substance in

aligning its dipoles along the new direction of the field. For simplicity,

assume 100% polarisation of the sample.

Solution Here, dipole moment of each molecules = 102° C m

As 1 mole of the substance contains 6 x 10%® molecules,

total dipole moment of all the molecules, p = 6 x 10**x 102° C m
=6x10°Cm

Initial potential energy, U, = -pE cos 0 = -6x10°x10° cos 0° = -6 J

Final potential energy (when 6 = 60°), U,= -6 x 10°x 10° cos 60° = -3 J

Change in potential energy = -3 J — (-6J) = 3 J

So, there is loss in potential energy. This must be the energy released

by the substance in the form of heat in aligning its dipoles.

2.9 ELECTROSTATICS OF CONDUCTORS

Conductors and insulators were described briefly in Chapter 1.
Conductors contain mobile charge carriers. In metallic conductors, these
charge carriers are electrons. In a metal, the outer (valence) electrons
part away from their atoms and are free to move. These electrons are free
within the metal but not free to leave the metal. The free electrons form a
kind of ‘gas’; they collide with each other and with the ions, and move
randomly in different directions. In an external electric field, they drift
against the direction of the field. The positive ions made up of the nuclei
and the bound electrons remain held in their fixed positions. In electrolytic
conductors, the charge carriers are both positive and negative ions; but
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the situation in this case is more involved — the movement of the charge
carriers is affected both by the external electric field as also by the
so-called chemical forces (see Chapter 3). We shall restrict our discussion
to metallic solid conductors. Let us note important results regarding
electrostatics of conductors.

1. Inside a conductor, electrostatic field is zero

Consider a conductor, neutral or charged. There may also be an external
electrostatic field. In the static situation, when there is no current inside
or on the surface of the conductor, the electric field is zero everywhere
inside the conductor. This fact can be taken as the defining property of a
conductor. A conductor has free electrons. As long as electric field is not
zero, the free charge carriers would experience force and drift. In the
static situation, the free charges have so distributed themselves that the
electric field is zero everywhere inside. Electrostatic field is zero inside a
conductor.

2. At the surface of a charged conductor, electrostatic field
must be normal to the surface at every point

If E were not normal to the surface, it would have some non-zero
component along the surface. Free charges on the surface of the conductor
would then experience force and move. In the static situation, therefore,
E should have no tangential component. Thus electrostatic field at the
surface of a charged conductor must be normal to the surface at every
point. (For a conductor without any surface charge density, field is zero
even at the surface.) See result 5.

3. The interior of a conductor can have no excess charge in
the static situation

A neutral conductor has equal amounts of positive and negative charges
in every small volume or surface element. When the conductor is charged,
the excess charge can reside only on the surface in the static situation.
This follows from the Gauss’s law. Consider any arbitrary volume element
v inside a conductor. On the closed surface S bounding the volume
element v, electrostatic field is zero. Thus the total electric flux through S
is zero. Hence, by Gauss’s law, there is no net charge enclosed by S. But
the surface S can be made as small as you like, i.e., the volume v can be
made vanishingly small. This means there is no net charge at any point
inside the conductor, and any excess charge must reside at the surface.

4. Electrostatic potential is constant throughout the volume
of the conductor and has the same value (as inside) on
its surface

This follows from results 1 and 2 above. Since E = 0 inside the conductor

and has no tangential component on the surface, no work is done in

moving a small test charge within the conductor and on its surface. That
is, there is no potential difference between any two points inside or on
the surface of the conductor. Hence, the result. If the conductor is charged,
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electric field normal to the surface exists; this means potential will be
different for the surface and a point just outside the surface.

In a system of conductors of arbitrary size, shape and
charge configuration, each conductor is characterised by a constant
value of potential, but this constant may differ from one conductor to
the other.

5. Electric field at the surface of a charged conductor

o .
E="n (2.35)
(0]
where o is the surface charge density and n is a unit vector normal
to the surface in the outward direction.

To derive the result, choose a pill box (a short cylinder) as the Gaussian
surface about any point P on the surface, as shown in Fig. 2.17. The pill
box is partly inside and partly outside the surface of the conductor. It
has a small area of cross section 6 S and negligible height.

Just inside the surface, the electrostatic field is zero; just outside, the
field is normal to the surface with magnitude E. Thus,
the contribution to the total flux through the pill box
comes only from the outside (circular) cross-section
of the pill box. This equals * E§S (positive for o> 0,
negative for o < 0), since over the small area S, E
may be considered constant and E and &S are parallel
or antiparallel. The charge enclosed by the pill box
is ©o6S.

By Gauss’s law Surface charge Surface of \
3 density o Conductor |
dlas |
ESS="+—
gO
E= |— (2.36)
gO
Including the fact that electric field is normal to the FIGURE 2.17 The Gaussian surface
surface, we get the vector relation, Eq. (2.35), which (a pill box) chosen to derive Eq. (2.35)
is true for both signs of . For o> O, electric field is for electric field at the surface of a
normal to the surface outward; for ¢ < 0, electric field charged conductor.

is normal to the surface inward.

6. Electrostatic shielding

Consider a conductor with a cavity, with no charges inside the cavity. A
remarkable result is that the electric field inside the cavity is zero, whatever
be the size and shape of the cavity and whatever be the charge on the
conductor and the external fields in which it might be placed. We have
proved a simple case of this result already: the electric field inside a charged
spherical shell is zero. The proof of the result for the shell makes use of
the spherical symmetry of the shell (see Chapter 1). But the vanishing of
electric field in the (charge-free) cavity of a conductor is, as mentioned
above, a very general result. A related result is that even if the conductor 63

2024-25



= Physics

Conducting ™~
body

FIGURE 2.18 The electric field inside a
cavity of any conductor is zero. All
charges reside only on the outer surface
of a conductor with cavity. (There are no

E is charged or charges are induced on a neutral
conductor by an external field, all charges reside
only on the outer surface of a conductor with cavity.

The proofs of the results noted in Fig. 2.18 are
omitted here, but we note their important
implication. Whatever be the charge and field
configuration outside, any cavity in a conductor
remains shielded from outside electric influence: the
field inside the cavity is always zero. This is known
E as electrostatic shielding. The effect can be made
use of in protecting sensitive instruments from
outside electrical influence. Figure 2.19 gives a
summary of the important electrostatic properties
of a conductor.

charges placed in the cavity.)

64

ExAmMPLE 2.7

FIGURE 2.19 Some important electrostatic properties of a conductor.

Example 2.7

(a) A comb run through one’s dry hair attracts small bits of paper.
Why?
What happens if the hair is wet or if it is a rainy day? (Remember,
a paper does not conduct electricity.)

(b) Ordinary rubber is an insulator. But special rubber tyres of
aircraft are made slightly conducting. Why is this necessary?

(c) Vehicles carrying inflammable materials usually have metallic
ropes touching the ground during motion. Why?

(d) A bird perches on a bare high power line, and nothing happens
to the bird. A man standing on the ground touches the same line
and gets a fatal shock. Why?

Solution

(a) This is because the comb gets charged by friction. The molecules
in the paper gets polarised by the charged comb, resulting in a
net force of attraction. If the hair is wet, or if it is rainy day, friction
between hair and the comb reduces. The comb does not get
charged and thus it will not attract small bits of paper.
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(b) To enable them to conduct charge (produced by friction) to the
ground; as too much of static electricity accumulated may result
in spark and result in fire.

(c) Reason similar to (b).

L' ¢ TIdNVXH

(d) Current passes only when there is difference in potential.

2.10 DIELECTRICS AND POLARISATION

Dielectrics are non-conducting substances. In contrast to conductors,
they have no (or negligible number of ) charge carriers. Recall from Section
2.9 what happens when a conductor is placed in an
external electric field. The free charge carriers move
and charge distribution in the conductor adjusts
itself in such a way that the electric field due to
induced charges opposes the external field within
the conductor. This happens until, in the static
situation, the two fields cancel each other and the
net electrostatic field in the conductor is zero. In a
dielectric, this free movement of charges is not
possible. It turns out that the external field induces
dipole moment by stretching or re-orienting
molecules of the dielectric. The collective effect of all
the molecular dipole moments is net charges on the Dielectric
surface of the dielectric which produce a field that ~ FIGURE 2.20 Diiference in behaviour
. I of a conductor and a dielectric

opposes the external field. Unlike in a conductor, ) -

. . . in an external electric field.
however, the opposing field so induced does not
exactly cancel the external field. It only reduces it.
The extent of the effect depends on the

nature of the dielectric. To understand the
effect, we need to look at the charge
distribution of a dielectric at the Non-polar
molecular level.
The molecules of a substance may be
Co,

polar or non-polar. In a non-polar H,
molecule, the centres of positive and
negative charges coincide. The molecule
then has no permanent (or intrinsic) dipole

moment. Examples of non-polar molecules Q
are oxygen (O,) and hydrogen (H,) l
molecules which, because of their Polar /
symmetry, have no dipole moment. On the p 6 é P
other hand, a polar molecule is one in which

HCI H,0

the centres of positive and negative charges
are separated (even when there is no
external field). Such molecules have a
permanent dipole moment. An ionic
molecule such as HCI or a molecule of water
(H,0) are examples of polar molecules. 65

FIGURE 2.21 Some examples of polar
and non-polar molecules.
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In an external electric field, the
positive and negative charges of a non-
polar molecule are displaced in opposite
directions. The displacement stops when
the external force on the constituent
charges of the molecule is balanced by
the restoring force (due to internal fields
in the molecule). The non-polar molecule
thus develops an induced dipole moment.
The dielectric is said to be polarised by

E#0

SEE &
S5O

SEC D -
e

(a) Non-polar molecules

the external field. We consider only the
simple situation when the induced dipole

moment is in the direction of the field and
is proportional to the field strength.
(Substances for which this assumption
is true are called linear isotropic
dielectrics.) The induced dipole moments
of different molecules add up giving a net
dipole moment of the dielectric in the
presence of the external field.

A dielectric with polar molecules also

E#0

@@g
@@ =

(b) Polar molecules

FIGURE 2.22 A dielectric develops a net dipole
moment in an external electric field. (a) Non-polar
molecules, (b) Polar molecules.

