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APPENDIX A1

THE GREEK ALPHABET

Alpha A o lota I ¢ Rho P »p AJ
Beta B B Kappa K x Sigma X o
Gamma I y Lambda A A Tau T B
Delta A & Mu ‘M p Upsilon Y v |
Epsilon E g Nu ‘N v Phi @ ¢
Zeta Z ¢ Xi E & Chi o X Iy
Eta H n Omicon O o Psi ¥ vy
Theta © 0 Pi I n Omega Q o

APPENDIX A 2
COMMON SI PREFIXES AND SYMBOLS FOR MULTIPLES AND SUB-MULTIPLES

Multiple Sub -Multiple
Factor Prefix Symbol Factor Prefix symbol

10® Exa E 107" atto
10 Peta P 107" femto f
10" Tera T 107" pico p
10° Gi ga G 10~° nano  n
| .10° Mega M 10°° micro

10° kilo  k 10°  milli @ m
10? Hecto h 1072 centi ©
10' Deca  da 107" deci  d
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APPENDIX A3
SOME IMPORTANT CONSTANTS

Neme ——loymbol| Ve

Speed of light in vacuum

@

Charge of electron e
Gravitational constant G
Planck constant h
Boltzmann constant k
Avogadro number N,
Universal gas constant R
Mass of electron m
e
Mass of neutron -
n
Mass of proton m,
Electron-charge to mass ratio  e/m
Faraday constant F
Rydberg constant R
Bohr radius a,
Stefan-Boltzmann constant o
Wien's Constant b
Permittivity of free space g

2.9979 x10° ms'
1.602 x 107" C

6.673x 107" N m* kg™
6.626 x 1077 s

1.381 x 1072 J K™

6.022 x 10*mol
8.314 J mol 'K

9.110 x 10" kg
1.675 x 10" kg

1.673 x 107 kg
1.759 x 10" C/kg

9.648 x 10* C/mol
1.097 x 10’ m"'

5292 x 10 'm

5670x10° Wm* K*
2.898 x 10° mK
8.854x10"C* N'm”

1/4ney 8987 x10° Nm’C”

Permeability of free space

47 x10'Tm A
~1257x10°WbA 'm"

Other useful constants

Name

Mechanical equivalent of heat
Standard atmospheric pressure
Absolute zero

Electron volt

Unified Atomic mass unit
Electron rest energy

Energy equivalent of 1 u

Volume of ideal gas(0 °C and 1atm)

Acceleration due to gravity
(sea level, at equator)

Symbol Value

J 4.186 J cal™'
latm  1.013x 10°Pa
0K -273.15°C
leV 1.602x 107"
lu 1.661 x 107*"kg

mc’ 0.511 MeV
luc? 931.5 MeV
\Y% 22.4 L mol™

g 9.78049 m s>
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APPENDIX A4
CONVERSION FACTORS

Conversion factors are written as equations for simplicity.

Length

1 km = 0.6215 mi

1mi = 1.609 km

Im = 1.0936 yd = 3.281 ft = 39.37 in
1in =2.54 cm

1ft=12in=30.48 cm
1yd=3ft=91.44 cm

1 lightyear = 1 ly = 9.461 x 10'°m

1 A=0.1nm

Area

1 m? = 10* cm?

1km? = 0.3861 mi® = 247.1 acres

1 in®= 6.4516 cm?

1ft?>= 9.29 x 10?m?

1 m?= 10.76 ft>

1 acre = 43,560 ft>

1 mi®= 460 acres = 2.590 km?>
Volume

1m3= 10%cm?

1 L=1000cm®=10°m?

1 gal =3.786 L

1 gal =4 qt = 8 pt = 128 oz = 231 in®
1in®=16.39 cm®

1ft> = 1728 in® = 28.32 L = 2.832 x 10* cm®
Speed

l1kmh'=02778 ms ' =0.6215mih™
Imih'=0.4470 m s™' = 1.609 km h™!
Imi h!=1.467 fts!

Magnetic Field

1G=10"T

1T=1Wbm?2=10*G

2024-25

Angle and Angular Speed

nirad = 180°

1 rad = 57.30°

1°=1.745 x 1072 rad

1 revmin' =0.1047 rad s

1 rad s™! = 9.549 rev min™*

Mass

1kg=1000g

1 tonne = 1000 kg = 1 Mg

1 u=1.6606x 1027 kg

1 kg = 6.022 x 10%®u

1 slug = 14.59 kg

1 kg = 6.852 x 102 slug

1 u=931.50 MeV/c?

Density

lgem™®=1000 kg m™=1kg L™

Force

1 N = 0.2248 Ibf = 10° dyn

1 1bf = 4.4482 N

1 kgf = 2.2046 1bf

Time

1 h = 60 min = 3.6 ks

1d=24h = 1440 min = 86.4 ks

ly = 365.24 d = 31.56 Ms

Pressure

1Pa=1Nm?

1 bar = 100 kPa

1 atm = 101.325 kPa = 1.01325 bar

latm = 14.7 Ibf/in® = 760 mm Hg
= 29.9in Hg = 33.8 ft H,0

1 Ibf in2 = 6.895 kPa

1 torr = 1mm Hg = 133.32 Pa
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Energy Power
1kWh=3.6 MJ 1 horsepower (hp) = 550 ft 1bf/s
lcal=4.186J =745.7W

1ft Ibf=1.356 J = 1.286 x 10 Btu

1 Latm=101.325J

1 Latm=24.217 cal

1 Btu = 778 ft Ib = 252 cal = 1054.35 J
1eV=1.602x%107"°J

1 uc®=931.50 MeV

1 Btumin™ =17.58 W
1W=1.341x10" hp

= 0.7376 ft Ibf/s
Thermal Conductivity
1 Wm'K!=6.938 Btu in/hft? °F
1 Btu in/hft? °F=0.1441 W/m K

lerg=10"J
APPENDIX A5
MATHEMATICAL FORMULAE

Geometry sing="Y cos8="
Circle of radius r: circumference = 21ur; r
area = T’ tan€=i cotg="
Sphere of radius r: area = am’; Y

4 secf=" csc ="
volume = gnr3 X y
Right circular cylinder of radius r Pythagorean Theorem

and height h: area = 2n r? +2n r h;

volume = 777°h ;
Triangle of base a and altitude h.

1
area=— ah
2
Quadratic Formula

If al+bx+c=0,

~b+\b* -4ac

then x=
2a

Trigonometric Functions of Angle 0

Y axis
¢ v
(5} :
0 X X axis
Fig. A 5.1

In this right triangle, a® + b? = ¢?

b
Fig. A 5.2

Triangles
Angles are A, B, C

Opposite sides are a, b, ¢
Angles A + B+ C = 180°

sinA _sinB _ sinC
a b c

& =a%2+b%-2ab cos C

Exterior angle D=A + C
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C

Fig. A 5.3

Mathematical Signs and Symbols

= equals

U equals approximately

~ is the order of magnitude of

# is not equal to

= is identical to, is defined as

> is greater than (>> is much greater than)

< is less than (<< is much less than)

> is greater than or equal to (or, is no less
than)

< is less than or equal to (or, is no more
than)

* plus or minus

[ is proportional to

> the sum of

x Or <x> or x,, the average value of x

Trigonometric Identities
sin (90°- 9) = cos 6
cos (90°- 0) = sin 6
sin 6/ cos 6=tan 0
sin® 6 + cos? 8 =1
sec® §—tan® 6= 1
csc? - cot?> 0 =1
sin2 6 = 2 sin O cos 6
cos2 0= cos® 0- sin® = 2cos® 6-1
= 1-2 sin? 0
sin(a+ ) = sin a cos f + cos asin f
cos (a* ) =cos acos f F sin o sin f

tano + tanf
tan (a £ =
( B ) Iftano tanf

1 1
sin a + sin =251n§(oci[3)cos§(a¢ﬁ)
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cos o + cos f3
=2 cos%(oc + ) cos%(a B)

cos o —cos 8

— _2sin %(oc +B)sin %(oc B)

Binomial Theorem
_ 2
(1- %" =1—%+%+ ..... x%<1)
+ 2
(1-x)" =1m%+%+ ..... x*<1)

Exponential Expansion

2 3
X
e*=1+x+—+_+
2!

3!

Logarithmic Expansion

1n(1+x)=x—éx2+lxs- ..... (|x|<1)

Trigonometric Expansion
(0 in radians)

3 5
sin9=0-0—+0—- .....

3! 5!

2 4
cost9=1—9—+9—— .....

2! 4!

3 5

tan9=9+9—+29 s

3 15

Products of Vectors

Let i,jand k be unit vectors in the x, y and z

directions. Then

o)
Il
—
>
(Y
Il
(Y
~
Il
o)
>
Il
o

Bi-ji-k

ixizjxj:RxR:O, fx]‘:f(,:ixfc:f,fcxi:j

Any vector a with components a,, a,, and a,

along the x,y, and z axes can be written,

a=qitajtak
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Let a, b and ¢ be arbitary vectors with
magnitudes a, b and c. Then

ax(b+c)=(axb)+(axc)

(sa) xb =a x(sb) =s(axb) (sis a scalar)

Let 6 be the smaller of the two angles
between a and b. Then

alb=bla=a,b,-ayby-a,b, =abcosé

|]axb| =absing

i j k
axb=-bxa=|a, a, a,
b, b, b,

= (aybz - byaz) i+(a,b. -ba,)j+ (axby - bxay) k

a-bxc)=b-(cxa)=c-(axb)
ax(bxc)=(a-c)b-(a-b)c

APPENDIX A 6

SI DERIVED UNITS

A 6.1 Some SI Derived Units expressed in SI Base Units

Physical quantity

Area

Volume

Speed, velocity
Angular velocity
Acceleration

Angular acceleration

Wave number
Density, mass density

Current density

Magnetic field strength, magnetic
intensity, magnetic moment
density

Concentration (of amount of
substance)

Specific volume

Luminance, intensity of
illumination
Kinematic viscosity

Momentum

Moment of inertia

Radius of gyration
Linear/superficial /volume
expansivities

Flow rate

square metre
cubic metre
metre per second
radian per second
metre per second
square

radian per second
square

per metre
kilogram per cubic
metre

ampere per square
metre

ampere per metre

mole per cubic metre

cubic metre per
kilogram

candela per square
metre

square metre per
second

kilogram metre per
second

kilogram square metre

metre
per kelvin

cubic metre per
second

Symbol

m?2

m3

m/s or m s-!
rad/s or rad s-!
m/s2 or m s 2
rad/s2 or rad s2

m-1
kg/m3 or kg m-3

A/m?2 or A m-2

A/m or A m-!

mol/m3 or mol m-3
m3/kg or m3 kg-1
cd/m?2 or cd m-2
m2/s or m?2 s-1

kg m s-1

kg m?2

m

K-1

m3 s-1
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A 6.2 SIDerived Units with special names

Physical quantity

Expression in

terms of other
units

Expression in
terms of SI
base Units

Frequency
Force

Pressure, stress

Energy, work, quantity of
heat

Power, radiant flux

Quantity of electricity,
electric charge

Electric potential,
potential difference,
electromotive force
Capacitance
Electric resistance
Conductance
Magnetic flux

Magnetic field, magnetic
flux density, magnetic
induction

Inductance

Luminous flux, luminous
power

Iluminance
Activity (of a radio
nuclide /radioactive
source)

Absorbed dose, absorbed
dose index

hertz Hz
newton N
pascal Pa
joule J
watt W
coulomb C
volt \Y%
farad F
ohm Q
siemens S
weber Wb
tesla &
henry H
lumen Im
lux Ix
becquerel Bq
gray Gy

N/m?2 or N m-2
N m

J/s ord sl

W/A or W A1

C/V

V/A

A/V
VsorJ/A
Wb /m?2

Wh/A

lm /m?2

J/kg

s-1

kg m s2 or
kg m/s?2

kg m-1s2or
kg /s2m

kg m2 s2or
kg m2/s?

kg m2 s-3or
kg m2/s3
As

kg m2s-3 A-1 or
kg m2/s3 A

A2 s% kg-1 m-2
kgm2s -3 A2
m=2kg-1s3 A2
kg m2 s2 A-1
kg s2 Al

kg m?2 s2 A2
cd /sr

m-2 cd sr-!
s-1

m?2/s2or m2s-2

Physical quantity

Magnetic moment
Dipole moment
Dynamic viscosity

Torque, couple, moment
of force

Surface tension

Power density,
irradiance, heat flux
density

A 6.3 Some SI Derived Units expressed by means of SI Units with special names

Name

joule per tesla
coulomb metre
poiseiulles or pascal
second or newton
second per square
metre

newton metre

newton per metre
watt per square metre

2024-25

Symbol

JT"
Cm
Pl or Pa s or
N s m”

N m

N/m
W/m’

Expression in
terms of SI
base units

sAm
m' kg s

1

m’ kg s’

kg s
kg s
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Heat capacity, entropy  joule per kelvin J/K m’ kg s* K'
Specific heat capacity, joule per kilogram J/kg K m’s” K"
specific entropy kelvin
Specific energy, latent joule per kilogram J/kg m’ s>
heat
Radiant intensity watt per steradian W sr’ kg m® s”® sr’
Thermal conductivity watt per metre kelvin Wm' K’ mkgs®K'
Energy density joule per cubic metre J/m® kg m' s®
Electric field strength volt per metre V/m mkgs® A"
Electric charge density ~ coulomb per cubic Cc/m’ m®°As

metre
Electric flux density coulomb per square C/m’ m”As

metre
Permittivity farad per metre F/m m®° kg’ s' A’
Permeability henry per metre H/m m kg s* A”®
Molar energy joule per mole J/mol m’ kg s*mol”
Angular momentum, joule second Js kg m’ s
Planck’s constant
Molar entropy, molar joule per mole kelvin J/mol K m’ kgs® K'
heat capacity mol™
Exposure (x-rays and coulomb per kilogram C/kg kg's A
y-rays)
Absorbed dose rate gray per second Gy/s m’s®
Compressibility per pascal Pa’ mkg' s’
Elastic moduli newton per square N/m’or Nm?® kgm's”®

metre
Pressure gradient pascal per metre Pa/morNm~ kgm™s”
Surface potential joule per kilogram J/kg or m’s”

N m/kg

Pressure energy pascal cubic metre Pam’orNm kgm®s®
Impulse newton second Ns kgms”
Angular impulse newton metre second Nms kg m’ s’
Specific resistance ohm metre Qm kg m’ s® A*
Surface energy joule per square metre J/m’or N/m kgs”

APPENDIX A7
GENERAL GUIDELINES FOR USING SYMBOLS FOR PHYSICAL QUANTITIES, CHEMICAL
ELEMENTS AND NUCLIDES

* Symbols for physical quantities are normally single letters and printed in italic (or sloping) type.
However, in case of the two letter symbols, appearing as a factor in a product, some spacing is
necessary to separate this symbol from other symbols.

» Abbreviations, i.e., shortened forms of names or expressions, such as p.e. for potential energy,
are not used in physical equations. These abbreviations in the text are written in ordinary
normal/roman (upright) type.

*  Vectors are printed in bold and normal/roman (upright) type. However, in class room situations,
vectors may be indicated by an arrow on the top of the symbol.

*  Multiplication or product of two physical quantities is written with some spacing between them.
Division of one physical quantity by another may be indicated with a horizontal bar or with
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solidus, a slash or a short oblique stroke mark (/) or by writing it as a product of the
numerator and the inverse first power of the denominator, using brackets at appropriate
places to clearly distinguish between the numerator and the denominator.

*  Symbols for chemical elements are written in normal/roman (upright) type. The symbol is
not followed by a full stop.
For example, Ca, C, H, He, U, etc.

* The attached numerals specifying a nuclide are placed as a left subscript (atomic number)
and superscript (mass number).

For example, a U-235 nuclide is expressed as 23§U (with 235 expressing the mass number

and 92 as the atomic number of uranium with chemical symbol U).
» The right superscript position is used, if required, for indicating a state of ionisation (in
case of ions).

For example, Ca**, po}~

APPENDIX A8

GENERAL GUIDELINES FOR USING SYMBOLS FOR SI UNITS, SOME OTHER UNITS, AND
SI PREFIXES

*  Symbols for units of physical quantities are printed /written in Normal/Roman (upright) type.

e Standard and recommended symbols for units are written in lower case roman (upright)

type, starting with small letters. The shorter designations for units such as kg, m, s, cd,
etc., are symbols and not the abbreviations. The unit names are never capitalised. However,
the unit symbols are capitalised only if the symbol for a unit is derived from a proper name
of scientist, beginning with a capital, normal/roman letter.

For example, m for the unit ‘metre’, d for the unit ‘day’, atm for the unit ‘atmospheric
pressure’, Hz for the unit ‘hertz’, Wb for the unit ‘weber’, J for the unit ‘joule’, A for the unit
‘ampere’, V for the unit ‘volt’, etc. The single exception is L, which is the symbol for the
unit ‘litre’. This exception is made to avoid confusion of the lower case letter 1 with the
Arabic numeral 1.

*  Symbols for units do not contain any final full stop at the end of recommended letter and

remain unaltered in the plural, using only singular form of the unit.
For example, for a length of 25 centimetres the unit symbol is written as 25 cm
and not 25 cms or 25 cm. or 25 cms., etc.

* Use of solidus ( /) is recommended only for indicating a division of one letter unit symbol by

another unit symbol. Not more than one solidus is used.
For example :
m/ s? orm s2 (with a spacing between m and s‘z) but not m/s/s;
1PI=1INsm2=1N s/m2 =1kg/s m=1 kg m~' s}, but not 1 kg/m/s;
J/K mol or J K mol}, but not J/K/mol; etc.
* Prefix symbols are printed in normal/roman (upright) type without spacing between the
prefix symbol and the unit symbol. Thus certain approved prefixes written very close to the
unit symbol are used to indicate decimal fractions or multiples of a SI unit, when it is

inconveniently small or large.
For example :

megawatt ( 1MW = 106W); nanosecond (1 ns = 1079 s);
centimetre (1 cm = 102 m); picofarad (1 pF = 1072 F);.
kilometre ( 1 km = 10°m); microsecond (1us = 10%s);
millivolt (1 mV= 10" V); gigahertz (1GHz = 10°Hz);
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kilowatt-hour (1 kWh =10°Wh =3.6 MJ = 3.6 x 10°J);
microampere (1pA = 10°A); micron (1pm = 10%m);
angstrom (1 A=0.1 nm = 10%m); etc.

The unit ‘micron’ which equals 10° m, i.e. a micrometre, is simply the name given to
convenient sub-multiple of the metre. In the same spirit, the unit ‘fermi’, equal to a
femtometre or 107'®> m has been used as the convenient length unit in nuclear studies.
Similarly, the unit ‘barn’, equal to 102 m?, is a convenient measure of cross-sectional
areas in sub-atomic particle collisions. However, the unit ‘micron’ is preferred over the
unit ‘micrometre’ to avoid confusion of the ‘micrometre’ with the length measuring
instrument called ‘micrometer’. These newly formed multiples or sub-multiples (cm, km,
pm, s, ns) of SI units, metre and second, constitute a new composite inseparable symbol
for units.

*  When a prefix is placed before the symbol of a unit, the combination of prefix and symbol is

considered as a new symbol, for the unit, which can be raised to a positive or negative
power without using brackets. These can be combined with other unit symbols to form
compound unit. Rules for binding-in indices are not those of ordinary algebra.

For example :

cm® means always (cm)3 =(0.01 m)3 = (10_2 m)3 =10 m?, but never 0.01 m® or

102 m®or 1cm? (prefix ¢ with a spacing with m?is meaningless as prefix c is to be attached
to a unit symbol and it has no physical significance or independent existence without
attachment with a unit symbol).

Similarly, mA? means always (mA)2= (0.00 1A)2 = (10_3 A)2 =107% A2, but never 0.001 AZ or
10 A% or m A%

lem!= (10_2m)_1=102 m™, but not lem'or 102m™;

lps_1 means always (10_6s)_1=106 s!, butnot 1 x106s7%;
1 km? means always (km)2 = (103 m)2=106 m?2, but not 10° m?:

1mm? g

means always (mm)2= (10_3 m)2= 10°m?, but not 102 m?.
» A prefix is never used alone. It is always attached to a unit symbol and written or fixed

before (pre-fix) the unit symbol.

For example :

103/m3 means 1000/m3 or 1000 m'3, but not k/m3 orkm>.

10%/m® means 10,00,000/m? or 10,00,000 m™3, but not M/m® or M m™

» Prefix symbol is written very close to the unit symbol without spacing between them, while
unit symbols are written separately with spacing when units are multiplied together.
For example :
ms’ (symbols m and s”!, in lower case, small letter m and s, are separate and independent
unit symbols for metre and second respectively, with spacing between them) means ‘metre
per second’, but not ‘milli per second’.
Similarly, ms™ [symbol m and s are written very close to each other, with prefix symbol m
(for prefix milli) and unit symbol s, in lower case, small letter (for unit ‘second’) without
any spacing between them and making ms as a new composite unit] means ‘per millisecond’,
but never ‘metre per second’.
mS'[symbol m and S are written very close to each other, with prefix symbol m (for prefix
milli) and unit symbol S, in capital roman letter S (for unit ‘siemens’) without any spacing
between them, and making mS as a new composite unit] means ‘per millisiemens’, but
never ‘per millisecond’.
C m [symbol C and m are written separately, representing unit symbols C (for unit ‘coulomb’)
and m (for unit ‘metre’), with spacing between them] means ‘coulomb metre’, but never
‘centimetre’, etc.

* The use of double prefixes is avoided when single prefixes are available.
For example :
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10 m = 1nm (nanometre), but not Impm (millimicrometre),
10%m=1 pm (micron), but not Immm(millimillimetre),
10712F=1 PF (picofarad), but not 1ppF (micromicrofarad),
10°W=1 GW (giga watt), but not 1 kMW (kilomegawatt), etc.

* The use of a combination of unit and the symbols for units is avoided when the physical quantity

is expressed by combining two or more units.

For example :

joule per mole kelvin is written as J/mol K or J mol™! K!, but not joule/mole K or
J/ mol kelvin or J/mole K, etc.

joule per tesla is written as J/T or J T}, but not joule /T or J per tesla or J/tesla, etc.

newton metre second is written as N m s, but not Newton m second or N m second or N metre s
or newton metre s, etc.

joule per kilogram kelvin is written as J/kg K or J kg ™' K™, but not J/kilog K or joule/kg K or J/
kg kelvin or J/kilogram K, etc.

* To simplify calculations, the prefix symbol is attached to the unit symbol in the numerator and

not to the denominator.

For example :

10° N / m? is written more conveniently as MN/ m?, in preference to N/ mm?.

A preference has been expressed for multiples or sub-multiples involving the factor 1000, 10%0
where n is the integer.

*  Proper care is needed when same symbols are used for physical quantities and units of physical

quantities.

For example :

The physical quantity weight (W) expressed as a product of mass (m) and acceleration due to
gravity (g) may be written in terms of symbols W, mand g printed in italic ( or sloping) type as W
= m g, preferably with a spacing between m and g. It should not be confused with the unit
symbols for the units watt (W), metre (m) and gram (g). However, in the equation W=m g, the
symbol W expresses the weight with a unit symbol J, m as the mass with a unit symbol kg and
g as the acceleration due to gravity with a unit symbol m/s?. Similarly, in equation F=ma, the
symbol F expresses the force with a unit symbol N, m as the mass with a unit symbol kg, and a
as the acceleration with a unit symbol m/s2. These symbols for physical quantities should not
be confused with the unit symbols for the units ‘farad’ (F), ‘metre’(m) and ‘are’ (a).

Proper distinction must be made while using the symbols h (prefix hecto, and unit hour), ¢
(prefix centi, and unit carat), d (prefix deci and unit day), T (prefix tera, and unit tesla), a (prefix
atto, and unit are), da (prefix deca, and unit deciare), etc.

« Sl base unit ‘kilogram’ for mass is formed by attaching SI prefix (a multiple equal to 10°) *kilo’ to

a cgs (centimetre, gram, second) unit ‘gram’ and this may seem to result in an anomaly. Thus,
while a thousandth part of unit of length (metre) is called a millimetre (mm), a thousandth part
of the unit of mass (kg) is not called a millikilogram, but just a gram. This appears to give the
impression that the unit of mass is a gram (g) which is not true. Such a situation has arisen
because we are unable to replace the name ‘kilogram’ by any other suitable unit. Therefore, as
an exception, name of the multiples and sub-multiples of the unit of mass are formed by attaching
prefixes to the word ‘gram’ and not to the word ‘kilogram’.

For example :

10°® kg =1 megagram ( 1Mg), but not 1 kilo kilogram (1 kkg);

10°kg = 1 milligram ( 1 mg), but not 1 microkilogram ( 1pkg);

102 kg = 1 gram (1g), but not 1 millikilogram (1 mkg), etc.

It may be emphasised again that you should use the internationally approved and recommended
symbols only. Continual practice of following general rules and guidelines in unit symbol writing
would make you learn mastering the correct use of SI units, prefixes and related symbols for physical
quantities in a proper perspective.
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APPENDIX A9
DIMENSIONAL FORMULAE OF PHYSICAL QUANTITIES

Physical quantity Relationship with other Dimensions Dimensional

physical quantities

formula

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

Area

Volume

Mass density
Frequency
Velocity, speed
Acceleration
Force

Impulse

Work, Energy
Power
Momentum
Pressure, stress

Strain

Modulus of elasticity

Surface tension
Surface energy
Velocity

gradient

Pressure gradient
Pressure energy

Coefficient of
viscosity

Angle, Angular
displacement

Trigonometric ratio
(sin6, cosb, tan0, etc.)

Angular velocity

Length x breadth

Length x breadth x height

Mass/volume
1/time period
Displacement/time
Velocity /time
Mass x acceleration
Force X time

Force x distance
Work/time

Mass x velocity
Force/area

Change in dimension

Original dimension

Stress/strain

Force/length
Energy/area

Velocity/distance

Pressure/distance
Pressure X volume

Force/area x velocity
gradient

Arc/radius

Length/length

Angle/time

(L]

[

MJ/[LT or [M L]
1/[T]

[LV[T]

[LT/[T]
[M][LT ]
[MLT’][T]
[MLT ] [L]

[ML* T}/ [T]

[M] [LT]

[M LTJ/[L?]
[L]/[L] or [L']/[L7]
ML T2
MOLOTO]

[MLT “2J/[L]
[ML*T)/[L*]

[LTJ/L]

[ML™T?)/[L]

[ML"T™] [L7]

[MLT 2]
[L2]LT ! /L)
[LY/[L]

[LY/[L]
[LY[T]

M°L* T
M°L* T
[MLT]
M'LT"]
MOLT]
[M°LT?]
[MLT?]
[MLT "
ML T’
ML T*]
[MLT]
[ML'T? ]

[M °L° T°]
[ML'T?
ML’ T~2]

[MLT?]

[MOLO T 1]
[ML’T 7]
[ML> T2]
[ML 'T™]
M°LOT]
M°LOT]

MLOT ]
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24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40

41.

42.

43.

44,

45.

Angular acceleration

Radius of gyration

Moment of inertia

Angular momentum

Moment of force,

moment of couple

Torque

Angular frequency

Wavelength

Hubble constant

Intensity of wave

Radiation pressure

Energy density

Critical velocity

Escape velocity

Heat energy, internal

energy
Kinetic energy

Potential energy

Rotational kinetic

energy

Efficiency

Angular impulse

Gravitational

constant

Planck constant

Angular velocity/time

Distance

Mass x (radius of gyration)’

Moment of inertia X angular
velocity

Force x distance

Angular momentum/time,
Or
Force x distance

271 x Frequency
Distance

Recession speed/distance
(Energy/time)/area

Intensity of wave
Speedof light

Energy/volume

Reynold's number x coefficient of viscocity

Mass density x radius

(2 x acceleration due to

gravity x earth’s radius) "

Work (= Force x distance)

(1/2) mass x (velocity) 2

Mass x acceleration
due to gravity x height

Y5 x moment of inertia X
(angular velocity)®

Output work or energy

Input work or energy

Torque X time

Force x (distance)2
mass X mass

Energy/frequency
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[T'VIT]

(L]
[M] [L]

[ML'][T ]

[MLT “] [L]

[ML®* T']/[T]
or
[MLT " ] [L]

[T']

(L]

[LT')/[L]

[ML* T*/T)/[L*]

[MT }J/[LT ]

[ML T”7/[L"]

MOLOTO ML T 1)

IML®][L]

[LT 2]1/2 X [L]l/l

[MLT " ] [L]

[M] [LT T

[M] [LT" ] [L]

[M°L°T’] [ML* x[T™']’

[ML*T" ]
[ML*T* ]

[ML* T*] [T]

[MLT *][L*]
(M] [M]

[ML* T7] /[T "]

[M’L°T?]

[M°LT]
[ML* T°]

[ML? T']

ML’ T? ]

[ML* T’]

[ML'T ]
[M'LT"]

[ML'T ]
[ML'T ]

[ML'T?]

[ML'T?]

[M°LT ']

[M°LT ']

[ML* T7]

[ML’T ]

[ML’ T?]

[ML*T?]