66

develops a net dipole moment in an
external field, but for a different reason.
In the absence of any external field, the
different permanent dipoles are oriented
randomly due to thermal agitation; so
the total dipole moment is zero. When
an external field is applied, the individual dipole moments tend to align
with the field. When summed overall the molecules, there is then a net
dipole moment in the direction of the external field, i.e., the dielectric is
polarised. The extent of polarisation depends on the relative strength of
two mutually opposite factors: the dipole potential energy in the external
field tending to align the dipoles with the field and thermal energy tending
to disrupt the alignment. There may be, in addition, the ‘induced dipole
moment’ effect as for non-polar molecules, but generally the alignment
effect is more important for polar molecules.

Thus in either case, whether polar or non-polar, a dielectric develops
a net dipole moment in the presence of an external field. The dipole
moment per unit volume is called polarisation and is denoted by P. For
linear isotropic dielectrics,

P=¢x.E (2.37)
where y is a constant characteristic of the dielectric and is known as the
electric susceptibility of the dielectric medium.

It is possible to relate y to the molecular properties of the substance,
but we shall not pursue that here.

The question is: how does the polarised dielectric modify the original
external field inside it? Let us consider, for simplicity, a rectangular
dielectric slab placed in a uniform external field E, parallel to two of its
faces. The field causes a uniform polarisation P of the dielectric. Thus
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every volume element AU of the slab has a dipole moment ——E

P Avin the direction of the field. The volume element AV is w E:'D @ w
macroscopically small but contains a very large number of
molecular dipoles. Anywhere inside the dielectric, the — 4+ ==+ (= +
volume element AU has no net charge (though it has net
dipole moment). This is, because, the positive charge of one @ @ @ @
dipole sits close to the negative charge of the adjacent dipole.
However, at the surfaces of the dielectric normal to the - w @ @ w

P 0.
electric field, there is evidently a net charge density. As seen w w P
in Fig 2.23, the positive ends of the dipoles remain @ @
unneutralised at the right surface and the negative ends at —H=+H=+H =+

the left surface. The unbalanced charges are the induced

charges due to the external field. w E:‘D @ =?

Thus, the polarised dielectric is equivalent to two charged
surfaces with induced surface charge densities, say o, w @ @ w
and —o,,. Clearly, the field produced by these surface charges — P
opposes the external field. The total field in the dielectric FIGURE 2.23 A uniformly
is, thereby, reduced from the case when no dielectric is polarised dielectric amounts
present. We should note that the surface charge density to-induced surface charge
*o, arises from bound (not free charges) in the dielectric. density, but no volume

charge density.
2.11 CaprAciTORS AND CAPACITANCE

A capacitor is a system of two conductors separated by an insulator
(Fig. 2.24). The conductors have charges, say Q, and Q,, and potentials
V, and V,. Usually, in practice, the two conductors have charges Q
and - Q, with potential difference V = V, — V, between them. We shall
consider only this kind of charge configuration of the capacitor. (Even a
single conductor can be used as a capacitor by assuming the other at
infinity.) The conductors may be so charged by connecting them to the
two terminals of a battery. Q is called the charge of the capacitor, though
this, in fact, is the charge on one of the conductors - the total charge of
the capacitor is zero.

The electric field in the region between the
conductors is proportional to the charge Q. That
is, if the charge on the capacitor is, say doubled,
the electric field will also be doubled at every point.
(This follows from the direct proportionality
between field and charge implied by Coulomb’s
law and the superposition principle.) Now,
potential difference V is the work done per unit
positive charge in taking a small test charge from Conductor 1 Conductor 2

the conductor 2 to 1 against the field. FIGURE 2.24 A system of two conductors

Consequently, Vis also proportional to Q, and the  separated by an insulator forms a capacitor.
ratio Q/Vis a constant:

C= % (2.38)
The constant C is called the capacitance of the capacitor. C is independent

of Q or V, as stated above. The capacitance C depends only on the 67
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geometrical configuration (shape, size, separation) of the system of two
conductors. [As we shall see later, it also depends on the nature of the
insulator (dielectric) separating the two conductors.] The SI unit of
capacitance is 1 farad (=1 coulomb voltYor IF=1CVL A capacitor
with fixed capacitance is symbolically shown as - |-, while the one with
variable capacitance is shown as L.

Equation (2.38) shows that for large C, Vis small for a given Q. This
means a capacitor with large capacitance can hold large amount of charge
@© at a relatively small V. This is of practical importance. High potential
difference implies strong electric field around the conductors. A strong
electric field can ionise the surrounding air and accelerate the charges so
produced to the oppositely charged plates, thereby neutralising the charge
on the capacitor plates, at least partly. In other words, the charge of the
capacitor leaks away due to the reduction in insulating power of the
intervening medium.

The maximum electric field that a dielectric medium can withstand
without break-down (of its insulating property) is called its dielectric
strength; for air it is about 3 x 10° Vm™. For a separation between
conductors of the order of 1 cm or so, this field corresponds to a potential
difference of 3 x 10* V between the conductors. Thus, for a capacitor to
store a large amount of charge without leaking, its capacitance should
be high enough so that the potential difference and hence the electric
field do not exceed the break-down limits. Put differently, there is a limit
to the amount of charge that can be stored on a given capacitor without
significant leaking. In practice, a farad is a very big unit; the most common
units are its sub-multiples 1 pF = 10°F, 1nF=10°F, 1 pF = 102 F,
etc. Besides its use in storing charge, a capacitor is a key element of most
ac circuits with important functions, as described in Chapter 7.

2.12 THE PARALLEL PLATE CAPACITOR

A parallel plate capacitor consists of two large plane parallel conducting
plates separated by a small distance (Fig. 2.25). We first take the
intervening medium between the plates to be

I Area A vacuum. The effect of a dielectric medium between
/ the plates is discussed in the next section. Let A be

- the area of each plate and d the separation between

L them. The two plates have charges Q and —-Q. Since
+ + + + + + + + + + +

d is much smaller than the linear dimension of the

Q

field by an infinite plane sheet of uniform surface

J l J J J plates (d? << A), we can use the result on electric
E

charge density (Section 1.15). Plate 1 has surface

——————— charge density o = Q/A and plate 2 has a surface

9 charge density —o. Using Eq. (1.33), the electric field

Surface
charge density - o

in different regions is:

Outer region I (region above the plate 1),

FIGURE 2.25 The parallel plate capacitor.

68

g g

=2 -2 -9
2, 26 (2.39)
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Outer region II (region below the plate 2),
o o

=———-—=0
2&, 2¢g, (2.40)

In the inner region between the plates 1 and 2, the electric fields due
to the two charged plates add up, giving

0’+0'_0'_Q

26, 2g, & &A

E =

(2.41)

The direction of electric field is from the positive to the negative plate.

Thus, the electric field is localised between the two plates and is
uniform throughout. For plates with finite area, this will not be true near
the outer boundaries of the plates. The field lines bend outward at the
edges — an effect called ‘fringing of the field’. By the same token, o will
not be strictly uniform on the entire plate. [E and o are related by Eq.
(2.35).] However, for d? << A, these effects can be ignored in the regions
sufficiently far from the edges, and the field there is given by Eq. (2.41).
Now for uniform electric field, potential difference is simply the electric
field times the distance between the plates, that is,

1 Qd
V=Ed=—=
& A (2.42)
The capacitance C of the parallel plate capacitor is then
Q &A
C== =—=2—-
v d (2.43)

which, as expected, depends only on the geometry of the system. For
typical values like A= 1m? d=1 mm, we get

-12 ~2p7-1 = 2
¢ =880 CN mxlm _go5,10p (2.44)
10”m
(You can check that if 1IF= 1IC V' =1C (NC'm)" =1 C*°N'm™")
This shows that 1F is too big a unit in practice, as remarked earlier.
Another way of seeing the ‘bigness’ of 1F is to calculate the area of the

plates needed to have C = 1F for a separation of, say 1 cm:
Cd _ IF x102m

& 8.85x107C’N'm"
which is a plate about 30 km in length and breadth!

A=

> =10°m?® (2.45)

2.13 EFrreEcCT OF DIELECTRIC ON CAPACITANCE

With the understanding of the behaviour of dielectrics in an external
field developed in Section 2.10, let us see how the capacitance of a parallel
plate capacitor is modified when a dielectric is present. As before, we
have two large plates, each of area A, separated by a distance d. The
charge on the plates is +Q), corresponding to the charge density +o (with
o= Q/A). When there is vacuum between the plates,
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and the potential difference V,is

V,=E,d
The capacitance C, in this case is
Q A
C. === —
° v, °d (2.46)

Consider next a dielectric inserted between the plates fully occupying
the intervening region. The dielectric is polarised by the field and, as
explained in Section 2.10, the effect is equivalent to two charged sheets
(at the surfaces of the dielectric normal to the field) with surface charge
densities o, and —o . The electric field in the dielectric then corresponds
to the case when the net surface charge density on the plates is +(o— cp).
Thatis,

o-0,
E = r
P (2.47)
so that the potential difference across the plates is
v=ed=2"94 (2.48)

&

For linear dielectrics, we expect & , to be proportional to E_, i.e., to o.
Thus, (o- cp) is proportional to ¢ and we can write

0-0,=7 (2.49)

where Kis a constant characteristic of the dielectric. Clearly, K> 1. We
then have

_od _ Qd
&K AgK (2.50)
The capacitance C, with dielectric between the plates, is then
Q _ &KA
C===x"'8
v q (2.51)

The product ¢K is called the permittivity of the medium and is
denoted by ¢
e=g K (2.52)
Forvacuum K= 1 and ¢ = ¢;; ¢, is called the permittivity of the vacuum.
The dimensionless ratio
£
K=—

& (2.53)
is called the dielectric constant of the substance. As remarked before,
from Eq. (2.49), it is clear that K is greater than 1. From Eqs. (2.46) and
(2. 51)

C

K=—
C (2.54)

0
Thus, the dielectric constant of a substance is the factor (>1) by which
the capacitance increases from its vacuum value, when the dielectric is
inserted fully between the plates of a capacitor. Though we arrived at
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Eq. (2.54) for the case of a parallel plate capacitor, it holds good for any
type of capacitor and can, in fact, be viewed in general as a definition of

the dielectric constant of a substance.

Example 2.8 A slab of material of dielectric constant K has the same
area as the plates of a parallel-plate capacitor but has a thickness
(3/4)d, where d is the separation of the plates. How is the capacitance
changed when the slab is inserted between the plates?