[M°L'T]

ML T']

[MflLBrIrZ]

[ML*T ']
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46. Heat capacity, Heat energy / temperature ML’ T*V/[K] [ML*T’K ]
entropy
47. Specific heat capacity Heat Energy ML T)/[M] [K] ML*T*K ']
Mass x temperature
48. Latent heat Heat energy/mass [ML’ T*)/[M] [M'L* T7]
49. Thermal expansion Change in dimension [L]/[L][K] [ML°’K ]
coefficient or Original dimension x temperature
Thermal expansivity
50. Thermal conductivity ~ _Heatenergy x thickness [MLT][L] [MLT” K]
Area x temperature x time [Lz] [K] [T]
51. Bulk modulus Volume x (chflnge in pressure) [L3] [ML 2] [ML—I sz]
1 —1 (change in volume) -
or (compressibility) 3
(L]
52. Centripetal (Velocity)? /radius [LT'T /[L] [M’LT?]
acceleration
53. Stefan constant (Energy / area x time) ML’ T ML’ T°K ]
(Temperature)* [L*][T] [KT
54. Wien constant Wavelength x temperature [L][K] [M° LT°K]
55. Boltzmann constant ~ Energy/temperature [ML* TV/[K] [ML* T® K]
56. Universal gas Pressure x volume ML T°][L’ ML’ T K
constant
mole x temperature [mol] [K] il
57. Charge Current X time [A][T] [M°L°TA]
58. Current density Current /area [A]/[] [M’L” T°A]
59. Voltage, electric Work/charge [ML*T *)/[AT] ML T° A"
potential,
electromotive force
60. Resistance Potential difference ML’ T A ML’ T A7
Current [A]
61. Capacitance Charge/potential difference [AT] [M'L? T A’]
62. Electrical ) [ML* T A”7] [ML' T® A7)
B it Resistance x area LVIL
resistivity —length [L"V/[L]
or (electrical
conductivity)"
63. Electric field Electrical force/charge [MLT *]/[AT] [MLT® A™]
64. Electric flux Electric field x area [MLT A '][L*] [ML' T® A™]
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65.

66.

67.

68.

69.

70.

71.

72

73.

74.

75.

76.

77.

78.

79.

Electric dipole
moment

Torque/electric field

Electric field strength

e el ey Potential difference

distance

Magnetic field,
magnetic flux density,
magnetic induction

Force
Current * length

Magnetic flux Magnetic field x area

Inductance Magnetic flux
Current
Magnetic dipole Torque/magnetic field
moment oF
current x area
Magnetic field Magnetic moment

strength, magnetic
intensity or magnetic
moment density

Volume

Permittivity constant Charge x charge

(of free space) 4 1t x electric force x (distance)2

Permeability constant B« force x digieise

(of free space) current x current x length

Refractive index Speed of light in vacuum

Speed of light in medium
Faraday Avogadro constant x
coms elementary charge
Wave number 2m/wavelength
Radiant flux, Radiant ~ Energy emitted/time

power

Luminosity of radiant Radiant power or radiant flus of source

[ML* T?]
[MLT®A™']
[ML>T A™]
(L]

[MLT *J/[A] [L]

[MT* A [L]
[ML*T?*A™]
[A]
ML T?]/[MT> A™]
or
[A][L]

[L’A]
L]

[AT][AT]

[MLT][L ?

ML T°[MLT?][L]

flux or radiant Solid angle
intensity

Luminous power or Luminous energy emitted
luminous flux of time

source
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[AJ[A][L]

[LT /LT ]

[AT]/[mol]

[ML°T’] / [L]

[ML*T)/[T]

[ML'T"]/ [M°L'T°]

[ML* T J/[T]

[M’ LTA]

[MLT® A™]

[ML’ T A™]

[ML*T?>A™]

[ML*T* A7

[M'L*T°A]

[M'L'T°A]

[M~1L73 T4 A2]

[MLT? A

[M'L°T’]

[M°L’TA mol ']

[M°L™"T°]
[ML*T™]

[ML* T°]

[ML* T7]
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80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93

94.

Luminous intensity or
illuminating power of
source

Intensity of
illumination or
luminance

Relative luminosity

Luminous efficiency

Illuminance or
illumination

Mass defect
Binding energy of
nucleus

Decay constant

Resonant frequency

Quality factor or Q-
factor of coil

Power of lens

Magnification

Fluid flow rate

Capacitive reactance

Inductive reactance

Luminous flux
Soild angle

Luminous intensity

(distance)2

Luminous flux of a source of
given wavelength

luminous flux of peak sensitivity
wavelength (555 nm) source of
same power

Total luminous flux

Total radiant flux

Luminous flux incident

area

(sum of masses of nucleons)-
(mass of the nucleus)

Mass defect x (speed of light
in vacuum)’

0.693/half life

1
(Inductance x capacitance) 2

Resonant frequency x inductance

Resistance

(Focal length)'1

Image distance
Object distance

(n/8) (pressure)x (radius )4
(Viscosity coefﬁcient)x (length)

(Angular frequency x
capacitance)

(Angular frequency x
inductance)

[ML* T°]

M'L'T’]

[ML? T J/[L*]
[ML*T ]

[ML* T°]/[ ML’T’]
[ML*T*)/[L?]

M]

M][LT'T

[T]

ME2T2A™ )T x

1
M T'L2T*A% ] 2

[T][ML2 T2 A2]
[MZT?A™]

[L7]

(L]/[L]

[ML'T? [LY
[ML'T™' [L]

[T—l]—l [M_l L72T4A2]71

[T'][ML* T® A7)

[ML’ T"]

[ML'T ]

[M’L'T"]

M'L'T"]
[ML'T™]
[ML'T"]

[ML’ T?]

ML'T ]

[ML°A° T

[M'L'T"]

ML T°]

[M'L'T"]

[ML*T]

[ML* T® A7)

[ML* T® A7)
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1.1
1.2
1.5
1.6
1.7
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16

1.17

2.1
2.2
2.4
2.5

ANSWERS

Chapter 1

(@) 10°; (b) 1.5x 10*; (c) 5: (d) 11.3, 1.13 x 10"
(@ 10"; (b) 107 ; (c) 3.9 % 10*; (d) 6.67 x 10°™.
500

()

0.035 mm

94.1
@1;:b0)3;(@4;(d4;()4;14.
8.72 m?*; 0.0855 m®

(a) 2.3kg; (b) 0.02 g

The correct formula is m= mg (1 - v*/¢*)™

03 x 107" m®

0 10% intermolecular separation in a gas is much larger than the size of a molecule.

Near objects make greater angle than distant (far off) objects at the eye of the observer.
When you are moving, the angular change is less for distant objects than nearer objects.
So, these distant objects seem to move along with you, but the nearer objects in opposite
direction.

1.4 x 10° kg m® the mass density of the Sun is in the range of densities of liquids /
solids and not gases. This high density arises due to inward gravitational attraction
on outer layers due to inner layers of the Sun.

Chapter 2
@, (b)
(a) A....B, (b) A....B, (c) B....A, (d) Same, (e) B....A....once.
37s
3.06ms?;11.4s
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2.6 (a) Vertically downwards; (b) zero velocity, acceleration of 9.8 m s® downwards;
() x > O (upward and downward motion); v < O (upward), v > O (downward), a > O
throughout; (d) 44.1 m, 6 s.

2.7 (a) True;, (b) False; (c) True (if the particle rebounds instantly with the same speed, it
implies infinite acceleration which is unphysical); (d) False (true only when the chosen
positive direction is along the direction of motion)

2.10 (8) 5kmh”, 5kmh™; (b)0, 6kmh™; (¢) 1> kmh™, * kmh’
8 8
2.11 Because, for an arbitrarily small interval of time, the magnitude of displacement is equal

to the length of the path.

2.12 All the four graphs are impossible. (a) a particle cannot have two different positions at
the same time; (b) a particle cannot have velocity in opposite directions at the same
time; (c) speed is always non-negative; (d) total path length of a particle can never
decrease with time. (Note, the arrows on the graphs are meaningless).

2.13 No, wrong. x- t plot does not show the trajectory of a particle. Context: A body is dropped
from a tower (x=0) at t=0.

2.14 105ms*

2.15 (a) Aball at rest on a smooth floor is kicked, it rebounds from a wall with reduced speed
and moves to the opposite wall which stops it; (b) A ball thrown up with some initial
velocity rebounding from the floor with reduced speed after each hit; (c) A uniformly
moving cricket ball turned back by hitting it with a bat for a very short time-interval.

2.16 x<0,v<0,a>0; x>0,v>0,a<0; x<0,v>0,a>0.
2.17 Greatestin 3, leastin2; v>0in 1and 2, v<O0in 3.

2.18 Acceleration magnitude greatest in 2; speed greatestin3; v>0in1l,2and 3; a>0in 1
and 3,a <0in2;a=0atA, B, C, D.

Chapter 3

3.1 Volume, mass, speed, density, number of moles, angular frequency are scalars; the rest
are vectors.

3.2 Work, current

3.3 Impulse

3.4 Only (c) and (d) are permissible
35 @T,MF (QF @T, (T

3.6 Hint: The sum (difference) of any two sides of a triangle is never less (greater) than the
third side. Equality holds for collinear vectors.

3.7 All statements except (a) are correct
3.8 400 m for each; B
3.9 (@O0; MO; (¢)21.4kmh

3.10 Displacement of magnitude 1 km and direction 60° with the initial direction; total path
length = 1.5 km (third turn); null displacement vector; path length = 3 km (sixth turn);
866 m, 30°, 4 km (eighth turn)
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3.11 (@)49.3kmh™;(b)21.4 km h™'. No, the average speed equals average velocity magnitude
only for a straight path.

12 150.5m
.13 50m
14 9.9 m s?, along the radius at every point towards the centre.

15 6.4g¢g

W W oW W W

.16 (a) False (true only for uniform circular motion)

(b) True, (c) True.

3.17 (@ v()=B0i-407])) a(t) =-40j
(b) 8.54 m s™, 70° with x-axis.

3.18 (@)2s,24m,21.26ms"

3.19 42, 45° with the x-axis; /2, - 45° with the x- axis, (5/4/2, =1/ v2).

3.20 (b) and (e)
3.21 Only (e) is true
3.22 182ms’!

Chapter 4

4.1 (a) to (d) No net force according to the First Law
(e) No force, since it is far away from all material agencies producing electromagnetic
and gravitational forces.

4.2  The only force in each case is the force of gravity, (neglecting effects of air) equal to
0.5 N vertically downward. The answers do not change, even if the motion of the pebble
is not along the vertical. The pebble is not at rest at the highest point. It has a constant
horizontal component of velocity throughout its motion.

4.3 (a) 1 N vertically downwards (b) same as in (a)
(c) same as in (a); force at an instant depends on the situation at that instant, not
on history.
(d) 0.1 N in the direction of motion of the train.

4.4 @T

4.5 a=-25ms> Usingv=u+at, 0=15-25¢t ie., t=6.0s

4.6 a=1.5/25 = 0.06 ms™
F= 3x%x0.06 = 0.18 N in the direction of motion.

4.7 Resultant force = 10 N at an angle of tan™ (3/4) = 37° with the direction of 8 N force.
Acceleration = 2 m s in the direction of the resultant force.

48 a=-25ms?, Retarding force = 465 x 2.5=1.2 x 10° N

4.9 F-20,000 x 10 =20000 X 5.0, i.e., F=3.0 x10° N
4.10 a=-20ms? 0<t<30s
t=-5s: x=ut=-10x5=-50m
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4.20

4.21

t=25s: x=ut+() at® = (10x25-10x%x625)m = -6 km
t=100s: First consider motion up to 30 s
x,=10%x30-10 %900 = - 8700 m
At t=30s, v=10-20%30=-590m s
For motion from 30sto 100 s: x,=-590x70=-41300 m
XxX=x, +x,=-50Kkm

(@) Velocityof car (att=10s)=0+2x 10=20ms"

By the First Law, the horizontal component of velocity is 20 m s™ throughout.
Vertical component of velocity (at t=11s)= 0+ 10%x1 = 10m s

Velocity of stone (at t=11s) =y 202 +10% =4/500 =22.4 m s ' atan angle of tan™' ( %4) with
the horizontal.
()10 m s? vertically downwards.

(a) At the extreme position, the speed of the bob is zero. If the string is cut, it will fall
vertically downwards.
(b) At the mean position, the bob has a horizontal velocity. If the string is cut, it will fall
along a parabolic path.

The reading on the scale is a measure of the force on the floor by the man. By the Third
Law, this is equal and opposite to the normal force N on the man by the floor.
(@) N=70%x10=700N; Readingis 70kg
(b) 70x10-N=70x5; Readingis 35kg
(¢ N-70x10=70x5; Readingis 105 kg
(d) 70 X 10 - N=70 x 10; Reading would be zero; the scale would read zero.
(a) In all the three intervals, acceleration and, therefore, force are zero.
() 3kgms'at t=0 ;(c)-83kgms’ at t=4s.
If the 20 kg mass is pulled,
600-T=20a, T=10a

a=20ms>, T=200N
If the 10 kg mass is pulled, a=20ms?> T=400N
T-8%x10=8a, 12x10-T=12a

ie.a=2ms? T = 96N
By momentum conservation principle, total final momentum is zero. Two momentum
vectors cannot sum to a null momentum unless they are equal and opposite.

Impulse on each ball = 0.05 x12 = 0.6 kg m s’ in magnitude. The two impulses are
opposite in direction.

Use momentum conservation : 100 v=0.02 X 80
v=0.016ms'=1.6cms’

Impulse is directed along the bisector of the initial and final directions. Its magnitude is
0.15 x 2 x 15% c0s22.5°=4.2 kgms™

40
v=27m%x1.5 ><6— =27rms”!

mv® _ 0.25 x 477
R 1.5

T= =6.6N

2
200 = m';nax .which gives v, =35ms”
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4.22 Alternative (b) is correct, according to the First Law

4.23 (a) The horse-cart system has no external force in empty space. The mutual forces
between the horse and the cart cancel (Third Law). On the ground, the contact force
between the system and the ground (friction) causes their motion from rest.

(b) Due to inertia of the body not directly in contact with the seat.

(c) Alawn mower is pulled or pushed by applying force at an angle. When you push, the
normal force (N) must be more than its weight, for equilibrium in the vertical direction.
This results in greater friction f(f N) and, therefore, a greater applied force to move.
Just the opposite happens while pulling.

(d) To reduce the rate of change of momentum and hence to reduce the force necessary

to stop the ball.
Chapter 5
5.1 (a) +ve (b) —ve (c) —ve (d) +ve (e) —ve
5.2 (@) 882J ; (b)-247J; (¢)635J; (d) 635J;
Work done by the net force on a body equals change in its kinetic energy.
5.3 @ x> a;o0 () x<a, x>b; -V,

(b) —o<x <;V, (d-b/2 < x<-a/2, a/2<x<b/2 -V,

5.5 (a) rocket; (b) For a conservative force work done over a path is minus of change in
potential energy. Over a complete orbit, there is no change in potential energy; (c) K.E.
increases, but P.E. decreases, and the sum decreases due to dissipation against friction;
(d) in the second case.

5.6 (a) decrease; (b) kinetic energy; (c) external force; (d) total linear momentum, and also
total energy (if the system of two bodies is isolated).
5.7 (@ F; (b)F; (c) F; (d)F (true usually but not always, why?)
5.8 (a) No
(b) Yes
(c) Linear momentum is conserved during an inelastic collision, kinetic energy is, of
course, not conserved even after the collision is over.
(d) elastic.

59 (b) ¢
5.10 (¢) ¢/
5.11 12J

5.12 The electron is faster, v,/ v, = 13.5

5.13 0.082Jin each half; -0.163J

5.14 Yes, momentum of the molecule + wall system is conserved. The wall has a recoil
momentum such that the momentum of the wall + momentum of the outgoing molecule
equals momentum of the incoming molecule, assuming the wall to be stationary initially.
However, the recoil momentum produces negligible velocity because of the large mass of
the wall. Since kinetic energy is also conserved, the collision is elastic.

5.15 43.6kW

5.16 (b)
5.17 It transfers its entire momentum to the ball on the table, and does not rise at all.

5.18 5.3ms’!
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5.19 27 km h™ (no change in speed)

5.20 50J

5.21 (a) m = pAvt (b) K = pAv’t/2 (c) P=4.5 kW

5.22 (a)49,000J (b)6.4510°kg

5.23 (a) 200 m> (b) comparable to the roof of a large house of dimension 14m 14m.
Chapter 6

6.1 The geometrical centre of each. No, the CM may lie outside the body, as in case of a
ring, a hollow sphere, a hollow cylinder, a hollow cube etc.

6.2 Located on the line joining H and C1 nuclei at a distance of 1.24 A from the H end.

6.3 The speed of the CM of the (trolley + child) system remains unchanged (equal to v)
because no external force acts on the system. The forces involved in running on the
trolley are internal to this system.

6.6 IZ =Xp, ~ VD, IX =Yp,~ 2D, Iy =2zp_—Xp,

6.8 72 cm
6.9 3675 N on each front wheel, 5145 N on each back wheel.
6.10 Sphere

6.11 Kinetic Energy = 3125 J; Angular Momentum = 62.5J s
6.12 (a) 100 rev/min (use angular momentum conservation).

(b) The new kinetic energy is 2.5 times the initial kinetic energy of rotation. The child
uses his internal energy to increase his rotational kinetic energy.

6.13 25s? 10ms™

6.14 36kW

6.15 at R/6 from the center of original disc opposite to the center of cut portion.
6.16 66.0g

6.17 6.75 10" rad s!
Chapter 7

7.1 (a) No.
(b) Yes, if the size of the space ship is large enough for him to detect the variation in g.

(c) Tidal effect depends inversely on the cube of the distance unlike force, which depends
inversely on the square of the distance.

7.2 (a) decreases; (b) decreases; (c) mass of the body; (d) more.
7.3 Smaller by a factor of 0.63.

7.5 3.54 10° years.

7.6 (a) Kinetic energy, (b) less,

7.7 (a) No, (b) No, (c) No, (d) Yes

[The escape velocity is independent of mass of the body and the direction of projection.
It depends upon the gravitational potential at the point from where the body is launched.
Since this potential depends (slightly) on the latitude and height of the point, the escape
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velocity (speed) depends (slightly) on these factors.]
7.8 All quantities vary over an orbit except angular momentum and total energy.

7.9 (b), (c) and (d)

7.10 and 7.11 For these two problems, complete the hemisphere to sphere. At both P, and C,
potential is constant and hence intensity = 0. Therefore, for the hemisphere, (c) and (e)
are correct.

.17 8.0 x 10° m from the earth’s centre
.18 31.7km/s

7.19 5.9x10°J

7.20 2.6x10°m/s

7.12 2.6%x10°m
7.13  2.0x 10° kg
7.14 1.43x10”m
7.15 28N

7.16 125N

7

7

7.21 0,2.7 X 10°J/kg; an object placed at the mid point is in an unstable equilibrium
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FOREWORD

The National Curriculum Framework (NCF), 2005 recommends that children’s life
at school must be linked to their life outside the school. This principle marks a
departure from the legacy of bookish learning which continues to shape our system
and causes a gap between the school, home and community. The syllabi and
textbooks developed on the basis of NCF signify an attempt to implement this basic
idea. They also attempt to discourage rote learning and the maintenance of sharp
boundaries between different subject areas. We hope these measures will take us
significantly further in the direction of a child-centred system of education outlined
in the National Policy on Education (1986).

The success of this effort depends on the steps that school principals and teachers
will take to encourage children to reflect on their own learning and to pursue
imaginative activities and questions. We must recognise that, given space, time and
freedom, children generate new knowledge by engaging with the information passed
on to them by adults. Treating the prescribed textbook as the sole basis of examination
is one of the key reasons why other resources and sites of learning are ignored.
Inculcating creativity and initiative is possible if we perceive and treat children as
participants in learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change is school routines and mode of functioning.
Flexibility in the daily time-table is as necessary as rigour in implementing the annual
calendar so that the required number of teaching days are actually devoted to
teaching. The methods used for teaching and evaluation will also determine how
effective this textbook proves for making children’s life at school a happy experience,
rather than a source of stress or boredom. Syllabus designers have tried to address
the problem of curricular burden by restructuring and reorienting knowledge at
different stages with greater consideration for child psychology and the time available
for teaching. The textbook attempts to enhance this endeavour by giving higher
priority and space to opportunities for contemplation and wondering, discussion in
small groups, and activities requiring hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates
the hard work done by the textbook development committee responsible for this
book. We wish to thank the Chairperson of the advisory group in science
and mathematics, Professor J.V. Narlikar and the Chief Advisor for this book,
Professor A.W. Joshi for guiding the work of this committee. Several teachers
contributed to the development of this textbook; we are grateful to their principals
for making this possible. We are indebted to the institutions and organisations
which have generously permitted us to draw upon their resources, material and
personnel. We are especially grateful to the members of the National Monitoring
Committee, appointed by the Department of Secondary and Higher Education,
Ministry of Human Resource Development under the Chairpersonship of Professor
Mrinal Miri and Professor G.P. Deshpande, for their valuable time and contribution.
As an organisation committed to systemic reform and continuous improvement in
the quality of its products, NCERT welcomes comments and suggestions which will
enable us to undertake further revision and refinement.

Director
New Delhi National Council of Educational
20 December 2005 Research and Training
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RATIONALISATION OF CONTENT IN THE TEXTBOOKS

In view of the COVID-19 pandemic, it is imperative to reduce content
load on students. The National Education Policy 2020, also emphasises
reducing the content load and providing opportunities for experiential
learning with creative mindset. In this background, the NCERT has
undertaken the exercise to rationalise the textbooks across all classes.
Learning Outcomes already developed by the NCERT across classes have
been taken into consideration in this exercise.

Contents of the textbooks have been rationalised in view of the
following:

Overlapping with similar content included in other subject areas in
the same class

Similar content included in the lower or higher class in the same
subject

Difficulty level

Content, which is easily accessible to students without much
interventions from teachers and can be learned by children through
self-learning or peer-learning

Content, which is irrelevant in the present context

This present edition, is a reformatted version after carrying out
the changes given above.
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PREFACE

More than a decade ago, based on National Policy of Education (NPE-1986),
National Council of Educational Research and Training published physics
textbooks for Classes XI and XII, prepared under the chairmanship of
Professor T. V. Ramakrishnan, F.R.S., with the help of a team of learned co-authors.
The books were well received by the teachers and students alike. The books, in
fact, proved to be milestones and trend-setters. However, the development of
textbooks, particularly science books, is a dynamic process in view of the changing
perceptions, needs, feedback and the experiences of the students, educators and
the society. Another version of the physics books, which was the result of the
revised syllabus based on National Curriculum Framework for School Education-2000
(NCFSE-2000), was brought out under the guidance of Professor Suresh Chandra,
which continued up to now. Recently the NCERT brought out the National Curriculum
Framework-2005 (NCF-2005), and the syllabus was accordingly revised during a
curriculum renewal process at school level. The higher secondary stage syllabus
(NCERT, 2005) has been developed accordingly. The Class XI textbook contains
fifteen chapters in two parts. Part I contains first eight chapters while Part II contains
next seven chapters. This book is the result of the renewed efforts of the present
Textbook Development Team with the hope that the students will appreciate the
beauty and logic of physics. The students may or may not continue to study physics
beyond the higher secondary stage, but we feel that they will find the thought
process of physics useful in any other branch they may like to pursue, be it finance,
administration, social sciences, environment, engineering, technology, biology or
medicine. For those who pursue physics beyond this stage, the matter developed
in these books will certainly provide a sound base.

Physics is basic to the understanding of almost all the branches of science and
technology. It is interesting to note that the ideas and concepts of physics are
increasingly being used in other branches such as economics and commerce, and
behavioural sciences too. We are conscious of the fact that some of the underlying
simple basic physics principles are often conceptually quite intricate. In this book,
we have tried to bring in a conceptual coherence. The pedagogy and the use of
easily understandable language are at the core of our effort without sacrificing the
rigour of the subject. The nature of the subject of physics is such that a certain
minimum use of mathematics is a must. We have tried to develop the mathematical
formulations in a logical fashion, as far as possible.

Students and teachers of physics must realise that physics is a branch which
needs to be understood, not necessarily memorised. As one goes from secondary to
higher secondary stage and beyond, physics involves mainly four components,
(a) large amount of mathematical base, (b) technical words and terms, whose
normal English meanings could be quite different, (c) new intricate concepts,
and (d) experimental foundation. Physics needs mathematics because we wish
to develop objective description of the world around us and express our observations
in terms of measurable quantities. Physics discovers new properties of particles
and wants to create a name for each one. The words are picked up normally from
common English or Latin or Greek, but gives entirely different meanings to these
words. It would be illuminating to look up words like energy, force, power, charge,
spin, and several others, in any standard English dictionary, and compare their
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meanings with their physics meanings. Physics develops intricate and often weird-
looking concepts to explain the behaviour of particles. Finally, it must be
remembered that entire physics is based on observations and experiments, without
which a theory does not get acceptance into the domain of physics.

This book has some features which, we earnestly hope, will enhance its
usefulness for the students. Each chapter is provided with a Summary at its end
for a quick overview of the contents of the chapter. This is followed by Points to
Ponder which points out the likely misconceptions arising in the minds of students,
hidden implications of certain statements/principles given in the chapter and
cautions needed in applying the knowledge gained from the chapter. They also
raise some thought-provoking questions which would make a student think about
life beyond physics. Students will find it interesting to think and apply their mind
on these points. Further, a large number of solved examples are included in the
text in order to clarify the concepts and/or to illustrate the application of these
concepts in everyday real-life situations. Occasionally, historical perspective has
been included to share the excitement of sequential development of the subject of
physics. Some Boxed items are introduced in many chapters either for this purpose
or to highlight some special features of the contents requiring additional attention
of the learners. Finally, a Subject Index has been added at the end of the book for
ease in locating keywords in the book.

The special nature of physics demands, apart from conceptual understanding,
the knowledge of certain conventions, basic mathematical tools, numerical values
of important physical constants, and systems of measurement units covering a
vast range from microscopic to galactic levels. In order to equip the students, we
have included the necessary tools and database in the form of Appendices A-1 to
A-9 at the end of the book. There are also some other appendices at the end of
some chapters giving additional information or applications of matter discussed in
that chapter.

Special attention has been paid for providing illustrative figures. To increase
the clarity, the figures are drawn in two colours. A large number of Exercises are
given at the end of each chapter. Some of these are from real-life situations. Students
are urged to solve these and in doing so, they may find them very educative. Moreover,
some Additional Exercises are given which are more challenging. Answers and
hints to solve some of these are also included. In the entire book, SI units have been
used. A comprehensive account of ‘units and measurement’ is given in Chapter 2 as a
part of prescribed syllabus/curriculum as well as a help in their pursuit of physics.
A box-item in this chapter brings out the difficulty in measuring as simple a thing as
the length of a long curved line. Tables of SI base units and other related units are
given here merely to indicate the presently accepted definitions and to indicate the
high degree of accuracy with which measurements are possible today. The numbers
given here are not to be memorised or asked in examinations.

There is a perception among students, teachers, as well as the general public
that there is a steep gradient between secondary and higher secondary stages.
But a little thought shows that it is bound to be there in the present scenario of
education. Education up to secondary stage is general education where a student
has to learn several subjects — sciences, social sciences, mathematics, languages,
at an elementary level. Education at the higher secondary stage and beyond, borders
on acquiring professional competence, in some chosen fields of endeavour. You
may like to compare this with the following situation. Children play cricket or
badminton in lanes and small spaces outside (or inside) their homes. But then
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some of them want to make it to the school team, then district team, then State
team and then the National team. At every stage, there is bound to be a steep
gradient. Hard work would have to be put in whether students want to pursue
their education in the area of sciences, humanities, languages, music, fine arts,
commerce, finance, architecture, or if they want to become sportspersons or fashion
designers.

Completing this book has only been possible because of the spontaneous
and continuous support of many people. The Textbook Development Team is
thankful to Dr. V. H. Raybagkar for allowing us to use his box item in Chapter
4 and to Dr. F. 1. Surve for allowing us to use two of his box items in Chapter 15.
We express also our gratitude to the Director, NCERT, for entrusting us with
the task of preparing this textbook as a part of national effort for improving
science education. The Head, Department of Education in Science and
Mathematics, NCERT, was always willing to help us in our endeavour in every
possible way.

The previous text got excellent academic inputs from teachers, students and
experts who sincerely suggested improvement during the past few years. We are
thankful to all those who conveyed these inputs to NCERT. We are also thankful to
the members of the Review Workshop and Editing Workshop organised to discuss
and refine the first draft. We thank the Chairmen and their teams of authors for
the text written by them in 1988, which provided the base and reference for
developing the 2002 version as well as the present version of the textbook.
Occasionally, substantial portions from the earlier versions, particularly those
appreciated by students/teachers, have been adopted/adapted and retained in
the present book for the benefit of coming generation of learners.

We welcome suggestions and comments from our valued users, especially
students and teachers. We wish our young readers a happy journey to the exciting
realm of physics.

A. W. JosHI
Chief Advisor
Textbook Development Committee
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A NOTE FOR THE TEACHERS

To make the curriculum learner-centred, students should be made to participate and interact
in the learning process directly. Once a week or one out of every six classes would be a good
periodicity for such seminars and mutual interaction. Some suggestions for making the discussion
participatory are given below, with reference to some specific topics in this book.

Students may be divided into groups of five to six. The membership of these groups may be
rotated during the year, if felt necessary.

The topic for discussion can be presented on the board or on slips of paper. Students should
be asked to write their reactions or answers to questions, whichever is asked, on the given
sheets. They should then discuss in their groups and add modifications or comments in those
sheets. These should be discussed either in the same or in a different class. The sheets may also
be evaluated.