Solution Let E, = VO/ d be the electric field between the plates when
there is no dielectric and the potential difference is V,. If the dielectric
is now inserted, the electric field in the dielectric will be E = E,/K.

The potential difference will then be

1 E, 3
V=E,(~d)+-2(-d
0(4 ) K(4 )

:Eod(l+i):VOK+3
4 4K 4K

The potential difference decreases by the factor (K + 3)/4K while the
free charge Q, on the plates remains unchanged. The capacitance

thus increases
_Q, _ 4K Q, _ 4K

= CO
V K+3V, K+3

2.14 CoMBINATION OF CAPACITORS

We can combine several capacitors of
capacitance C,, C,...., C_ to obtain a system with
some effective capacitance C. The effective
capacitance depends on the way the individual
capacitors are combined. Two simple
possibilities are discussed below.

2.14.1 Capacitors in series

Figure 2.26 shows capacitors C, and C,
combined in series.

The left plate of C, and the right plate of C,
are connected to two terminals of a battery and
have charges Q and -Q , respectively. It then
follows that the right plate of C, has charge -Q
and the left plate of C, has charge Q. If this was
not so, the net charge on each capacitor would
not be zero. This would result in an electric field
in the conductor connecting C,and C,. Charge
would flow until the net charge on both C, and
C, is zero and there is no electric field in the
conductor connecting C, and C,. Thus, in the
series combination, charges on the two plates
(£Q) are the same on each capacitor. The total

8°C YTdANVXYH

+ + + +
|
+ + + +

+ + + +
+ 4+ + +

C G,
FIGURE 2.26 Combination of two
capacitors in series.

9 -9 9 -9 9 -9 Q -9
+ -+ -+ - + -
+ -+ -+ - + -
+ -+ - + - + -
+ -+ -+ - + -
+ -+ -+ - + -
+ -+ -+ - + -
+ -+ -+ - + -
+ -+ -+ - + -

(o} C, C, G,
FIGURE 2.27 Combination of n
capacitors in series. 71
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potential drop V across the combination is the sum of the potential drops
V, and V, across C, and C,, respectively.

.y .9.9
V=V, +V, = c (2.55)
v 1,1
Le. g cC, (2.56)

Now we can regard the combination as an effective capacitor with
charge Q and potential difference V. The effective capacitance of the
combination is

Q
cC==
v (2.57)
We compare Eq. (2.57) with Eq. (2.56), and obtain
11,1
c ¢ ¢ (2.58)

The proof clearly goes through for any number of capacitors arranged
in a similar way. Equation (2.55), for n capacitors arranged in series,
generalises to

©

- c, G, C,

. -9
- V=V1+V2+...+Vn:£+£+...+£ (2.59)
- Following the same steps as for the case of two

B capacitors, we get the general formula for effective
- capacitance of a series combination of n capacitors:

C l:i+i+i+ +L
=T (2.60)

n

o+ |+

Figure 2.28 (a) shows two capacitors arranged in

- 2.14.2 Capacitors in parallel
- parallel. In this case, the same potential difference is

applied across both the capacitors. But the plate charges
(xQ,) on capacitor 1 and the plate charges (+Q,) on the
C, | capacitor 2 are not necessarily the same:
Q,=C\V,Q,=CV (2.61)
9. -09. The equivalent capacitor is one with charge

- 9=0,+0, (2.62)
- and potential difference V.
. Q=Cv=C\V+CV (2.63)

o+ [+

- The effective capacitance C is, from Eq. (2.63),

- C=C,+C, (2.64)

c The general formula for effective capacitance C for
parallel combination of n capacitors [Fig. 2.28 (b)]
follows similarly,

(b) Q=09,+Q,+...+Q, (2.65)

++++ [+

1
|

FIGURE 2.28 Parallel combination of ie,CV=CV+C,V+..C V(2.66)
(a) two capacitors, (b) n capacitors. which gives

72

C=C,+C,+...C, (2.67)
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Example 2.9 A network of four 10 uF capacitors is connected to a 500 V
supply, as shown in Fig. 2.29. Determine (a) the equivalent capacitance
of the network and (b) the charge on each capacitor. (Note, the charge on
a capacitor is the charge on the plate with higher potential, equal and
opposite to the charge on the plate with lower potential.)

+Q -9
B :‘ }: €
+ Cz -

—Q;; + H + ++Q
+Q ++C1 Cafii_Q
C4
A :‘ }: D
N
« 500 V' »
FIGURE 2.29

Solution
(@) In the given network, C,, C, and C, are connected in series. The
effective capacitance C' of these three capacitors is given by

For C, = C,= C,= 10 uF, C’= (10/3) pF. The network has C’and C,
connected in parallel. Thus, the equivalent capacitance C of the
network is

c=c+C,= %%Ouo% uF =13.3uF

(b) Clearly, from the figure, the charge on each of the capacitors, C,,
C, and C, is the same, say Q. Let the charge on C, be Q'. Now, since
the potential difference across AB is Q/C,, across BC is Q/C,, across
CD is Q/C,, we have

£+£+£:5OOV.

Cl CZ CS
Also, Q’/C, = 500 V.
This gives for the given value of the capacitances,

Q =500V x%uF =1.7%x107°C and

Q'=500V x10puF=5.0x10°C

2.15 ENERGY STORED IN A CAPACITOR

A capacitor, as we have seen above, is a system of two conductors with
charge @ and —-Q. To determine the energy stored in this configuration,
consider initially two uncharged conductors 1 and 2. Imagine next a
process of transferring charge from conductor 2 to conductor 1 bit by
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Q -09-350Q’ Q -9 Dbit, so that at the end, conductor 1 gets charge Q. By
+ - = charge conservation, conductor 2 has charge —-Q at
+ - | theend (Fig 2.30).

N 09" _ In transferrin iti h f

. - U g positive charge from conductor 2
+ - +— g » -| toconductor 1, work will be done externally, since at

+ - + ~| any sta ductor 1 is at a high tential th
B N N y stage conductor 1 is at a higher potential than
I ~ +——— | conductor 2. To calculate the total work done, we first
+ - + | calculate the work done in a small step involving

4’;

1 2 1 2 transfer of an infinitesimal (i.e., vanishingly small)
@ b) amount of charge. Consider the intermediate situation

5 . ) I when the conductors 1 and 2 have charges Q” and
FIGURE 30 (a) Work done in a sma —Q’respectively. At this stage, the potential difference
step of building charge on conductor 1 , . i K
from Q' to Q'+ 8 @'. (b) Total work done V'’ between conductors 1 to 2 is Q’/C, where C is the

in charging the capacitor may be capacitance of the system. Next imagine that a small
viewed as stored in the energy of charge 6 Q’is transferred from conductor 2 to 1. Work
electric field between the plates. done in this step (0 W), resulting in charge Q' on

conductor 1 increasing to Q4+ 6§ Q’, is given by
—_— I — g I
oW =V'oQ' = = o0Q (2.68)
Integrating eq. (2.68)
2 9 2
IQ so-19°f .9

C 2 , 2C
We can write the final result, in different ways

2
W = 2Q_c = 5CV2 = —QV (2.69)

Since electrostatic force is conservative, this work is stored in the form
of potential energy of the system. For the same reason, the final result for
potential energy [Eq. (2.69)] is independent of the manner in which the
charge configuration of the capacitor is built up. When the capacitor
discharges, this stored-up energy is released. It is possible to view the
potential energy of the capacitor as ‘stored’ in the electric field between
the plates. To see this, consider for simplicity, a parallel plate capacitor
[of area A (of each plate) and separation d between the plates].

Energy stored in the capacitor

19°> (Ao) L d

2C 2 gA

The surface charge density ois related to the electric field E between

(2.70)

the plates,
o
E=—

& (2.71)

From Eqgs. (2.70) and (2.71) , we get
Energy stored in the capacitor

74 U= (1/2)&E* x Ad (2.72)
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Note that Ad is the volume of the region between the plates (where
electric field alone exists). If we define energy density as energy stored
per unit volume of space, Eq (2.72) shows that

Energy density of electric field,

u=(1/2)¢,E* (2.73)

Though we derived Eq. (2.73) for the case of a parallel plate
capacitor, the result on energy density of an electric field is, in fact,
very general and holds true for electric field due to any configuration
of charges.

Example 2.10 (a) A 900 pF capacitor is charged by 100 V battery
[Fig. 2.31(a)]. How much electrostatic energy is stored by the capacitor?
(b) The capacitor is disconnected from the battery and connected to
another 900 pF capacitor [Fig. 2.31(b)]. What is the electrostatic
energy stored by the system?

Q -9

+Q -9 2Y 2
+ = + -
+ - + -
+ - + -
+ - + -
+ - + -
+ - + -
o _ + -
+ = + -

0
Q

o+ [+

o
o

ro|©
|

v|©

T O

FIGURE 2.31

Solution
(a) The charge on the capacitor is
Q=CV=900x% 102Fx100V=9x% 10%C
The energy stored by the capacitor is
=(1/2) CV* = (1/2) QV
=(1/2) x 9% 10°C x 100 V=45 % 10°J

(b) In the steady situation, the two capacitors have their positive
plates at the same potential, and their negative plates at the
same potential. Let the common potential difference be V'. The

01 ¢ I1dNvXH
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ExawvmrLE 2.10

charge on each capacitor is then Q’= CV’. By charge conservation,
Q' = Q/2. This implies V' = V/2. The total energy of the system is

-9 xéQ'V': iQV =2.25%x10°J

Thus in going from (a) to (b), though no charge is lost; the final
energy is only half the initial energy. Where has the remaining energy
gone?

There is a transient period before the system settles to the
situation (b). During this period, a transient current flows from
the first capacitor to the second. Energy is lost during this time in
the form of heat and electromagnetic radiation.

SUMMARY

Electrostatic force is a conservative force. Work done by an external
force (equal and opposite to the electrostatic force) in bringing a charge
q from a point R to a point P is q(V,-V,), which is the difference in
potential energy of charge g between the final and initial points.

Potential at a point is the work done per unit charge (by an external
agency) in bringing a charge from infinity to that point. Potential at a
point is arbitrary to within an additive constant, since it is the potential
difference between two points which is physically significant. If potential
at infinity is chosen to be zero; potential at a point with position vector
r due to a point charge Q placed at the origin is given is given by

1 9

V(r) =
r) 4ne, r

The electrostatic potential at a point with position vector r due to a
point dipole of dipole moment p placed at the origin is

1 p.r
amne, r?
The result is true also for a dipole (with charges —q and q separated by
2a) for r>> a.

V(r) =

For a charge configuration q,, q,. ..., g, with position vectors r,,
r,, ... r, the potential at a point P is given by the superposition principle
\74 :L(&+q_2+“'+q_")

4“50 rlP r2P rnP

where r;, is the distance between g, and P, as and so on.

An equipotential surface is a surface over which potential has a constant
value. For a point charge, concentric spheres centred at a location of the
charge are equipotential surfaces. The electric field E at a point is

perpendicular to the equipotential surface through the point. E is in the
direction of the steepest decrease of potential.
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Potential energy stored in a system of charges is the work done (by an
external agency) in assembling the charges at their locations. Potential
energy of two charges q,, g, at r, r, is given by

_ 1 49
4Te, 1y
where 1, is distance between g, and g,

The potential energy of a charge g in an external potential V(r) is gV(r).
The potential energy of a dipole moment p in a uniform electric field E
is —p-E.

Electrostatics field E is zero in the interior of a conductor; just outside
the surface of a charged conductor, E is normal to the surface given by

o .
E= g—n where n is the unit vector along the outward normal to the
0

surface and o is the surface charge density. Charges in a conductor can
reside only at its surface. Potential is constant within and on the surface
of a conductor. In a cavity within a conductor (with no charges), the
electric field is zero.

A capacitor is a system of two conductors separated by an insulator. Its
capacitance is defined by C = Q/V, where Q and —Q are the charges on the
two conductors and V is the potential difference between them. C is
determined purely geometrically, by the shapes, sizes and relative
positions of the two conductors. The unit of capacitance is farad:,
1 F=1C V. For a parallel plate capacitor (with vacuum between the
plates),

A

C= 503

where A is the area of each plate and d the separation between them.

If the medium between the plates of a capacitor is filled with an insulating
substance (dielectric), the electric field due to the charged plates induces
a net dipole moment in the dielectric. This effect, called polarisation,
gives rise to a field in the opposite direction. The net electric field inside
the dielectric and hence the potential difference between the plates is
thus reduced. Consequently, the capacitance C increases from its value
C, when there is no medium (vacuum),

C = KC,
where K is the dielectric constant of the insulating substance.
For capacitors in the series combination, the total capacitance C is given by

1 1 1 1
— =t —+—+...

c ¢ c c

In the parallel combination, the total capacitance C is:
C=C +C,+C,+ ...

where C,, C,, C,... are individual capacitances.
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12. The energy U stored in a capacitor of capacitance C, with charge Q and

Physical quantity

Potential

Capacitance

Polarisation

Dielectric constant

78

voltage V is
19
2 C

The electric energy density (energy per unit volume) in a region with
electric field is (1/2)¢,E”.

1 1
=—QV==CVv?
2Q 2

Symbol Dimensions Unit Remark

$orVv M'L2T3A™] \% Potential di M
physicall ificant

c M'L2T*A? F

P [L2 AT] & C m? - Dipo ent per unit
w&m
K [Dim?io \

P 0)

POINTS TO PONDER

Electrostatics deals with forces between charges at rest. But if there is a
force on a charge, how can it be at rest? Thus, when we are talking of
electrostatic force between charges, it should be understood that each
charge is being kept at rest by some unspecified force that opposes the
net Coulomb force on the charge.

A capacitor is so configured that it confines the electric field lines within
a small region of space. Thus, even though field may have considerable
strength, the potential difference between the two conductors of a
capacitor is small.

Electric field is discontinuoug_ across the surface of a spherical charged
shell. It is zero inside and g; ™ outside. Electric potential is, however
continuous across the surface, equal to g/4ns,R at the surface.

The torque p X E on a dipole causes it to oscillate about E. Only if there
is a dissipative mechanism, the oscillations are damped and the dipole
eventually aligns with E.

Potential due to a charge g at its own location is not defined - it is
infinite.

In the expression qV(r) for potential energy of a charge g, V(r) is the
potential due to external charges and not the potential due to g. As seen

in point 5, this expression will be ill-defined if V(r) includes potential
due to a charge q itself.
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A cavity inside a conductor is shielded from outside electrical influences.
It is worth noting that electrostatic shielding does not work the other
way round; that is, if you put charges inside the cavity, the exterior of
the conductor is not shielded from the fields by the inside charges.

EXERCISES

Two charges 5 x 10° C and -3 x 10® C are located 16 cm apart. At
what point(s) on the line joining the two charges is the electric
potential zero? Take the potential at infinity to be zero.

A regular hexagon of side 10 cm has a charge 5 puC at each of its
vertices. Calculate the potential at the centre of the hexagon.

Two charges 2 pC and -2 pC are placed at points A and B 6 cm
apart.

(a) Identify an equipotential surface of the system.

(b) What is the direction of the electric field at every point on this
surface?

A spherical conductor of radius 12 cm has a charge of 1.6 x 107'C
distributed uniformly on its surface. What is the electric field

(a) inside the sphere
(b) just outside the sphere
(c) at a point 18 cm from the centre of the sphere?

A parallel plate capacitor with air between the plates has a
capacitance of 8 pF (1pF = 10'? F). What will be the capacitance if
the distance between the plates is reduced by half, and the space
between them is filled with a substance of dielectric constant 6?

Three capacitors each of capacitance 9 pF are connected in series.
(a) What is the total capacitance of the combination?

(b) What is the potential difference across each capacitor if the
combination is connected to a 120 V supply?

Three capacitors of capacitances 2 pF, 3 pF and 4 pF are connected
in parallel.

(a) What is the total capacitance of the combination?

(b) Determine the charge on each capacitor if the combination is
connected to a 100 V supply.

In a parallel plate capacitor with air between the plates, each plate
has an area of 6 x 10° m? and the distance between the plates is 3 mm.
Calculate the capacitance of the capacitor. If this capacitor is
connected to a 100 V supply, what is the charge on each plate of the
capacitor?
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2.9

2.10

2.11

Explain what would happen if in the capacitor given in Exercise
2.8, a 3 mm thick mica sheet (of dielectric constant = 6) were inserted
between the plates,

(a) while the voltage supply remained connected.
(b) after the supply was disconnected.

A 12pF capacitor is connected to a 50V battery. How much
electrostatic energy is stored in the capacitor?

A 600pF capacitor is charged by a 200V supply. It is then
disconnected from the supply and is connected to another
uncharged 600 pF capacitor. How much electrostatic energy is lost
in the process?
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Chapter Three

CURRENT
ELECTRICITY

Y Ny

3.1 INTRODUCTION

In Chapter 1, all charges whether free or bound, were considered to be at
rest. Charges in motion constitute an electric current. Such currents occur
naturally in many situations. Lightning is one such phenomenon in
which charges flow from the clouds to the earth through the atmosphere,
sometimes with disastrous results. The flow of charges in lightning is not
steady, but in our everyday life we see many devices where charges flow
in a steady manner, like water flowing smoothly in a river. A torch and a
cell-driven clock are examples of such devices. In the present chapter, we
shall study some of the basic laws concerning steady electric currents.

3.2 ELEcTRIC CURRENT

Imagine a small area held normal to the direction of flow of charges. Both
the positive and the negative charges may flow forward and backward
across the area. In a given time interval ¢, let g, be the net amount (i.e.,
forward minus backward) of positive charge that flows in the forward
direction across the area. Similarly, let g_be the net amount of negative
charge flowing across the area in the forward direction. The net amount
of charge flowing across the area in the forward direction in the time
interval ¢, then, is q = q,— q_. This is proportional to t for steady current
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and the quotient

_4g

I ; (3.1)
is defined to be the current across the area in the forward direction. (If it
turn out to be a negative number, it implies a current in the backward
direction.)

Currents are not always steady and hence more generally, we define
the current as follows. Let AQ be the net charge flowing across a cross-
section of a conductor during the time interval At [i.e., between times ¢t
and (t + At)]. Then, the current at time t across the cross-section of the
conductor is defined as the value of the ratio of AQ to Atin the limit of At
tending to zero,

I(t) = lim 49 (3.2)

In SI units, the unit of current is ampere. An ampere is defined
through magnetic effects of currents that we will study in the following
chapter. An ampere is typically the order of magnitude of currents in
domestic appliances. An average lightning carries currents of the order
of tens of thousands of amperes and at the other extreme, currents in
our nerves are in microamperes.

3.3 ELEcTRIC CURRENTS IN CONDUCTORS

An electric charge will experience a force if an electric field is applied. If it is
free to move, it will thus move contributing to a current. In nature, free
charged particles do exist like in upper strata of atmosphere called the
ionosphere. However, in atoms and molecules, the negatively charged
electrons and the positively charged nuclei are bound to each other and
are thus not free to move. Bulk matter is made up of many molecules, a
gram of water, for example, contains approximately 10%* molecules. These
molecules are so closely packed that the electrons are no longer attached
to individual nuclei. In some materials, the electrons will still be bound,
i.e., they will not accelerate even if an electric field is applied. In other
materials, notably metals, some of the electrons are practically free to move
within the bulk material. These materials, generally called conductors,
develop electric currents in them when an electric field is applied.

If we consider solid conductors, then of course the atoms are tightly
bound to each other so that the current is carried by the negatively
charged electrons. There are, however, other types of conductors like
electrolytic solutions where positive and negative charges both can move.
In our discussions, we will focus only on solid conductors so that the
current is carried by the negatively charged electrons in the background
of fixed positive ions.

Consider first the case when no electric field is present. The electrons
will be moving due to thermal motion during which they collide with the
fixed ions. An electron colliding with an ion emerges with the same speed
as before the collision. However, the direction of its velocity after the
collision is completely random. At a given time, there is no preferential
direction for the velocities of the electrons. Thus on the average, the
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number of electrons travelling in any direction will be equal to the number

of electrons travelling in the opposite direction. So, there will be no net

electric current.

Let us now see what happens to such a
piece of conductor if an electric field is applied. +Q e 9

To focus our thoughts, imagine the conductor
in the shape of a cylinder of radius R (Fig. 3.1).