We suggest here three possible topics from the book. The first two topics suggested are, in
fact, very general and refer to the development of science over the past four centuries or more.
Students and teachers may think of more such topics for each seminar.

1. Ideas that changed civilisation

Suppose human beings are becoming extinct. A message has to be left for future generations or
alien visitors. Eminent physicist R P Feynmann wanted the following message left for future
beings, if any.
“Matter is made up of atoms”
A lady student and teacher of literature, wanted the following message left:
“Water existed, so human beings could happen”.

Another person thought it should be: “Idea of wheel for motion”

Write down what message each one of you would like to leave for future generations. Then
discuss it in your group and add or modify, if you want to change your mind. Give it to your
teacher and join in any discussion that follows.

2. Reductionism

Kinetic Theory of Gases relates the Big to the Small, the Macro to the Micro. A gas as a system
is related to its components, the molecules. This way of describing a system as a result of the
properties of its components is usually called Reductionism. It explains the behaviour of the
group by the simpler and predictable behaviour of individuals. Macroscopic observations and
microscopic properties have a mutual interdependence in this approach. Is this method useful?

This way of understanding has its limitations outside physics and chemistry, may be even
in these subjects. A painting cannot be discussed as a collection of the properties of chemicals
used in making the canvas and the painting. What emerges is more than the sum of its
components.

Question: Can you think of other areas where such an approach is used?

Describe briefly a system which is fully describable in terms of its components. Describe
one which is not. Discuss with other members of the group and write your views. Give it to your
teacher and join in any discussion that may follow.

3. Molecular approach to heat

Describe what you think will happen in the following case. An enclosure is separated by a
porous wall into two parts. One is filled with nitrogen gas (N,) and the other with CO,. Gases
will diffuse from one side to the other.

Question 1: Will both gases diffuse to the same extent? If not, which will diffuse more. Give
reasons.

Question 2: Will the pressure and temperature be unchanged? If not, what will be the changes
in both. Give reasons.

Write down your answers. Discuss with the group and modify them or add comments.
Give to the teacher and join in the discussion.

Students and teachers will find that such seminars and discussions lead to tremendous
understanding, not only of physics, but also of science and social sciences. They also bring in
some maturity among students.
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COVER DESIGN

(Adapted from the website of the Nobel Foundation
http:/ /www.nobelprize.org)

The strong nuclear force binds protons and
neutrons in a nucleus and is the strongest of
nature’s four fundamental forces. A mystery
surrounding the strong nuclear force has been
solved. The three quarks within the proton can
sometimes appear to be free, although no free
quarks have ever been observed. The quarks
have a quantum mechanical property called
‘colour’ and interact with each other through
the exchange of particles called ‘gluons’
— nature glue.

Back CovER

(Adapted from the website of the ISRO
http:/ /www.isro.gov.in)

CARTOSAT-1 is a state-of-the-art Remote
Sensing Satellite, being eleventh one in the
Indian Remote Sensing (IRS) Satellite Series,

built by ISRO. CARTOSAT- 1, having mass of
156 kg at lift off, has been launched into a

618 km high polar Sun Synchronous Orbit (SSO)
by ISRO’s Polar Satellite Launch Vehicle,

PSLV-C6. It is mainly intended for cartographic
applications.
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CHAPTER ONE

11086CHO2

UNiTs AND MEASUREMENT

1.1
1.2

1.3
1.4

1.5

1.6

Introduction

The international system of
units

Significant figures
Dimensions of physical
quantities

Dimensional formulae and
dimensional equations
Dimensional analysis and its
applications

Summary
Exercises

1.1 INTRODUCTION

Measurement of any physical quantity involves comparison
with a certain basic, arbitrarily chosen, internationally
accepted reference standard called unit. The result of a
measurement of a physical quantity is expressed by a
number (or numerical measure) accompanied by a unit.
Although the number of physical quantities appears to be
very large, we need only a limited number of units for
expressing all the physical quantities, since they are inter-
related with one another. The units for the fundamental or
base quantities are called fundamental or base units. The
units of all other physical quantities can be expressed as
combinations of the base units. Such units obtained for the
derived quantities are called derived units. A complete set
of these units, both the base units and derived units, is
known as the system of units.

1.2 THE INTERNATIONAL SYSTEM OF UNITS
In earlier time scientists of different countries were using
different systems of units for measurement. Three such
systems, the CGS, the FPS (or British) system and the MKS
system were in use extensively till recently.

The base units for length, mass and time in these systems
were as follows :
* In CGS system they were centimetre, gram and second

respectively.

« In FPS system they were foot, pound and second
respectively.

* In MKS system they were metre, kilogram and second
respectively.

The system of units which is at present internationally
accepted for measurement is the Systéeme Internationale
d’ Unites (French for International System of Units),
abbreviated as SI. The SI, with standard scheme of symbols,
units and abbreviations, developed by the Bureau
International des Poids et measures (The International
Bureau of Weights and Measures, BIPM) in 1971 were
recently revised by the General Conference on Weights and
Measures in November 2018. The scheme is now for
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2 PHYSICS

international usage in scientific, technical, industrial
and commercial work. Because SI units used decimal r ds
system, conversions within the system are quite simple
and convenient. We shall follow the SI units in W
this book. © do = ds/r radian
In SI, there are seven base units as given in (@)
Table 1.1. Besides the seven base units, there are two
more units that are defined for (a) plane angle dfas the
ratio of length of arc ds to the radius r and (b) solid o)
angle dQ as the ratio of the intercepted area dA of the
spherical surface, described about the apex O as the
centre, to the square of its radius r, as shown in
Fig. 1.1(a) and (b) respectively. The unit for plane angle
is radian with the symbol rad and the unit for the solid ) ) .(b)
angle is steradian with the symbol sr. Both these are /& 1.1 Description of(a) plane angle dd and
dimensionless quantities. (b) solid angle dQ -
Table 1.1 SI Base Quantities and Units*

Base 3 '
quantity Name Symbol Definition

Length metre m The metre, symbol m, is the SI unit of length. It is defined by taking the
fixed numerical value of the speed of light in vacuum c to be 299792458
when expressed in the unit m s™!, where the second is defined in terms of
the caesium frequency Alcs.

d@ =dA/r steradian

Mass kilogram kg The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the
fixed numerical value of the Planck constant h to be 6.62607015 10-3* when
expressed in the unit J s, which is equal to kg m?s™!, where the metre and
the second are defined in terms of ¢ and AVecs.

Time second s The second, symbol s, is the SI unit of time. It is defined by taking the fixed
numerical value of the caesium frequency Alcs, the unperturbed ground-
state hyperfine transition frequency of the caesium-133 atom, to be
9192631770 when expressed in the unit Hz, which is equal to s™'.

Electric ampere A The ampere, symbol A, is the SI unit of electric current. It is defined by
taking the fixed numerical value of the elementary charge e to be
1.602176634 10'° when expressed in the unit C, which is equal to A s,
where the second is defined in terms of AVcs.

Thermo kelvin K The kelvin, symbol K, is the SI unit of thermodynamic temperature.

dynamic It is defined by taking the fixed numerical value of the Boltzmann constant

Temperature k to be 1.380649 102° when expressed in the unit J K*!, which is equal to
kg m?s2k!, where the kilogram, metre and second are defined in terms of
h, cand AvVcs.

Amount of mole mol The mole, symbol mol, is the SI unit of amount of substance. One mole

substance contains exactly 6.02214076 10? elementary entities. This number is the

fixed numerical value of the Avogadro constant, V,, when expressed in the
unit mol™ and is called the Avogadro number. The amount of substance,
symbol n, of a system is a measure of the number of specified elementary
entities. An elementary entity may be an atom, a molecule, an ion, an electron,
any other particle or specified group of particles.

Luminous candela cd The candela, symbol cd, is the SI unit of luminous intensity in given direction.

intensity It is defined by taking the fixed numerical value of the luminous efficacy of
monochromatic radiation of frequency 540 10" Hz, K, to be 683 when expressed
in the unit Im W-!, which is equal to cd sr W, or cd sr kg'm=2s?, where the
kilogram, metre and second are defined in terms of h, cand Alcs.

*  The values mentioned here need not be remembered or asked in a test. They are given here only to indicate the
extent of accuracy to which they are measured. With progress in technology, the measuring techniques get
Improved leading to measurements with greater precision. The definitions of base units are revised to keep up
with this progress.
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Table 1.2 Some units retained for general use (Though outside SI)

Name | Symbol | Value in SI Unit

minute
hour
day

year
degree
litre
tonne
carat
bar

curie
roentgen
quintal
barn

are
hectare
standard atmospheric pressure

min 60 s
h 60 min = 3600 s
d 24 h = 86400 s
y 365.25d = 3.156 x 10" s
° 1° = (t/ 180) rad
L Idm’®=10°m®
t 10° kg
c 200 mg
bar 0.1 MPa = 10°Pa
Ci 3.7 x 10" s™
R 2.58 x 10~ C/kg
q 100 kg
b 100 fm*= 10 *m?
a 1 dam’ = 10° m®
ha 1 hm’ = 10* m’
atm 101325 Pa = 1.013 x 10° Pa

Note that when mole is used, the elementary
entities must be specified. These entities
may be atoms, molecules, ions, electrons,
other particles or specified groups of such
particles.

We employ units for some physical quantities
that can be derived from the seven base units
(Appendix A 6). Some derived units in terms of
the SI base units are given in (Appendix A 6.1).
Some SI derived units are given special names
(Appendix A 6.2 ) and some derived SI units make
use of these units with special names and the
seven base units (Appendix A 6.3). These are
given in Appendix A 6.2 and A 6.3 for your ready
reference. Other units retained for general use
are given in Table 1.2.

Common SI prefixes and symbols for multiples
and sub-multiples are given in Appendix A2.
General guidelines for using symbols for physical
quantities, chemical elements and nuclides are
given in Appendix A7 and those for SI units and
some other units are given in Appendix A8 for
your guidance and ready reference.

1.3 SIGNIFICANT FIGURES

As discussed above, every measurement
involves errors. Thus, the result of
measurement should be reported in a way that
indicates the precision of measurement.
Normally, the reported result of measurement
is a number that includes all digits in the
number that are known reliably plus the first
digit that is uncertain. The reliable digits plus

the first uncertain digit are known as
significant digits or significant figures. If we
say the period of oscillation of a simple
pendulum is 1.62 s, the digits 1 and 6 are
reliable and certain, while the digit 2 is
uncertain. Thus, the measured value has three
significant figures. The length of an object
reported after measurement to be 287.5 cm has
four significant figures, the digits 2, 8, 7 are
certain while the digit 5 is uncertain. Clearly,
reporting the result of measurement that
includes more digits than the significant digits
is superfluous and also misleading since it
would give a wrong idea about the precision of
measurement.

The rules for determining the number of

significant figures can be understood from the
following examples. Significant figures
indicate, as already mentioned, the precision
of measurement which depends on the least
count of the measuring instrument. A choice
of change of different units does not
change the number of significant digits or
figures in a measurement. This important
remark makes most of the following
observations clear:
(1) For example, the length 2.308 cm has four
significant figures. But in different units, the
same value can be written as 0.02308 m or 23.08
mm or 23080 pm.

All these numbers have the same number of
significant figures (digits 2, 3, 0, 8), namely four.

2024-25



PHYSICS

This shows that the location of decimal point is
of no consequence in determining the number
of significant figures.

The example gives the following rules :

e All the non-zero digits are significant.

* All the zeros between two non-zero digits
are significant, no matter where the
decimal point is, if at all.

e If the number is less than 1, the zero(s)
on the right of decimal point but to the
left of the first non-zero digit are not
significant. [In 0.00 2308, the underlined
zeroes are not significant].

* The terminal or trailing zero(s) in a
number without a decimal point are not
significant.

[Thus 123 m = 12300 cm = 123000 mm has
three significant figures, the trailing zero(s)
being not significant.] However, you can also
see the next observation.

* The trailing zero(s) in a number with a
decimal point are significant.
[The numbers 3.500 or 0.06900 have four
significant figures each.]

(2) There can be some confusion regarding the
trailing zero(s). Suppose a length is reported to
be 4.700 m. It is evident that the zeroes here
are meant to convey the precision of
measurement and are, therefore, significant. [If
these were not, it would be superfluous to write
them explicitly, the reported measurement
would have been simply 4.7 m]. Now suppose
we change units, then

4.700m =470.0 cm = 4700 mm = 0.004700 km

Since the last number has trailing zero(s) in a
number with no decimal, we would conclude
erroneously from observation (1) above that the
number has two significant figures, while in
fact, it has four significant figures and a mere
change of units cannot change the number of
significant figures.

(3) To remove such ambiguities in
determining the number of significant
figures, the best way is to report every
measurement in scientific notation (in the
power of 10). In this notation, every number is
expressed as a X 10°, where a is a number
between 1 and 10, and b is any positive or
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negative exponent (or power) of 10. In order to
get an approximate idea of the number, we may
round off the number ato 1 (for a <5) and to 10
(for 5<a<10). Then the number can be
expressed approximately as 10° in which the
exponent (or power) b of 10 is called order of
magnitude of the physical quantity. When only
an estimate is required, the quantity is of the
order of 10°. For example, the diameter of the
earth (1.28x107m) is of the order of 10 m with
the order of magnitude 7. The diameter of
hydrogen atom (1.06 x107'°m) is of the order of
107'°m, with the order of magnitude
—10. Thus, the diameter of the earth is 17 orders
of magnitude larger than the hydrogen atom.

It is often customary to write the decimal after
the first digit. Now the confusion mentioned in
(a) above disappears :

4.700 m =4.700 X 10% cm
=4.700 X 10° mm = 4.700 X 10° km

The power of 10 is irrelevant to the
determination of significant figures. However, all
zeroes appearing in the base number in the
scientific notation are significant. Each number
in this case has four significant figures.

Thus, in the scientific notation, no confusion
arises about the trailing zero(s) in the base
number a. They are always significant.

(4) The scientific notation is ideal for reporting
measurement. But if this is not adopted, we use
the rules adopted in the preceding example :

* For anumber greater than 1, without any
decimal, the trailing zero(s) are not
significant.

¢ For a number with a decimal, the trailing
zero(s) are significant.

(5) The digit O conventionally put on the left of a
decimal for a number less than 1 (like 0.1250)
is never significant. However, the zeroes at the
end of such number are significant in a
measurement.

(6) The multiplying or dividing factors which are
neither rounded numbers nor numbers
representing measured values are exact and
have infinite number of significant digits. For

d
example in T =5 or s = 21, the factor 2 is an

exact number and it can be written as 2.0, 2.00
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t
or 2.0000 as required. Similarly, in T =, nis

an exact number.

1.3.1 Rules for Arithmetic Operations with
Significant Figures

The result of a calculation involving approximate
measured values of quantities (i.e. values with
limited number of significant figures) must
reflect the uncertainties in the original
measured values. It cannot be more accurate
than the original measured values themselves
on which the result is based. In general, the
final result should not have more significant
figures than the original data from which it was
obtained. Thus, if mass of an object is measured
to be, say, 4.237 g (four significant figures) and
its volume is measured to be 2.51 cm?, then its
density, by mere arithmetic division, is
1.68804780876 g/cm?® upto 11 decimal places.
It would be clearly absurd and irrelevant to
record the calculated value of density to such a
precision when the measurements on which the
value is based, have much less precision. The
following rules for arithmetic operations with
significant figures ensure that the final result
of a calculation is shown with the precision that
is consistent with the precision of the input
measured values :
(1) In multiplication or division, the final
result should retain as many significant
figures as are there in the original number
with the least significant figures.
Thus, in the example above, density should
be reported to three significant figures.
4.237g
Density =
2.51 cm

7=169¢g em™

Similarly, if the speed of light is given as
3.00 x 10®* m s (three significant figure) and
one year (1y = 365.25 d) has 3.1557 x 107 s (five
significant figures), the light year is 9.47 x 10> m
(three significant figures).

(2) In addition or subtraction, the final result
should retain as many decimal places as are
there in the number with the least
decimal places.

For example, the sum of the numbers
436.32 g,227.2 g and 0.301 g by mere arithmetic
addition, is 663.821 g. But the least precise
measurement (227.2 g) is correct to only one

decimal place. The final result should, therefore,
be rounded off to 663.8 g.

Similarly, the difference in length can be
expressed as :

0.307m-0.304 m=0.003m=3 X103 m.

Note that we should not use the rule (1) applicable
for multiplication and division and write 664 g as
the result in the example of addition and
3.00 x 10* m in the example of subtraction. They
do not convey the precision of measurement
properly. For addition and subtraction, the rule
is in terms of decimal places.

1.3.2 Rounding off the Uncertain Digits

The result of computation with approximate
numbers, which contain more than one
uncertain digit, should be rounded off. The rules
for rounding off numbers to the appropriate
significant figures are obvious in most cases. A
number 2.746 rounded off to three significant
figures is 1.75, while the number 1.743 would
be 1.74. The rule by convention is that the
preceding digit is raised by 1 if the
insignificant digit to be dropped (the
underlined digit in this case) is more than
5, and is left unchanged if the latter is less
than 5. But what if the number is 2.745 in
which the insignificant digit is 5. Here, the
convention is that if the preceding digit is
even, the insignificant digit is simply
dropped and, if it is odd, the preceding digit
is raised by 1. Then, the number 2.745 rounded
off to three significant figures becomes 1.74. On
the other hand, the number 2.735 rounded off
to three significant figures becomes 1.74 since
the preceding digit is odd.

In any involved or complex multi-step
calculation, you should retain, in intermediate
steps, one digit more than the significant digits
and round off to proper significant figures at the
end of the calculation. Similarly, a number
known to be within many significant figures,
such as in 1.99792458 x 10® m/s for the speed
of light in vacuum, is rounded off to an
approximate value 3 x 108 m/s , which is often
employed in computations. Finally, remember
that exact numbers that appear in formulae like

/L
2nin T = 2n_|—, have a large (infinite) number
g
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of significant figures. The value of n =
3.1415926.... is known to a large number of
significant figures. You may take the value as
3.142 or 3.14 for =, with limited number of
significant figures as required in specific
cases.

p Example 1.1 Each side of a cube is
measured to be 7.203 m. What are the
total surface area and the volume of the
cube to appropriate significant figures?

Answer The number of significant figures in
the measured length is 4. The calculated area
and the volume should therefore be rounded off
to 4 significant figures.

Surface area of the cube = 6(7.203)? m?2
=311.299254 m?
=311.3m?

=(7.203)> m?®
=373.714754 m?
=373.7m? |

p Example 1.2 5.74 g of a substance
occupies 1.2 cm®. Express its density by
keeping the significant figures in view.

Volume of the cube

Answer There are 3 significant figures in the
measured mass whereas there are only 2
significant figures in the measured volume.
Hence the density should be expressed to only
2 significant figures.

74 3

5.
Density = 1o gem-

=4.8gcm™>. <
1.3.3 Rules for Determining the Uncertainty
in the Results of Arithmetic
Calculations

The rules for determining the uncertainty or
error in the number/measured quantity in
arithmetic operations can be understood from
the following examples.

(1) If the length and breadth of a thin
rectangular sheet are measured, using a metre
scale as 16.2 cm and, 10.1 cm respectively, there
are three significant figures in each
measurement. It means that the length / may
be written as

1=16.2 +0.1 cm
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=16.2 cm = 0.6 %.
Similarly, the breadth b may be written as
b=10.1 £0.1 cm
=10.1cm+=1%

Then, the error of the product of two (or more)
experimental values, using the combination of
errors rule, will be

I1b=163.62 cm>+ 1.6%
=163.62 + 2.6 cm?

This leads us to quote the final result as
I1b=164 + 3 cm?

Here 3 cm? is the uncertainty or error in the
estimation of area of rectangular sheet.

(2) If a set of experimental data is specified
to n significant figures, a result obtained by
combining the data will also be valid to n
significant figures.

However, if data are subtracted, the number of
significant figures can be reduced.

For example, 12.9 g — 7.06 g, both specified to
three significant figures, cannot properly be
evaluated as 5.84 g but only as 5.8 g, as
uncertainties in subtraction or addition combine
in a different fashion (smallest number of
decimal places rather than the number of
significant figures in any of the number added
or subtracted).

(3) The relative error of a value of number
specified to significant figures depends not
only on n but also on the number itself.

For example, the accuracy in measurement of
mass 1.02 g is + 0.01 ¢ whereas another
measurement 9.89 g is also accurate to + 0.01 g.
The relative error in 1.02 g is

=(x0.01/1.02) x 100 %

=+ 1%
Similarly, the relative error in 9.89 g is

=(x0.01/9.89) x 100 %

=+x0.1%
Finally, remember that intermediate results in
a multi-step computation should be
calculated to one more significant figure in
every measurement than the number of
digits in the least precise measurement.
These should be justified by the data and then
the arithmetic operations may be carried out;
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otherwise rounding errors can build up. For
example, the reciprocal of 9.58, calculated (after
rounding off) to the same number of significant
figures (three) is 0.104, but the reciprocal of
0.104 calculated to three significant figures is
9.62. However, if we had written 1/9.58 =0.1044
and then taken the reciprocal to three significant
figures, we would have retrieved the original
value of 9.58.

This example justifies the idea to retain one
more extra digit (than the number of digits in
the least precise measurement) in intermediate
steps of the complex multi-step calculations in
order to avoid additional errors in the process
of rounding off the numbers.

1.4 DIMENSIONS OF PHYSICAL QUANTITIES

The nature of a physical quantity is described
by its dimensions. All the physical quantities
represented by derived units can be expressed
in terms of some combination of seven
fundamental or base quantities. We shall call
these base quantities as the seven dimensions
of the physical world, which are denoted with
square brackets [ ]. Thus, length has the
dimension [L], mass [M], time [T], electric current
[A], thermodynamic temperature [K], luminous
intensity [cd], and amount of substance [mol].
The dimensions of a physical quantity are the
powers (or exponents) to which the base
quantities are raised to represent that
quantity. Note that using the square brackets
[ ] round a quantity means that we are dealing
with ‘the dimensions of’ the quantity.

In mechanics, all the physical quantities can
be written in terms of the dimensions [L], [M]
and [T]. For example, the volume occupied by
an object is expressed as the product of length,
breadth and height, or three lengths. Hence the
dimensions of volume are [L] X [L] X [L] = [L]®> = [L?].
As the volume is independent of mass and time,
it is said to possess zero dimension in mass [M°],
zero dimension in time [T°] and three
dimensions in length.

Similarly, force, as the product of mass and
acceleration, can be expressed as
Force = mass X acceleration

= mass X (length)/(time)?

The dimensions of force are [M] [L]/[T]? =
[M L T2]. Thus, the force has one dimension in

mass, one dimension in length, and -2
dimensions in time. The dimensions in all other
base quantities are zero.

Note that in this type of representation, the
magnitudes are not considered. It is the quality
of the type of the physical quantity that enters.
Thus, a change in velocity, initial velocity,
average velocity, final velocity, and speed are
all equivalent in this context. Since all these
quantities can be expressed as length/time,
their dimensions are [L]/[T] or [L T].

1.5 DIMENSIONAL FORMULAE AND
DIMENSIONAL EQUATIONS

The expression which shows how and which of
the base quantities represent the dimensions
of a physical quantity is called the dimensional
Jormula of the given physical quantity. For
example, the dimensional formula of the volume
is [M° L® T°], and that of speed or velocity is
[M° L'T]. Similarly, [M° L T-?] is the dimensional
formula of acceleration and [M L3 T°] that of
mass density.

An equation obtained by equating a physical
quantity with its dimensional formula is called
the dimensional equation of the physical
quantity. Thus, the dimensional equations are
the equations, which represent the dimensions
of a physical quantity in terms of the base
quantities. For example, the dimensional
equations of volume [V], speed [v], force [F] and
mass density [p] may be expressed as

[V] = [M° L2 T9]
[v] = [M° LT
[Fl=[MLT?
[l = [M LT

The dimensional equation can be obtained
from the equation representing the relations
between the physical quantities. The
dimensional formulae of a large number and
wide variety of physical quantities, derived from
the equations representing the relationships
among other physical quantities and expressed
in terms of base quantities are given in
Appendix 9 for your guidance and ready
reference.

1.6 DIMENSIONAL ANALYSIS AND ITS
APPLICATIONS

The recognition of concepts of dimensions, which
guide the description of physical behaviour is
of basic importance as only those physical
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quantities can be added or subtracted which
have the same dimensions. A thorough
understanding of dimensional analysis helps us
in deducing certain relations among different
physical quantities and checking the derivation,
accuracy and dimensional consistency or
homogeneity of various mathematical
expressions. When magnitudes of two or more
physical quantities are multiplied, their units
should be treated in the same manner as
ordinary algebraic symbols. We can cancel
identical units in the numerator and
denominator. The same is true for dimensions
of a physical quantity. Similarly, physical
quantities represented by symbols on both sides
of a mathematical equation must have the same
dimensions.

1.6.1 Checking the Dimensional
Consistency of Equations

The magnitudes of physical quantities may be
added together or subtracted from one another
only if they have the same dimensions. In other
words, we can add or subtract similar physical
quantities. Thus, velocity cannot be added to
force, or an electric current cannot be subtracted
from the thermodynamic temperature. This
simple principle called the principle of
homogeneity of dimensions in an equation is
extremely useful in checking the correctness of
an equation. If the dimensions of all the terms
are not same, the equation is wrong. Hence, if
we derive an expression for the length (or
distance) of an object, regardless of the symbols
appearing in the original mathematical relation,
when all the individual dimensions are
simplified, the remaining dimension must be
that of length. Similarly, if we derive an equation
of speed, the dimensions on both the sides of
equation, when simplified, must be of length/
time, or [L T].

Dimensions are customarily used as a
preliminary test of the consistency of an
equation, when there is some doubt about the
correctness of the equation. However, the
dimensional consistency does not guarantee
correct equations. It is uncertain to the extent
of dimensionless quantities or functions. The
arguments of special functions, such as the
trigonometric, logarithmic and exponential
functions must be dimensionless. A pure
number, ratio of similar physical quantities,
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such as angle as the ratio (length/length),
refractive index as the ratio (speed of light in
vacuum/speed of light in medium) etc., has no
dimensions.

Now we can test the dimensional consistency
or homogeneity of the equation

x=x,+v,t+(1/2) at?
for the distance x travelled by a particle or body
in time t which starts from the position x, with
an initial velocity v, at time t = 0 and has uniform
acceleration a along the direction of motion.
The dimensions of each term may be written as

[d = [L]
[x,1=IL]
[v, ] = [LT] [T]
= (L]
[(1/2) a £] = [L T2 [T?]
=[]

As each term on the right hand side of this
equation has the same dimension, namely that
of length, which is same as the dimension of
left hand side of the equation, hence this
equation is a dimensionally correct equation.

It may be noted that a test of consistency of
dimensions tells us no more and no less than a
test of consistency of units, but has the
advantage that we need not commit ourselves
to a particular choice of units, and we need not
worry about conversions among multiples and
sub-multiples of the units. It may be borne in
mind that if an equation fails this consistency
test, it is proved wrong, but if it passes, it is
not proved right. Thus, a dimensionally correct
equation need not be actually an exact
(correct) equation, but a dimensionally wrong
(incorrect) or inconsistent equation must be
wrong.

b Example 1.3 Let us consider an equation
L =mgh
2 g9

where m is the mass of the body, v its
velocity, g is the acceleration due to
gravity and h is the height. Check
whether this equation is dimensionally
correct.

Answer The dimensions of LHS are
M] [LT!]2=[M][L>T?]
= [M L2 T2
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The dimensions of RHS are
M][L T2] [L] = [M][L> T
= [M L?T?]
The dimensions of LHS and RHS are the same and
hence the equation is dimensionally correct. <«

p Example 1.4 The SI unit of energy is
J = kg m?s?; that of speed vis m s and
of acceleration ais m s2. Which of the
formulae for kinetic energy (K) given below
can you rule out on the basis of
dimensional arguments (m stands for the
mass of the body) :

(a) K=m?v?

(b) K = (1/2)mv?

(c) K=ma

(d) K = (3/16)mv?

(e) K= (1/2)mv’+ ma

Answer Every correct formula or equation must
have the same dimensions on both sides of the
equation. Also, only quantities with the same
physical dimensions can be added or
subtracted. The dimensions of the quantity on
the right side are [M? L® T"®] for (a); [M L?T?] for
(b) and (d); [M L T?] for (c). The quantity on the
right side of (e) has no proper dimensions since
two quantities of different dimensions have been
added. Since the kinetic energy K has the
dimensions of [M L? T?], formulas (a), (c) and (e)
are ruled out. Note that dimensional arguments
cannot tell which of the two, (b) or (d), is the
correct formula. For this, one must turn to the
actual definition of kinetic energy (see
Chapter 5). The correct formula for kinetic
energy is given by (b). <

1.6.2 Deducing Relation among the
Physical Quantities

The method of dimensions can sometimes be
used to deduce relation among the physical
quantities. For this we should know the
dependence of the physical quantity on other
quantities (upto three physical quantities or
linearly independent variables) and consider it
as a product type of the dependence. Let us take
an example.

P Example 1.5 Consider a simple
pendulum, having a bob attached to a

string, that oscillates under the action of
the force of gravity. Suppose that the period
of oscillation of the simple pendulum
depends on its length (1), mass of the bob
(m) and acceleration due to gravity (g).
Derive the expression for its time period
using method of dimensions.