Suppose we now take two thin circular discs  piaurE 3.1 Charges +Q and -Q put at the ends
of a dielectric of the same radius and put of a metallic cylinder. The electrons will drift

positive charge +Q distributed over one disc because of the electric field created to
and similarly —Q at the other disc. We attach neutralise the charges. The current thus
the two discs on the two flat surfaces of the will stop after a while unless the charges +Q
cylinder. An electric field will be created and and -@ are continuously replenished.

is directed from the positive towards the

negative charge. The electrons will be accelerated due to this field towards
+@Q. They will thus move to neutralise the charges. The electrons, as long
as they are moving, will constitute an electric current. Hence in the
situation considered, there will be a current for a very short while and no
current thereafter.

We can also imagine a mechanism where the ends of the cylinder are
supplied with fresh charges to make up for any charges neutralised by
electrons moving inside the conductor. In that case, there will be a steady
electric field in the body of the conductor. This will result in a continuous
current rather than a current for a short period of time. Mechanisms,
which maintain a steady electric field are cells or batteries that we shall
study later in this chapter. In the next sections, we shall study the steady
current that results from a steady electric field in conductors.

3.4 Oum’s Law

A basic law regarding flow of currents was discovered by G.S. Ohm in
1828, long before the physical mechanism responsible for flow of currents
was discovered. Imagine a conductor through which a current Iis flowing
and let Vbe the potential difference between the ends of the conductor.
Then Ohm’s law states that

Vol

or, V=RI (3.3)

where the constant of proportionality R is called the resistance of the
conductor. The SI units of resistance is ohm, and is denoted by the symbol
Q. The resistance R not only depends on the material of the conductor
but also on the dimensions of the conductor. The dependence of R on the
dimensions of the conductor can easily be determined as follows.
Consider a conductor satisfying Eq. (3.3) to be in the form of a slab of
length land cross sectional area A [Fig. 3.2(a)]. Imagine placing two such
identical slabs side by side [Fig. 3.2(b)], so that the length of the
combination is 21. The current flowing through the combination is the
same as that flowing through either of the slabs. If V is the potential
difference across the ends of the first slab, then V is also the potential
difference across the ends of the second slab since the second slab is
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FIGURE 3.2
Illustrating the
relation R = pl/A for
a rectangular slab
of length [ and area
of cross-section A.
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identical to the first and the same current I flows through
both. The potential difference across the ends of the
combination is clearly sum of the potential difference
across the two individual slabs and hence equals 2V. The
current through the combination is I and the resistance
of the combination R, is [from Eq. (3.3)],

2V
RC = T =2R (34)
since V/I =R, the resistance of either of the slabs. Thus,
doubling the length of a conductor doubles the
resistance. In general, then resistance is proportional to

length,
ROL (3.5
Georg Simon Ohm (1787~ Next, imagine dividing the slab into two by cutting it
1854) German physicist, lengthwise so that the slab can be considered as a
professor at Munich. Ohm combination of two identical slabs of length [, but each

was led to his law by an
analogy between the
conduction of heat: the
electric field is analogous to
the temperature gradient,

having a cross sectional area of A/2 [Fig. 3.2(c)].

For a given voltage V across the slab, if Iis the current
through the entire slab, then clearly the current flowing
through each of the two half-slabs is I/2. Since the

3
0
o
N
0]
=
=
T
S
z
0
=
N
¢
7
Q
€3]
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and the electric current is potential difference across the ends of the half-slabs is V,
analogous to the heat flow. i.e., the same as across the full slab, the resistance of each
of the half-slabs R, is
\% \%
R =——-=2—=2R (3.6)
(I/2) 1

Thus, halving the area of the cross-section of a conductor doubles
the resistance. In general, then the resistance Ris inversely proportional
to the cross-sectional area,

1
RO —
A (3.7)

Combining Egs. (3.5) and (3.7), we have

l
R O—
A (3.8)

and hence for a given conductor

l

R=p—~ (3.9)
where the constant of proportionality p depends on the material of the
conductor but not on its dimensions. p is called resistivity.

Using the last equation, Ohm’s law reads

v=rxr=12 (3.10)

Current per unit area (taken normal to the current), I/A, is called
current density and is denoted by j. The SI units of the current density
are A/m2. Further, if E is the magnitude of uniform electric field in the
conductor whose length is [, then the potential difference V across its

84 ends is El Using these, the last equation reads
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El=jpl
or, E=jp (3.11)

The above relation for magnitudes E and j can indeed be cast in a
vector form. The current density, (which we have defined as the current
through unit area normal to the current) is also directed along E, and is
also a vector j (=j E/E). Thus, the last equation can be written as,

E=jp (3.12)

or, j=cE (3.13)
where o=1/p is called the conductivity. Ohm’s law is often stated in an
equivalent form, Eq. (3.13) in addition to Eq.(3.3). In the next section, we
will try to understand the origin of the Ohm’s law as arising from the
characteristics of the drift of electrons.

3.5 DRIFT OF ELECTRONS AND THE ORIGIN
OF RESISTIVITY

As remarked before, an electron will suffer collisions with the heavy fixed
ions, but after collision, it will emerge with the same speed but in random
directions. If we consider all the electrons, their average velocity will be
zero since their directions are random. Thus, if there are N electrons and
the velocity of the i electron (i=1, 2, 3, ... N) ata given time is v, then
1 N
P (3.14)
Consider now the situation when an electric field is
present. Electrons will be accelerated due to this

field by

-eE

a= m (3.15)

where —e is the charge and m is the mass of an electron.
Consider again the i electron at a given time t. This
electron would have had its last collision some time
before t, and let t, be the time elapsed after its last
collision. If v, was its velocity immediately after the last
collision, then its velocity V, at time tis

-eE
V,=v, + m t; (3.16) A

E

FIGURE 3.3 A schematic picture of

since starting with its last collision it was accelerated an electron moving from a point A to
(Fig. 3.3) with an acceleration given by Eq. (3.15) for a another point B through repeated
time interval t. The average velocity of the electrons at collisions, and straight line travel
time tis the average of all the V,’s. The average of v/sis ~ Petween collisions (full lines). If an

zero [Eq. (3.14)] since immediately after any collision,
the direction of the velocity of an electron is completely
random. The collisions of the electrons do not occur at
regular intervals but at random times. Let us denote by
7, the average time between successive collisions. Then
at a given time, some of the electrons would have spent
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electric field is applied as shown, the
electron ends up at point B’ (dotted
lines). A slight drift in a direction
opposite the electric field is visible.
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time more than t and some less than 1. In other words, the time ¢, in
Eq. (3.16) will be less than t for some and more than t for others as we go
through the values of i =1, 2 ..... N. The average value of ¢, then is t
(known as relaxation time). Thus, averaging Eq. (3.16) over the
N-electrons at any given time t gives us for the average velocity v,

v, =V,
E
:O_e_z':
m

«— Ax=vAl——»

o—» E
o—

A

FIGURE 3.4 Current in a metallic
conductor. The magnitude of current
density in a metal is the magnitude of
charge contained in a cylinder of unit

area and length v,

(V) werage = (V1)
average t Javerage

_Q(ti)

average
m g

eE
m

This last result is surprising. It tells us that the
electrons move with an average velocity which is
independent of time, although electrons are
accelerated. This is the phenomenon of drift and the
velocity v, in Eq. (3.17) is called the drift velocity.

Because of the drift, there will be net transport of
charges across any area perpendicular to E. Consider
a planar area A, located inside the conductor such that
the normal to the area is parallel to E (Fig. 3.4). Then
because of the drift, in an infinitesimal amount of time
At, all electrons to the left of the area at distances upto
| v4| Atwould have crossed the area. If nis the number
of free electrons per unit volume in the metal, then
there are n At |v,|A such electrons. Since each

(3.17)

electron carries a charge —e, the total charge transported across this area
Ato theright in time Atis —ne A|v,| At. E is directed towards the left and
hence the total charge transported along E across the area is negative of
this. The amount of charge crossing the area A in time At is by definition
[Eq. (3.2)] I At, where I is the magnitude of the current. Hence,

IAt=+neA|v,|At (3.18)
Substituting the value of |v,| from Eq. (3.17)
2
1at=22 rnatf| (3.19)
m
By definition I'is related to the magnitude |j| of the current density by
I=|j|A (3.20)
Hence, from Egs.(3.19) and (3.20),
ne’
liil=—TrE]| (3.21)
m
The vector j is parallel to E and hence we can write Eq. (3.21) in the
vector form
ne’
j= TE (3.22)
m

Comparison with Eq. (3.13) shows that Eq. (3.22) is exactly the Ohm’s
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law, if we identify the conductivity ¢ as
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We thus see that a very simple picture of electrical conduction
reproduces Ohm’s law. We have, of course, made assumptions that
and n are constants, independent of E. We shall, in the next section,
discuss the limitations of Ohm’s law.

Example 3.1 (a) Estimate the average drift speed of conduction
electrons in a copper wire of cross-sectional area 1.0 x 10”7 m? carrying
a current of 1.5 A. Assume that each copper atom contributes roughly
one conduction electron. The density of copper is 9.0 X 10° kg/m?,
and its atomic mass is 63.5 u. (b) Compare the drift speed obtained
above with, (i) thermal speeds of copper atoms at ordinary
temperatures, (ii) speed of propagation of electric field along the
conductor which causes the drift motion.

Solution

(a)

(b)

The direction of drift velocity of conduction electrons is opposite
to the electric field direction, i.e., electrons drift in the direction
of increasing potential. The drift speed v, is given by Eq. (3.18)
v, = (I/neA)

Now, e= 1.6 x 10" C, A= 1.0 x 10 'm?, I = 1.5 A. The density of
conduction electrons, n is equal to the number of atoms per cubic
metre (assuming one conduction electron per Cu atom as is
reasonable from its valence electron count of one). A cubic metre
of copper has a mass of 9.0 x 10 kg. Since 6.0 x 10%® copper
atoms have a mass of 63.5 g,

_6.0x10*
63.5
=8.5x 102 m™®

x9.0x10°

which gives,
b = 1.5
¢ 85x10%®x1.6x107"° x1.0x107
=1.1x10°ms?! =1.1 mm s™

(i) At a temperature T, the thermal speed* of a copper atom of
mass M is obtained from [<(1/2) Mv? > = (3/2) I;T | and is thus

typically of the order of kzT/M , where k, is the Boltzmann
constant. For copper at 300 K, this is about 2 x 10> m/s. This
figure indicates the random vibrational speeds of copper atoms
in a conductor. Note that the drift speed of electrons is much
smaller, about 107 times the typical thermal speed at ordinary
temperatures.