Answer The dependence of time period T on
the quantities /, gand m as a product may be
written as :

T=kFg nr

where k is dimensionless constant and x, y
and z are the exponents.

By considering dimensions on both sides, we
have

[Lo MoTl ] = [Ll ]x [Ll T—2 ]y [Ml ]z
= L T2 M~
On equating the dimensions on both sides,
we have
x+y=0;-2y=1;and z=0
1

S thtx:l =——.z=0
(6] a 2,y 2,

Then, T= kI* g*

l
, T=K, />
.

Note that value of constant k can not be obtained
by the method of dimensions. Here it does not
matter if some number multiplies the right side
of this formula, because that does not affect its
dimensions.

l
Actually, k = 21 so that T= 277\/; <

Dimensional analysis is very useful in deducing
relations among the interdependent physical
quantities. However, dimensionless constants
cannot be obtained by this method. The method
of dimensions can only test the dimensional
validity, but not the exact relationship between
physical quantities in any equation. It does not
distinguish between the physical quantities
having same dimensions.

A number of exercises at the end of this
chapter will help you develop skill in
dimensional analysis.
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10.

11.

SUMMARY

Physics is a quantitative science, based on measurement of physical quantities. Certain
physical quantities have been chosen as fundamental or base quantities (such as
length, mass, time, electric current, thermodynamic temperature, amount of substance,
and luminous intensity).

Each base quantity is defined in terms of a certain basic, arbitrarily chosen but properly
standardised reference standard called unit (such as metre, kilogram, second, ampere,
kelvin, mole and candela). The units for the fundamental or base quantities are called
fundamental or base units.

Other physical quantities, derived from the base quantities, can be expressed as a
combination of the base units and are called derived units. A complete set of units,
both fundamental and derived, is called a system of units.

The International System of Units (SI) based on seven base units is at present
internationally accepted unit system and is widely used throughout the world.

The SI units are used in all physical measurements, for both the base quantities and
the derived quantities obtained from them. Certain derived units are expressed by
means of SI units with special names (such as joule, newton, watt, etc).

The SI units have well defined and internationally accepted unit symbols (such as m
for metre, kg for kilogram, s for second, A for ampere, N for newton etc.).

Physical measurements are usually expressed for small and large quantities in scientific
notation, with powers of 10. Scientific notation and the prefixes are used to simplify
measurement notation and numerical computation, giving indication to the precision
of the numbers.

Certain general rules and guidelines must be followed for using notations for physical
quantities and standard symbols for SI units, some other units and SI prefixes for
expressing properly the physical quantities and measurements.

In computing any physical quantity, the units for derived quantities involved in the
relationship(s) are treated as though they were algebraic quantities till the desired
units are obtained.

In measured and computed quantities proper significant figures only should be retained.
Rules for determining the number of significant figures, carrying out arithmetic
operations with them, and ‘rounding off ‘ the uncertain digits must be followed.

The dimensions of base quantities and combination of these dimensions describe
the nature of physical quantities. Dimensional analysis can be used to check the
dimensional consistency of equations, deducing relations among the physical
quantities, etc. A dimensionally consistent equation need not be actually an
exact (correct) equation, but a dimensionally wrong or inconsistent equation
must be wrong.

EXERCISES

Note : In stating numerical answers, take care of significant figures.

1.1

1.2

Fill in the blanks

(a) The volume of a cube of side 1 cm is equal to ..... m?

(b) The surface area of a solid cylinder of radius 2.0 cm and height 10.0 cm is equal to
...(mm)?

(c) A vehicle moving with a speed of 18 km h™! covers...min 1 s

(d) The relative density of lead is 11.3. Its density is ....g cm™ or ....kg m=>.

Fill in the blanks by suitable conversion of units

(@ 1kgm?s? =....gcm?s?

b)) Im =..... ly

(¢)3.0ms? =....kmh?

(d) G=6.67x 10" Nm? (kg)2=.... cm)®s? g.
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UNITS AND MEASUREMENT

1.3 A calorie is a unit of heat (energy in transit) and it equals about 4.2 J where 1J =
1 kg m? s2. Suppose we employ a system of units in which the unit of mass equals o
kg, the unit of length equals S m, the unit of time is ys. Show that a calorie has a
magnitude 4.2 a! 32 y? in terms of the new units.

1.4 Explain this statement clearly :
“To call a dimensional quantity ‘large’ or ‘small’ is meaningless without specifying a
standard for comparison”. In view of this, reframe the following statements wherever
necessary :
(a) atoms are very small objects
(b) a jet plane moves with great speed
(c) the mass of Jupiter is very large
(d) the air inside this room contains a large number of molecules
(e) a proton is much more massive than an electron
(f) the speed of sound is much smaller than the speed of light.

1.5 A new unit of length is chosen such that the speed of light in vacuum is unity. What
is the distance between the Sun and the Earth in terms of the new unit if light takes
8 min and 20 s to cover this distance ?
1.6 Which of the following is the most precise device for measuring length :
(a) a vernier callipers with 20 divisions on the sliding scale
(b) a screw gauge of pitch 1 mm and 100 divisions on the circular scale
(c) an optical instrument that can measure length to within a wavelength of light ?
1.7 A student measures the thickness of a human hair by looking at it through a
microscope of magnification 100. He makes 20 observations and finds that the average
width of the hair in the field of view of the microscope is 3.5 mm. What is the
estimate on the thickness of hair ?

1.8 Answer the following :

(a)You are given a thread and a metre scale. How will you estimate the diameter of
the thread ?

(b)A screw gauge has a pitch of 1.0 mm and 200 divisions on the circular scale. Do
you think it is possible to increase the accuracy of the screw gauge arbitrarily by
increasing the number of divisions on the circular scale ?

(c) The mean diameter of a thin brass rod is to be measured by vernier callipers. Why
is a set of 100 measurements of the diameter expected to yield a more reliable
estimate than a set of 5 measurements only ?

1.9 The photograph of a house occupies an area of 1.75 cm? on a 35 mm slide. The slide
is projected on to a screen, and the area of the house on the screen is 1.55 m?. What
is the linear magnification of the projector-screen arrangement.

1.10 State the number of significant figures in the following :

(@) 0.007 m?

(b) 2.64 x 10%* kg
(c) 0.2370 g cm™®
(d) 6.320J

(e) 6.032 N m>
(f) 0.0006032 m?

1.11 Thelength, breadth and thickness of a rectangular sheet of metal are 4.234 m, 1.005 m, and
2.01 cm respectively. Give the area and volume of the sheet to correct significant figures.

1.12 The mass of a box measured by a grocer’s balance is 2.30 kg. Two gold pieces of
masses 20.15 g and 20.17 g are added to the box. What is (a) the total mass of the
box, (b) the difference in the masses of the pieces to correct significant figures ?

1.13 A famous relation in physics relates ‘moving mass’ m to the ‘rest mass’ m_of a
particle in terms of its speed v and the speed of light, c. (This relation first arose as
a consequence of special relativity due to Albert Einstein). A boy recalls the relation
almost correctly but forgets where to put the constant c. He writes :

_ My
2)1/2

m=
e

Guess where to put the missing c.

2024-25
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1.14 The unit of length convenient on the atomic scale is known as an angstrom and is
denoted by A: 1 A = 10'° m. The size of a hydrogen atom is about 0.5 A. What is the
total atomic volume in m® of a mole of hydrogen atoms ?

1.15 One mole of an ideal gas at standard temperature and pressure occupies 22.4 L
(molar volume). What is the ratio of molar volume to the atomic volume of a mole of
hydrogen ? (Take the size of hydrogen molecule to be about 1 A). Why is this ratio
so large ?

1.16 Explain this common observation clearly : If you look out of the window of a fast
moving train, the nearby trees, houses etc. seem to move rapidly in a direction opposite
to the train’s motion, but the distant objects (hill tops, the Moon, the stars etc.)
seem to be stationary. (In fact, since you are aware that you are moving, these
distant objects seem to move with you).

1.17 The Sun is a hot plasma (ionized matter) with its inner core at a temperature exceeding
107 K, and its outer surface at a temperature of about 6000 K. At these high
temperatures, no substance remains in a solid or liquid phase. In what range do you
expect the mass density of the Sun to be, in the range of densities of solids and
liquids or gases ? Check if your guess is correct from the following data : mass of the
Sun = 2.0 x10%° kg, radius of the Sun = 7.0 x 10® m.
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CHAPTER TwoO
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MOTION IN A STRAIGHT LINE

2.1
2.2

2.3
2.4

2.5

Introduction

Instantaneous velocity and
speed

Acceleration

Kinematic equations for
uniformly accelerated motion

Relative velocity
Summary

Points to ponder
Exercises

2.1 INTRODUCTION

Motion is common to everything in the universe. We walk,
run and ride a bicycle. Even when we are sleeping, air moves
into and out of our lungs and blood flows in arteries and
veins. We see leaves falling from trees and water flowing
down a dam. Automobiles and planes carry people from one
place to the other. The earth rotates once every twenty-four
hours and revolves round the sun once in a year. The sun
itself is in motion in the Milky Way, which is again moving
within its local group of galaxies.

Motion is change in position of an object with time. How
does the position change with time ? In this chapter, we shall
learn how to describe motion. For this, we develop the
concepts of velocity and acceleration. We shall confine
ourselves to the study of motion of objects along a straight
line, also known as rectilinear motion. For the case of
rectilinear motion with uniform acceleration, a set of simple
equations can be obtained. Finally, to understand the relative
nature of motion, we introduce the concept of relative velocity.

In our discussions, we shall treat the objects in motion as
point objects. This approximation is valid so far as the size
of the object is much smaller than the distance it moves in a
reasonable duration of time. In a good number of situations
in real-life, the size of objects can be neglected and they can
be considered as point-like objects without much error.

In Kinematics, we study ways to describe motion without
going into the causes of motion. What causes motion
described in this chapter and the next chapter forms the
subject matter of Chapter 4.
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2.2 INSTANTANEOUS VELOCITY AND SPEED

The average velocity tells us how fast an object
has been moving over a given time interval but
does not tell us how fast it moves at different
instants of time during that interval. For this,
we define instantaneous velocity or simply
velocity vat an instant t.

The velocity at an instant is defined as the
limit of the average velocity as the time interval
Atbecomes infinitesimally small. In other words,

. Ax
v= lim — (2.1a)
At - 0 At
_dx (2.1b)
dt
where the symbol im stands for the operation

of taking limit as~ Az-0 of the quantity on its
right. In the language of calculus, the quantity
on the right hand side of Eq. (2.1a) is the
differential coefficient of xwith respect to ¢t and

dx
is denoted by o (see Appendix 2.1). It is the

rate of change of position with respect to time,
at that instant.

We can use Eq. (2.1a) for obtaining the
value of velocity at an instant either
graphically or numerically. Suppose that we
want to obtain graphically the value of
velocity at time t=4 s (point P) for the motion
of the car represented in Fig.2.1 calculation.
Let us take At = 2 s centred at ¢t =4 s. Then,
by the definition of the average velocity, the
slope of line P,P, (Fig. 2.1) gives the value of
average velocity over the interval 3 s to 5 s.

20 1
3
16 1

x(m)14 1

2 25 3 35 4 45 5 55 6
tls) —>
Fig. 2.1 Determining velocity from position-time

graph. Velocity at t =4 s is the slope of the
tangent to the graph at that instant.

Now, we decrease the value of Atfrom 2 sto 1
s. Then line P,P, becomes Q,Q, and its slope
gives the value of the average velocity over
the interval 3.5 s to 4.5 s. In the limit At - O,
the line P P, becomes tangent to the position-
time curve at the point P and the velocity at ¢
= 4 s is given by the slope of the tangent at
that point. It is difficult to show this
process graphically. But if we use
numerical method to obtain the value of
the velocity, the meaning of the limiting
process becomes clear. For the graph shown
in Fig. 2.1, x = 0.08 3. Table 2.1 gives the
value of Ax/At calculated for At equal to 2.0 s,
1.0 s, 0.5s, 0.1 sand 0.01 s centred at ¢ =
4.0 s. The second and third columns give the

0 At O O AtC
= 0Ot - —0O t, = +—L
value of ¢, . B I]and 2 gt I:and the

fourth and the fifth columns give the

Ax
Table 2.1 Limiting value of —att=4s

x(t) x(t,)
(S) (m) (m)

2.16

1.0 3.5 4.5 3.43
0.5 3.75 4.25 4.21875
0.1 3.95 4.05 4.93039
0.01 3.995 4.005 5.100824

Ax [ At
(m s™)
10.0 7.84 3.92
7.29 3.86 3.86
6.14125 1.9225 3.845
5.31441 0.38402 3.8402
5.139224 0.0384 3.8400
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corresponding values of x, i.e. x(¢) = 0.08 t13

and x(z,) = 0.08 t23. The sixth column lists the
difference Ax = x (¢,) - x (¢)) and the last
column gives the ratio of Ax and At, i.e. the
average velocity corresponding to the value
of Atlisted in the first column.

We see from Table 2.1 that as we decrease
the value of At from 2.0 s to 0.010 s, the value of
the average velocity approaches the limiting
value 3.84 m s™! which is the value of velocity at

dx
t=4.0s,i.e. the value of ar at t=4.0 s. In this

manner, we can calculate velocity at each
instant for motion of the car.

The graphical method for the determination
of the instantaneous velocity is always not a
convenient method. For this, we must carefully
plot the position-time graph and calculate the
value of average velocity as At becomes smaller
and smaller. It is easier to calculate the value
of velocity at different instants if we have data
of positions at different instants or exact
expression for the position as a function of time.
Then, we calculate Ax/At from the data for
decreasing the value of Af and find the limiting
value as we have done in Table 2.1 or use
differential calculus for the given expression and

dx
calculate ar at different instants as done in

the following example.

P Example 2.1 The position of an object
moving along x-axis is given by x =a +bt®
where a=85m, b =2.5m s? and t is
measured in seconds. What is its velocity at
t=0s andt=2.0 s. What is the average
velocity betweent =2.0s andt =4.0's ?

Answer In notation of differential calculus, the
velocity is

vzg:i(a+bt2):2bt=5.0tms’l

dt dt

At t=0s, v=0ms?! andat ¢=2.0s,
v=10ms?’.

x(4.0) - x(2.0)

Average velocity = 20-20

_a+l6b-a-4b
2.0
=6.0x2.5=15ms" <

= 6.0xb

Note that for uniform motion, velocity is
the same as the average velocity at all
instants.

Instantaneous speed or simply speed is the
magnitude of velocity. For example, a velocity of
+ 24.0 m s! and a velocity of — 24.0 m s! —
both have an associated speed of 24.0 m s*. It
should be noted that though average speed over
a finite interval of time is greater or equal to the
magnitude of the average velocity,
instantaneous speed at an instant is equal to
the magnitude of the instantaneous velocity at
that instant. Why so ?