(ii) An electric field travelling along the conductor has a speed of
an electromagnetic wave, namely equal to 3.0 x 10° m s™*
(You will learn about this in Chapter 8). The drift speed is, in
comparison, extremely small; smaller by a factor of 107"

* See Eq. (12.23) of Chapter 12 from Class XI book.
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ExampPLE 3.2

Example 3.2

(a) In Example 3.1, the electron drift speed is estimated to be only a
few mm s for currents in the range of a few amperes? How then
is current established almost the instant a circuit is closed?

(b) The electron drift arises due to the force experienced by electrons
in the electric field inside the conductor. But force should cause
acceleration. Why then do the electrons acquire a steady average
drift speed?

(c) If the electron drift speed is so small, and the electron’s charge is
small, how can we still obtain large amounts of current in a
conductor?

(d) When electrons drift in a metal from lower to higher potential,
does it mean that all the ‘free’ electrons of the metal are moving
in the same direction?

(e) Are the paths of electrons straight lines between successive
collisions (with the positive ions of the metal) in the (i) absence of
electric field, (ii) presence of electric field?

Solution

(a) Electric field is established throughout the circuit, almost instantly
(with the speed of light) causing at every point a local electron
drift. Establishment of a current does not have to wait for electrons
from one end of the conductor travelling to the other end. However,
it does take a little while for the current to reach its steady value.

(b) Each ‘free’ electron does accelerate, increasing its drift speed until
it collides with a positive ion of the metal. It loses its drift speed
after collision but starts to accelerate and increases its drift speed
again only to suffer a collision again and so on. On the average,
therefore, electrons acquire only a drift speed.

(c) Simple, because the electron number density is enormous,
~10* m™.

(d) By no means. The drift velocity is superposed over the large
random velocities of electrons.

(e) In the absence of electric field, the paths are straight lines; in the
presence of electric field, the paths are, in general, curved.

3.5.1 Mobility

As we have seen, conductivity arises from mobile charge carriers. In
metals, these mobile charge carriers are electrons; in an ionised gas, they
are electrons and positive charged ions; in an electrolyte, these can be
both positive and negative ions.

An important quantity is the mobility u defined as the magnitude of
the drift velocity per unit electric field:

_1Va |
U o (3.24)
The SI unit of mobility is m?/Vs and is 10* of the mobility in practical

units (cm?/Vs). Mobility is positive. From Eq. (3.17), we have

etE

V.= ——
m

d
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Hence, |

H= Pa o€l 3.25

E m (3.25) T |
where 7 is the average collision time for electrons.
1%

3.6 LimitaTions oF OHM’S Law 1
Although Ohm’s law has been found valid over a large class
of materials, there do exist materials and devices used in ‘ ‘
electric circuits where the proportionality of Vand I does not I —»
hold. The deviations broadly are one or more of the following )
types: FIGURE 3.5 The dashed line

. . represents the linear Ohm'’s
(@) Vceases to be proportional to I (Fig. 3.5). law. The solid line is the,volfage

(b) The relation between Vand I depends on the sign of V. In V versus current I for a good
other words, if I'is the current for a certain V, then reversing conductdf
the direction of V keeping its magnitude fixed, does not
produce a current of the same magnitude as Iin the opposite direction
(Fig. 3.6). This happens, for example, in a diode which we will study
in Chapter 14.

1
1.5 4 i
Negative
mA l '‘Non-linear; resistance:
E | region _.region |
~ | | |
+~ 1 ! 1
g ; i |
: : 2 : 1 1
-2 02 yv—» 5 ‘ | !
O i } i
I v 1 1
A >
B Voltage V (V) —
FIGURE 3.6 Characteristic curve FIGURE 3.7 Variation of current
of a diode. Note the different versus voltage for GaAs.

scales for negative and positive
values of the voltage and current.

(c) The relation between V and I is not unique, i.e., there is more than
one value of Vfor the same current I (Fig. 3.7). A material exhibiting
such behaviour is GaAs.

Materials and devices not obeying Ohm’s law in the form of Eq. (3.3)
are actually widely used in electronic circuits. In this and a few
subsequent chapters, however, we will study the electrical currents in
materials that obey Ohm’s law.

3.7 REsisTIvViTY OF VARIOUS MATERIALS

The materials are classified as conductors, semiconductors and insulators
depending on their resistivities, in an increasing order of their values.

89
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0.2

Resistivity P (1 0% m)

Metals have low resistivities in the range of 10®° Qm to 10™° Qm. At the
other end are insulators like ceramic, rubber and plastics having
resistivities 10'® times greater than metals or more. In between the two
are the semiconductors. These, however, have resistivities
characteristically decreasing with a rise in temperature. The resistivities
of semiconductors can be decreased by adding small amount of suitable

impurities. This last feature is exploited in use of semiconductors for
electronic devices.

3.8 TEMPERATURE DEPENDENCE OF RESISTIVITY

The resistivity of a material is found to be dependent on the temperature.
Different materials do not exhibit the same dependence on temperatures.
Over a limited range of temperatures, that is not too large, the resistivity
of a metallic conductor is approximately given by,

pr=po [1+ & (T-T,)] (3.26)
where p, is the resistivity at a temperature T and p, is the same at a
reference temperature T,. « is called the temperature co-efficient of

resistivity, and from Eq. (3.26), the dimension of o is (Temperature]’l.
For metals, o is positive.

The relation of Eq. (3.26) implies that a graph of p. plotted against T
would be a straight line. At temperatures much lower than 0°C, the graph,
however, deviates considerably from a straight line (Fig. 3.8).

Equation (3.26) thus, can be used approximately over a limited range
of T around any reference temperature T,, where the graph can be
approximated as a straight line.

._.
N
o
T
D

Resistivity p (wQcm)
[
= :
=

—
o
o

0 50 100

Temperature T (K) —

FIGURE 3.8
Resistivity p,. of

copper as a function
of temperature T.
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150 200 400 600 800

Temperature T (K) —»

FIGURE 3.9 Resistivity
pr of nichrome as a
function of absolute

temperature T.

FIGURE 3.10
Temperature dependence
of resistivity for a typical

semiconductor.

Some materials like Nichrome (which is an alloy of nickel, iron and
chromium) exhibit a very weak dependence of resistivity with temperature
(Fig. 3.9). Manganin and constantan have similar properties. These
materials are thus widely used in wire bound standard resistors since
their resistance values would change very little with temperatures.
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Unlike metals, the resistivities of semiconductors decrease with
increasing temperatures. A typical dependence is shown in Fig. 3.10.
We can qualitatively understand the temperature dependence of
resistivity, in the light of our derivation of Eq. (3.23). From this equation,
resistivity of a material is given by
1 m

p=—= 5
g ne’r

(3.27)

p thus depends inversely both on the number n of free electrons per unit
volume and on the average time t between collisions. As we increase
temperature, average speed of the electrons, which act as the carriers of
current, increases resulting in more frequent collisions. The average time
of collisions 7, thus decreases with temperature.

In a metal, nis not dependent on temperature to any appreciable
extent and thus the decrease in the value of 7 with rise in temperature
causes p to increase as we have observed.

For insulators and semiconductors, however, n increases with
temperature. This increase more than compensates any decrease in 7in
Eq.(3.23) so that for such materials, p decreases with temperature.

Example 3.3 An electric toaster uses nichrome for its heating
element. When a negligibly small current passes through it, its
resistance at room temperature (27.0 °C) is found to be 75.3 Q. When
the toaster is connected to a 230 V supply, the current settles, after
a few seconds, to a steady value of 2.68 A. What is the steady
temperature of the nichrome element? The temperature coefficient
of resistance of nichrome averaged over the temperature range
involved, is 1.70 x 10°* °C™\.

Solution When the current through the element is very small, heating
effects can be ignored and the temperature T, of the element is the
same as room temperature. When the toaster is connected to the
supply, its initial current will be slightly higher than its steady value
of 2.68 A. But due to heating effect of the current, the temperature
will rise. This will cause an increase in resistance and a slight
decrease in current. In a few seconds, a steady state will be reached
when temperature will rise no further, and both the resistance of the
element and the current drawn will achieve steady values. The
resistance R, at the steady temperature T, is
230V
R, =268a

Using the relation
R, =R, [1+ a(T,-T)I
with @ = 1.70 x 107 °C™", we get

=85.8 Q

T,-T,= (85.8-75.3) _ =820°C
(75.3)x1.70x10

that is, T, = (820 + 27.0) °C = 847 °C

Thus, the steady temperature of the heating element (when heating
effect due to the current equals heat loss to the surroundings) is
847 °C.

€'€ TIANVXH
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Example 3.4 The resistance of the platinum wire of a platinum
resistance thermometer at the ice point is 5 Q and at steam point is
5.23 Q. When the thermometer is inserted in a hot bath, the resistance
of the platinum wire is 5.795 Q. Calculate the temperature of the
bath.

Solution R, = 5 Q, R, = 5.23 Q and R, = 5.795 Q

R —_
Now, t=—t—>2 Ro x100, R =R,(1+at)
R100_

_5.795-5 x100
5.23-5

_0.795
~0.23

x100 = 345.65 °C

3.9 ELEcTRrICAL ENERGY, POWER

Consider a conductor with end points A and B, in which a current I is
flowing from A to B. The electric potential at A and B are denoted by V(A)
and V(B) respectively. Since current is flowing from A to B, V(A) > V(B)
and the potential difference across ABis V= V(A) - V(B) > 0.
In a time interval At, an amount of charge AQ = I At travels from A to
B. The potential energy of the charge at A, by definition, was Q V(A) and
similarly at B, it is @ V(B). Thus, change in its potential energy AU, is
AU_ . = Final potential energy - Initial potential energy
=AQIV(B)-V(A)]=-AQV
=-IVAt<O (3.28)
If charges moved without collisions through the conductor, their
kinetic energy would also change so that the total energy is unchanged.
Conservation of total energy would then imply that,

AK = —AUpot (3.29)
that is,
AK=1TVAt>0 (3.30)

Thus, in case charges were moving freely through the conductor under
the action of electric field, their kinetic energy would increase as they
move. We have, however, seen earlier that on the average, charge carriers
do not move with acceleration but with a steady drift velocity. This is
because of the collisions with ions and atoms during transit. During
collisions, the energy gained by the charges thus is shared with the atoms.
The atoms vibrate more vigorously, i.e., the conductor heats up. Thus,
in an actual conductor, an amount of energy dissipated as heat in the
conductor during the time interval Atis,

AW =1 VAt (3.31)

The energy dissipated per unit time is the power dissipated
P=AW/At and we have,

P=1V (3.32)
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Using Ohm'’s law V = IR, we get

P=I’R=V?/R (3.33)
as the power loss (“ohmic loss”) in a conductor of resistance R carrying a
current I. It is this power which heats up, for example, the coil of an
electric bulb to incandescence, radiating out heat and light.

Where does the power come from? As we have I
reasoned before, we need an external source to keep Positive Negative
a steady current through the conductor. It is clearly electrode electrode
this source which must supply this power. In the R
simple circuit shown with a cell (Fig.3.11), it is the
chemical energy of the cell which supplies this power
for as long as it can.

The expressions for power, Egs. (3.32) and (3.33),
show the dependence of the power dissipated in a
resistor R on the current through it and the voltage FIGURE 3.11 Heat is produced in the

Electrolyte

across it. resistor R which is connected across
Equation (3.33) has an important application to the terminals of a cell. The energy

power transmission. Electrical power is transmitted  dissipated in the resistor R comes from
from power stations to homes and factories, which ~ the chemical energy of the electrolyte.
may be hundreds of miles away, via transmission
cables. One obviously wants to minimise the power
loss in the transmission cables connecting the power stations to homes
and factories. We shall see now how this can be achieved. Consider a
device R, to which a power P is to be delivered via transmission cables
having a resistance R, to be dissipated by it finally. If V is the voltage
across Rand I the current through it, then
P=VI (3.34)
The connecting wires from the power station to the device has a finite
resistance R_. The power dissipated in the connecting wires, which is
wasted is P, with

P=I"R,
— P2 RC
=" (3.35)

from Eq. (3.32). Thus, to drive a device of power P, the power wasted in the
connecting wires is inversely proportional to V>, The transmission cables
from power stations are hundreds of miles long and their resistance R_ is
considerable. To reduce P, these wires carry current at enormous values
of Vand this is the reason for the high voltage danger signs on transmission
lines — a common sight as we move away from populated areas. Using
electricity at such voltages is not safe and hence at the other end, a device
called a transformer lowers the voltage to a value suitable for use.

3.10 CELLs, EMF, INTERNAL RESISTANCE

We have already mentioned that a simple device to maintain a steady
current in an electric circuit is the electrolytic cell. Basically a cell has
two electrodes, called the positive (P) and the negative (N), as shown in 93
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Fig. 3.12. They are immersed in an electrolytic solution. Dipped in
the solution, the electrodes exchange charges with the electrolyte.
The positive electrode has a potential difference V, (V, > 0) between
itself and the electrolyte solution immediately adjacent to it marked
A in the figure. Similarly, the negative electrode develops a negative
potential — (V_) (V_ > 0) relative to the electrolyte adjacent to it,
marked as Bin the figure. When there is no current, the electrolyte
has the same potential throughout, so that the potential difference

Electrolyte between Pand Nis V, - (-V) =V, _+ V_. This difference is called the

@ electromotive force (emf) of the cell and is denoted by ¢. Thus
e=VA+V. >0 (3.36)
B Note that ¢ is, actually, a potential difference and not a force. The
V- name emf, however, is used because of historical reasons, and was
given at a time when the phenomenon was not understood properly.
Symbol To understand the significance of ¢, consider a resistor R

(b)

connected across the cell (Fig. 3.12). A current I flows across R

FIGURE 3.12 (a) Skeich of from C to D. As explained before, a steady current is maintained

an electrolyte cell with because current flows from N to P through the electrolyte. Clearly,

positive terminal P and across the electrolyte the same current flows through the electrolyte
negative terminal N. The  put from N to P, whereas through R, it flows from P to N.

gap between the electrodes The electrolyte through which a current flows has a finite

is exaggerated for clarity. A
and B are points in the
electrolyte typically close to
P and N. (b) the symbol for
a cell, + referring to P and

— referring to the N

resistance r, called the internal resistance. Consider first the
situation when R is infinite so that I = V/R = 0, where V is the
potential difference between P and N. Now,
V = Potential difference between P and A
+ Potential difference between A and B

electrode. Electrical + Potential difference between B and N

connections to the cell
made at P and N.

94

are =g (3.37)
Thus, emf ¢ is the potential difference between the positive and
negative electrodes in an open circuit, i.e., when no current is

flowing through the cell.

If however Ris finite, I'is not zero. In that case the potential difference
between P and N is

V=V+V -Ir

=e-1Ir (3.38)

Note the negative sign in the expression (I'r) for the potential difference
between A and B. This is because the current I flows from B to A in the
electrolyte.

In practical calculations, internal resistances of cells in the circuit
may be neglected when the current I is such that ¢ >> I r. The actual
values of the internal resistances of cells vary from cell to cell. The internal
resistance of dry cells, however, is much higher than the common
electrolytic cells.

We also observe that since Vis the potential difference across R, we
have from Ohm’s law

V=IR (3.39)
Combining Egs. (3.38) and (3.39), we get
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IR =¢-1r
or, =—% (3.40)
R+r

The maximum current that can be drawn from a cell is for R=0 and
itis I, = &/r. However, in most cells the maximum allowed current is
much lower than this to prevent permanent damage to the cell.

3.11 CELLS IN SERIES AND IN PARALLEL

Like resistors, cells can be combined together in an electric circuit. And
like resistors, one can, for calculating currents and voltages in a circuit,
replace a combination of cells by an equivalent cell.

& & £eq I
I
o e K o = e<—]l—<—o
AT | B ; C AT | C
1 2 eq

FIGURE 3.13 Two cells of emf’s ¢, and ¢, in the series. r, r, are their
internal resistances. For connections across A and C, the combination
can be considered as one cell of emf Eeoq and an internal resistance Toy

Consider first two cells in series (Fig. 3.13), where one terminal of the
two cells is joined together leaving the other terminal in either cell free.
g, &, are the emf’s of the two cells and r|, r, their internal resistances,
respectively.

Let V(A), V (B), V(C) be the potentials at points A, B and C shown in
Fig. 3.13. Then V (A) - V(B) is the potential difference between the positive
and negative terminals of the first cell. We have already calculated it in

Eq. (83.38) and hence,

V.s=V(A) V(B)=¢ In (3.41)
Similarly,
Ve EV(B) V(C)=¢, I, (3.42)

Hence, the potential difference between the terminals A and C of the
combination is

Ve = V(A)-V(C)= V(A)-V(B) + V(B)-V(C)
= (& + &)= I(r +r) (3.43)

If we wish to replace the combination by a single cell between A and
C of emf ¢, and internal resistance r, , we would have

Vae= e, 11, (3.44)
Comparing the last two equations, we get

Eeq =& T 8y (3.45)

and T =T tT, (3.46)

In Fig.3.13, we had connected the negative electrode of the first to the
positive electrode of the second. If instead we connect the two negatives,

2024-25



" Physics

Eq. (3.42) would change to V= —¢,~Ir, and we will get

Eog = €17 6 (g, > &) (3.47)
The rule for series combination clearly can be extended to any number
of cells:

() The equivalent emf of a series combination of n cells is just the sum of
their individual emf’s, and

(ii) The equivalent internal resistance of a series combination of n cells is
just the sum of their internal resistances.

This is so, when the current leaves each cell from the positive
electrode. If in the combination, the current leaves any cell from
the negative electrode, the emf of the cell enters the expression

1 ¢ fore, with a negative sign, as in Eq. (3.47).

Next, consider a parallel combination of the cells (Fig. 3.14).
I, and I, are the currents leaving the positive electrodes of the
cells. At the point B, I, and I, flow in whereas the current I flows
out. Since as much charge flows in as out, we have

FIGURE 3.14 Two cells in I=1 +1, (3.48)
parallel. For connections Let V(B)) and V(B,) be the potentials at B, and B,, respectively.
across A and C, the Then, considering the first cell, the potential difference across its
combination can be terminals is V (B,) - V (B,). Hence, from Eq. (3.38)
replaced by one cell of emf
Eoq and internal resistances V=V (Bl) -V (B2 ) =& -In (3.49)

r_ whose values are given in

€q

Points B, and B, are connected exactly similarly to the second
Eqgs. (3.54) and (3.55).

cell. Hence considering the second cell, we also have

V=V (B)-V(B,)=¢ - L, (3.50)
Combining the last three equations
I =1, +1,

-V -V _[g 0O 01 10

+ +=—V + —
n ) ﬁ; TZE gl "2E (3.51)

Hence, Vis given by,

V= ah, t &N L)

n+rn n+rn

(3.52)

If we want to replace the combination by a single cell, between B, and
B,, of emf ¢, and internal resistance r,, we would have

V=g, -1Ir, (3.53)
The last two equations should be the same and hence

_ & T &n

eq —— (3.54)
nr
r =
R (3.55)

We can put these equations in a simpler way,
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1 1.1
o - (3.56)
feq :i+£_2
ron (3.57)

In Fig. (3.14), we had joined the positive terminals
together and similarly the two negative ones, so that the
currents I, I, flow out of positive terminals. If the negative
terminal of the second is connected to positive terminal
of the first, Egs. (3.56) and (3.57) would still be valid with

£y, —> &,

Equations (3.56) and (3.57) can be extended easily.

If there are n cells of emf ¢, . . . ¢ and of internal
resistances r,... 1, respectively, connected in parallel, the Gustav Robert Kirchhoff
combination is equivalent to a single cell of emf €0y and (1824 - 1887) German
internal resistance r,, such that physicist, professor at
1 1 1 Heidelberg and at
— ==+ .+ (3.58) B.erlin. Mainly known for
Teq T Th his development of
spectroscopy, he also
£ made many important

eq _ 81 811
- r toot T (3.59) contributions to mathe-
e 1 n a q
matical physics, among
them, his first and

3. 12 KIRCHHOFF’S RULES second rules for circuits.
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Electric circuits generally consist of a number of resistors

and cells interconnected sometimes in a complicated way.

The formulae we have derived earlier for series and parallel combinations
of resistors are not always sufficient to determine all the currents and
potential differences in the circuit. Two rules, called Kirchhoff's rules,
are very useful for analysis of electric circuits.

Given a circuit, we start by labelling currents in each resistor by a
symbol, say I, and a directed arrow to indicate that a current I flows
along the resistor in the direction indicated. If ultimately I is determined
to be positive, the actual current in the resistor is in the direction of the
arrow. If I turns out to be negative, the current actually flows in a direction
opposite to the arrow. Similarly, for each source (i.e., cell or some other
source of electrical power) the positive and negative electrodes are labelled,
as well as, a directed arrow with a symbol for the current flowing through
the cell. This will tell us the potential difference, V=V (P)-V(N)=¢-1Ir
[Eq. (3.38) between the positive terminal P and the negative terminal N; I
here is the current flowing from N to P through the cell]. If, while labelling
the current I through the cell one goes from P to N, then of course

V=¢+Ir (3.60)

Having clarified labelling, we now state the rules and the proof:
(a) Junction rule: At any junction, the sum of the currents entering
the junction is equal to the sum of currents leaving the junction
(Fig. 3.15). 97
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FIGURE 3.15 At junction a the current
leaving is I, + I, and current entering is I,.
The junction rule says I, = I, + I,. At point
h current entering is I,. There is only one

current leaving h and by junction rule
that will also be I,. For the loops ‘ahdcba’
and ‘ahdefga’, the loop rules give -30I, —

411, +45=0and -30I, + 21 I, - 80 = 0.

This applies equally well if instead of a junction of

several lines, we consider a point in a line.

The proof of this rule follows from the fact that
when currents are steady, there is no accumulation
of charges at any junction or at any point in a line.
Thus, the total current flowing in, (which is the rate
at which charge flows into the junction), must equal
the total current flowing out.

(b) Loop rule: The algebraic sum of changes in
potential around any closed loop involving
resistors and cells in the loop is zero
(Fig. 3.15).

This rule is also obvious, since electric potential is
dependent on the location of the point. Thus
starting with any point if we come back to the same
point, the total change must be zero. In a closed
loop, we do come back to the starting point and
hence the rule.

Example 3.5 A battery of 10 V and negligible internal resistance is
connected across the diagonally opposite corners of a cubical network
consisting of 12 resistors each of resistance 1 Q (Fig. 3.16). Determine
the equivalent resistance of the network and the current along each

edge of the cube.

ExampLE 3.5

98

FIGURE 3.16
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Solution The network is not reducible to a simple series and parallel
combinations of resistors. There is, however, a clear symmetry in the
problem which we can exploit to obtain the equivalent resistance of
the network.
The paths AA’, AD and AB are obviously symmetrically placed in the
network. Thus, the current in each must be the same, say, I. Further,
at the corners A’, B and D, the incoming current I must split equally
into the two outgoing branches. In this manner, the current in all
the 12 edges of the cube are easily written down in terms of I, using
Kirchhoff’s first rule and the symmetry in the problem.
Next take a closed loop, say, ABCC'EA, and apply Kirchhoff's second
rule:

-IR- (1/2)IR-IR+¢=0
where R is the resistance of each edge and ¢ the emf of battery. Thus,

&= § IR
2
The equivalent resistance R, of the network is
g = i = §R
7 31 6

For R=1 Q, Req = (5/6) Q and for ¢ = 10 V, the total current (= 3I) in
the network is

3I=10V/(5/6)Q =12 A,ie.,I=4 A
The current flowing in each edge can now be read off from the
Fig. 3.16.

It should be noted that because of the symmetry of the network, the
great power of Kirchhoff’s rules has not been very apparent in Example 3.5.
In a general network, there will be no such simplification due to symmetry,
and only by application of Kirchhoff’s rules to junctions and closed loops
(as many as necessary to solve the unknowns in the network) can we
handle the problem. This will be illustrated in Example 3.6.

Example 3.6 Determine the current in each branch of the network
shown in Fig. 3.17.

FIGURE 3.17
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ExamPLE 3.6

Solution Each branch of the network is assigned an unknown current
to be determined by the application of Kirchhoff's rules. To reduce
the number of unknowns at the outset, the first rule of Kirchhoff is
used at every junction to assign the unknown current in each branch.
We then have three unknowns I, I, and I, which can be found by
applying the second rule of Kirchhoff to three different closed loops.
Kirchhoff’'s second rule for the closed loop ADCA gives,

10-4(-L)+2(L,+ L, -1)-1, =0 [3.61(a)]
that is, 7I,- 61, - 21, = 10
For the closed loop ABCA, we get

10-4L-2 (L, +1)-1,=0
that is, I, + 61, + 2I, =10 [3.61(b)]
For the closed loop BCDEB, we get

5-2(L,+L)-2I+L-1)=0
that is, 21, - 41, - 41, = -5 [3.61(c)]
Equations (3.61 a, b, c) are three simultaneous equations in three
unknowns. These can be solved by the usual method to give

5
=254 L=32A 13=1% A

The currents in the various branches of the network are
5 1
AB:2 A, CA:2- A, DEB:1. A
8 2 8
7 1
AD:1§A, CD:0A, BC:2§A

It is easily verified that Kirchhoff’'s second rule applied to the
remaining closed loops does not provide any additional independent
equation, that is, the above values of currents satisfy the second
rule for every closed loop of the network. For example, the total voltage
drop over the closed loop BADEB

b_.0O o5 0O
5V+%X4HV— E§X4HV

equal to zero, as required by Kirchhoff's second rule.

3.13 WHEATSTONE BRIDGE

As an application of Kirchhoff's rules consider the circuit shown in
Fig. 3.18, which is called the Wheatstone bridge. The bridge has
four resistors R, R,, R, and R,. Across one pair of diagonally opposite
points (A and C in the figure) a source is connected. This (i.e., AC) is
called the battery arm. Between the other two vertices, B and D, a
galvanometer G (which is a device to detect currents) is connected. This
line, shown as BD in the figure, is called the galvanometer arm.

For simplicity, we assume that the cell has no internal resistance. In
general there will be currents flowing across all the resistors as well as a
current I, through G. Of special interest, is the case of a balanced bridge
where the resistors are such that I, = 0. We can easily get the balance
condition, such that there is no current through G. In this case, the
Kirchhoff's junction rule applied to junctions D and B (see the figure)
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immediately gives us the relations I, = I, and I, = I,. Next, we apply
Kirchhoff's loop rule to closed loops ADBA and CBDC. The first
loop gives

-[[R,+0+I,R,=0 (Ig=0] (3.62)
and the second loop gives, upon using I, = I, I, = I,

LR, +0-1 R,=0 (3.63)
From Eq. (3.62), we obtain,

L_R

IZ Rl
whereas from Eq. (3.63), we obtain,

L _R,

IZ RS
Hence, we obtain the condition

RZ — R4

R, = R, [3.64(a)]

This last equation relating the four resistors is called the balance
condition for the galvanometer to give zero or null deflection.

The Wheatstone bridge and its balance condition provide a practical
method for determination of an unknown resistance. Let us suppose we
have an unknown resistance, which we insert in the fourth arm; R, is
thus not known. Keeping known resistances R, and R, in the first and
second arm of the bridge, we go on varying R, till the galvanometer shows
a null deflection. The bridge then is balanced, and from the balance
condition the value of the unknown resistance R, is given by,

_n R
R, =R; 7~ [3.64(b)]
1
A practical device using this principle is called the meter bridge.

Example 3.7 The four arms of a Wheatstone bridge (Fig. 3.19) have
the following resistances:
AB = 100Q, BC = 10Q, CD = 5Q, and DA = 60Q.

FIGURE 3.19
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A galvanometer of 15Q resistance is connected across BD. Calculate
the current through the galvanometer when a potential difference of
10 V is maintained across AC.
Solution Considering the mesh BADB, we have
1001, + 1519— 601, = 0
or 20I, +3I -12L=0 [3.65(a)]
Considering the mesh BCDB, we have
10 (Il—Ig)— 1519—5 (L, +Ig) =0
101, - 301, -51, =0
2, -61,-1,=0 [3.65(b)]
Considering the mesh ADCEA,
60L, + 5 (I, +I) = 10
651, + 51, = 10
13, +I,=2 [3.65(c)]
Multiplying Eq. (3.65b) by 10
201, - 601 - 10L,=0 [3.65(d)]
From Egs. (3.65d) and (3.65a) we have
63I,-2I,=0
I, = 31.51, [3.65(e)]
N Substituting the value of I, into Eq. [3.65(c)], we get
-0}
E 13 (31.51)) + I =2
E 41051 =2
2] 1,=4.87 mA.
SUMMARY

1. Currentthrough a given area of a conductor is the net charge passing
per unit time through the area.

2. To maintain a steady current, we must have a closed circuit in which
an external agency moves electric charge from lower to higher potential
energy. The work done per unit charge by the source in taking the
charge from lower to higher potential energy (i.e., from one terminal
of the source to the other) is called the electromotive force, or emf, of
the source. Note that the emf is not a force; it is the voltage difference
between the two terminals of a source in open circuit.

3. Ohm’s law: The electric current I flowing through a substance is
proportional to the voltage V across its ends, i.e., Vo [ or V = R,
where Ris called the resistance of the substance. The unit of resistance
isohm: 10 =1V A
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11.

Electricity

Current

The resistance R of a conductor depends on its length [ and
cross-sectional area A through the relation,

R= 'O_l

A
where p, called resistivity is a property of the material and depends on
temperature and pressure.

Electrical resistivity of substances varies over a very wide range. Metals
have low resistivity, in the range of 10 Q m to 10° Q m. Insulators
like glass and rubber have 10%? to 10%** times greater resistivity.
Semiconductors like Si and Ge lie roughly in the middle range of
resistivity on a logarithmic scale.

In most substances, the carriers of current are electrons; in some
cases, for example, ionic crystals and electrolytic liquids, positive and
negative ions carry the electric current.

Current density j gives the amount of charge flowing per second per
unit area normal to the flow,

j=nqu,

where n is the number density (number per unit volume) of charge
carriers each of charge g, and v, is the drift velocity of the charge
carriers. For electrons g = — e. If j is normal to a cross-sectional area

A and is constant over the area, the magnitude of the current I through
the area is nev, A.

Using E = V/L, I = nev, A, and Ohm’s law, one obtains

eE _ ne’

m m P

The proportionality between the force eE on the electrons in a metal
due to the external field E and the drift velocity v, (not acceleration)
can be understood, if we assume that the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>