2.3 ACCELERATION

The velocity of an object, in general, changes
during its course of motion. How to describe
this change? Should it be described as the rate
of change in velocity with distance or with
time ? This was a problem even in Galileo’s
time. It was first thought that this change could
be described by the rate of change of velocity
with distance. But, through his studies of
motion of freely falling objects and motion of
objects on an inclined plane, Galileo concluded
that the rate of change of velocity with time is
a constant of motion for all objects in free fall.
On the other hand, the change in velocity with
distance is not constant — it decreases with the
increasing distance of fall. This led to the
concept of acceleration as the rate of change
of velocity with time.

The average acceleration a over a time interval
is defined as the change of velocity divided by
the time interval :

v, -v, _ Av
t, -t At

a - (2.2)

where v, and v, are the instantaneous velocities
or simply velocities at time ¢,and ¢, . It is the
average change of velocity per unit time. The SI
unit of acceleration is m s .

On a plot of velocity versus time, the average
acceleration is the slope of the straight line
connecting the points corresponding to (v, £,)
and (v,, t,).
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Instantaneous acceleration is defined in the
same way as the instantaneous velocity :

a = lim Av _dv
S a0 At dt 2.3)
The acceleration at an instant is the slope
of the tangent to the v-t curve at that
instant.

Since velocity is a quantity having both
magnitude and direction, a change in
velocity may involve either or both of these
factors. Acceleration, therefore, may result
from a change in speed (magnitude), a
change in direction or changes in both. Like
velocity, acceleration can also be positive,
negative or zero. Position-time graphs for
motion with positive, negative and zero
acceleration are shown in Figs. 2.4 (a), (b)
and (c), respectively. Note that the graph
curves upward for positive acceleration;
downward for negative acceleration and it is
a straight line for zero acceleration.

Although acceleration can vary with time,
our study in this chapter will be restricted
to motion with constant acceleration. In this
case, the average acceleration equals the
constant value of acceleration during the
interval. If the velocity of an objectis v at ¢
= 0 and v at time ¢, we have ’

as= t__l())" or, v=v, +at (2.4)
T Positive a T Negative a T a=0
X X] X
\/ /\
0 t—» 0 t— 0 —
(a) (b) ()

Fig. 2.2 Position-time graph for motion with
(a) positive acceleration; (b) negative
acceleration, and (c) zero acceleration.

Let us see how velocity-time graph looks like
for some simple cases. Fig. 2.3 shows velocity-
time graph for motion with constant acceleration
for the following cases :

(a) An object is moving in a positive direction

with a positive acceleration.

(b) An object is moving in positive direction

with a negative acceleration.

2024-25

(c) An object is moving in negative direction
with a negative acceleration.

(d) An object is moving in positive direction
till time ¢,, and then turns back with the
same negative acceleration.

An interesting feature of a velocity-time
graph for any moving object is that the area
under the curve represents the
displacement over a given time interval. A
general proof of this statement requires use of
calculus. We can, however, see that it is true
for the simple case of an object moving with
constant velocity u. Its velocity-time graph is
as shown in Fig. 2.4.

v

)
t b
0 > 2y
B i " ti\j
R 1 S
_v_______________l

(©) (d)

Fig. 2.3 Velocity—-time graph for motions with
constant acceleration. (a) Motion in positive
direction with positive acceleration,
(b) Motion in positive direction with
negative acceleration, (c) Motion in
negative direction with negative
acceleration, (d) Motion of an object with
negative acceleration that changes
direction at time t,. Between times O to
t, it moves in positive x - direction
and between t, and t, it moves in the
opposite direction.
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c—>

T t—

Fig. 2.4 Area under v-t curve equals displacement
of the object over a given time interval.

The v-t curve is a straight line parallel to the
time axis and the area under it between t = 0
and t = T'is the area of the rectangle of height u
and base T. Therefore, area = u X T = uT which
is the displacement in this time interval. How
come in this case an area is equal to a distance?
Think! Note the dimensions of quantities on
the two coordinate axes, and you will arrive at
the answer.

Note that the x-t, v-t, and a-t graphs shown
in several figures in this chapter have sharp
kinks at some points implying that the
functions are not differentiable at these
points. In any realistic situation, the
functions will be differentiable at all points
and the graphs will be smooth.

What this means physically is that
acceleration and velocity cannot change
values abruptly at an instant. Changes are
always continuous.

2.4 KINEMATIC EQUATIONS
UNIFORMLY ACCELERATED MOTION

For uniformly accelerated motion, we can derive
some simple equations that relate displacement
(x, time taken (1), initial velocity (v,), final
velocity (v) and acceleration (a). Equation (2.4)
already obtained gives a relation between final
and initial velocities vand v, of an object moving
with uniform acceleration a :

FOR

v=uv,+at 2.4)

This relation is graphically represented in Fig. 2.5.
The area under this curve is :

Area between instants O and t = Area of triangle
ABC + Area of rectangle OACD

(v—vo)t +u,t

N |~

A
v | C
0 1

I

I

I

I

I

I

1 D
O t—»

Fig. 2.5 Area under v-t curve for an object with

uniform acceleration.

As explained in the previous section, the area
under v-t curve represents the displacement.
Therefore, the displacement x of the object is :

1
X = E(v—vo)t +u,t (2.5)
But v-v, =at
1
Therefore, x = —a t~ +v,t
2
A 1
or, X = Uot +§at (26)
Equation (2.5) can also be written as
+ —
LW (2.72)
where,
- v+,
L= ) (constant acceleration only)
(2.7b)

Equations (2.7a) and (2.7b) mean that the object
has undergone displacement x with an average
velocity equal to the arithmetic average of the
initial and final velocities.

From Eq. (2.4), t=(v-v,)/a. Substituting this in
Eq. (2.7a), we get

(2.8)
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This equation can also be obtained by
substituting the value of tfrom Eq. (2.4) into Eq.
(2.6). Thus, we have obtained three important
equations :

v=yp, tat
1
x=v0t+—at2
2

v® = V7 +2ax (2.9a)

connecting five quantities v,, v, a, tand x. These
are kinematic equations of rectilinear motion for
constant acceleration.

The set of Eq. (2.9a) were obtained by
assuming that at t= 0, the position of the particle,
xis 0. We can obtain a more general equation if
we take the position coordinate at t= 0 as non-
zero, say x,. Then Egs. (2.9a) are modified
(replacing x by x- x,) to :

v=yp, tat
X =X, + Ut +%at2 (2.9p)
v? =03 +2alx - x,) (2.90)

P Example 2.2 Obtain equations of motion
for constant acceleration using method of
calculus.

Answer By definition
_dv
dt

dv=adt
Integrating both sides

v t
Uodv = J’oa dt

t
—aIOdt (a is
constant)

v-U, =at
v=y, tat
dx
v=—
dt

dx=vdt
Integrating both sides

Further,

x t
Xodx =J'Ov dt

2024-25

=J’;(vo+at) dt
X=X, =0V t+la t?
0 0 2

x =x0+v0t+%at2

We can write

dv_dv dx_ do
dt dx dt dx
or,vdv=adx
Integrating both sides,
‘vdv = d
J’UO vdv J’XO adx
v -2

v? =vf +2a(x - x,)
The advantage of this method is that it can be used
for motion with non-uniform acceleration
also.
Now, we shall use these equations to some
important cases. <4

P Example 2.3 A ball is thrown vertically
upwards with a velocity of 20 m s™! from
the top of a multistorey building. The
height of the point from where the ball is
thrown is 25.0 m from the ground. (a) How
high will the ball rise ? and (b) how long
will it be before the ball hits the ground?
Take g = 10 m s2.

Answer (a) Let us take the y-axis in the
vertically upward direction with zero at the
ground, as shown in Fig. 2.6.
Now v =+20ms,
a=-g=-10m s?,
v=0ms"
If the ball rises to height y from the point of
launch, then using the equation
vi= v, +2a (y-y,
we get
0 = (20)* + 2(-10)(y - y,)

Solving, we get, (y -y,) =20 m.

(b) We can solve this part of the problem in two
ways. Note carefully the methods used.
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,B’ ~n
b
i i [y_yo)
A
| y
i a=-10 m/s?
25m i
v
, |
C 0
Fig. 2.6

FIRST METHOD : In the first method, we split
the path in two parts : the upward motion (A to
B) and the downward motion (B to C) and
calculate the corresponding time taken t, and
t,. Since the velocity at B is zero, we have :

v =yt at
0=20 -10t,
Or, t1=23

This is the time in going from A to B. From B, or
the point of the maximum height, the ball falls
freely under the acceleration due to gravity. The
ball is moving in negative y direction. We use
equation

Y=Y, +upt +%at2
We have, y, =45m, y=0,v,=0,a=-g =-10ms™
0 = 45+ () (-10) t,?
Solving, we gett, =3 s
Therefore, the total time taken by the ball before
it hits the ground =t + t, = 2s+3s=5s.

SECOND METHOD : The total time taken can
also be calculated by noting the coordinates of
initial and final positions of the ball with respect
to the origin chosen and using equation

Y=y, tu,t +%at2

Now y=0m

a =-10m s2,

Y, =25m

v,=20m s, t=2?

0=25 +20t + (¥.) (-10)
Or, 5¢2-20t -25 = 0
Solving this quadratic equation for t, we get
t=D5s
Note that the second method is better since we
do not have to worry about the path of the motion
as the motion is under constant acceleration.

<

Example 2.4 Free-fall : Discuss the
motion of an object under free fall. Neglect
air resistance.

Answer An object released near the surface of
the Earth is accelerated downward under the
influence of the force of gravity. The magnitude
of acceleration due to gravity is represented by
g. If air resistance is neglected, the object is
said to be in free fall. If the height through
which the object falls is small compared to the
earth’s radius, g can be taken to be constant,
equal to 9.8 m s2. Free fall is thus a case of
motion with uniform acceleration.

We assume that the motion is in y-direction,
more correctly in —y-direction because we
choose upward direction as positive. Since the
acceleration due to gravity is always downward,
it is in the negative direction and we have

a=-g =-9.8ms™
The object is released from rest at y = 0. Therefore,
v, = 0 and the equations of motion become:

v=0-gt =98t ms!
y=0-% gt2 =-49t> m
¥»=0-2gy =-19.6y m?s?

These equations give the velocity and the
distance travelled as a function of time and also
the variation of velocity with distance. The
variation of acceleration, velocity, and distance,
with time have been plotted in Fig. 2.7(a), (b)
and (c).

I I
5L
-10E= 5
T 9.8 m/s
a
(m/s’)
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Fig. 2.7 Motion of an object under free fall.
(a) Variation of acceleration with time.
(b) Variation of velocity with time.
(c) Variation of distance with time <

p Example 2.5 Galileo’s law of odd
numbers : “The distances traversed, during
equal intervals of time, by a body falling
fromrest, stand to one another in the same
ratio as the odd numbers beginning with
unity [namely, 1: 3: 5: 7...... ].” Prove it.

Answer Let us divide the time interval of
motion of an object under free fall into many
equal intervals T and find out the distances

PHYSICS

traversed during successive intervals of
time. Since initial velocity is zero, we have

__1

y= 5 gt
Using this equation, we can calculate the
position of the object after different time
intervals, O, T, 2T, 3T... which are given in
second column of Table 2.2. If we take
(-1/2) gr*as y,— the position coordinate after
first time interval T, then third column gives
the positions in the unit of y . The fourth
column gives the distances traversed in
successive Ts. We find that the distances are
in the simple ratio 1: 3: 5: 7: 9: 11... as shown
in the last column. This law was established
by Galileo Galilei (1564-1642) who was the first
to make quantitative studies of free fall. <«

p Example 2.6 Stopping distance of
vehicles : When brakes are applied to a
moving vehicle; the distance it travels before
stopping is called stopping distance. It is
an important factor for road safety and
depends on the initial velocity (v) and the
braking capacity, or deceleration, —a that
is caused by the braking. Derive an
expression for stopping distance of a vehicle
in terms of v, and a.

Answer Let the distance travelled by the vehicle
before it stops be d.. Then, using equation of
motion v* =v?+2 ax, and noting that v=0, we
have the stopping distance

2
_ "W

* 2a
Thus, the stopping distance is proportional to
the square of the initial velocity. Doubling the

Table 2.2

y in terms of
Y, [=(- ) g ]

Ratio of
distances
traversed

Distance
traversed in
successive
intervals

0 0 0

T -(1/2) g Y,
21 4(1/2) g 7 4y,
31 9(1/2) g * 9y,
41 16(1/2) g<* 16y,
51 25(1/2) g 25y,
61 -36(1/2) g > 36y,

— O N O W~

o
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initial velocity increases the stopping distance
by a factor of 4 (for the same deceleration).

For the car of a particular make, the braking
distance was found to be 10 m, 20 m, 34 m and
50 m corresponding to velocities of 11, 15, 20
and 25 m/s which are nearly consistent with
the above formula.

Stopping distance is an important factor
considered in setting speed limits, for example,
in school zones. <4

P> Example 2.7 Reaction time : When a
situation demands our immediate
action, it takes some time before we
really respond. Reaction time is the
time a person takes to observe, think
and act. For example, if a person is
driving and suddenly a boy appears on
the road, then the time elapsed before
he slams the brakes of the car is the
reaction time. Reaction time depends
on complexity of the situation and on
an individual.

You can measure your reaction
time by a simple experiment. Take a
ruler and ask your friend to drop it
vertically through the gap between
your thumb and forefinger (Fig. 2.8).
After you catch it, find the distance d
travelled by the ruler. In a particular
case, d was found to be21.0 cm.
Estimate reaction time.

21

Fig. 2.8 Measuring the reaction time.

Answer The ruler drops under free fall.
Therefore, v, = 0, and a = -g=-9.8 m s. The
distance travelled d and the reaction time ¢ _are
related by

1
d=-=gt?
5 95

t. = fgs
g

Given d=21.0 cm and g= 9.8 m s the reaction
time is

tr:4’2x0.21 s=0.2s. <
9.8

Or,

SUMMARY

1. An object is said to be in motion if its position changes with time. The position of the
object can be specified with reference to a conveniently chosen origin. For motion in
a straight line, position to the right of the origin is taken as positive and to the left as

negative.

The average speed of an object is greater or equal to the magnitude of the average

velocity over a given time interval.

2. Instantaneous velocity or simply velocity is defined as the limit of the average velocity
as the time interval At becomes infinitesimally small :

Ax _dx

v=limv=lim —
At-0 At

At- 0

T dt

The velocity at a particular instant is equal to the slope of the tangent drawn on

position-time graph at that instant.
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3. Average acceleration is the change in velocity divided by the time interval during which
the change occurs :

— _Av
a=—
At
4. Instantaneous acceleration is defined as the limit of the average acceleration as the
time interval At goes to zero :

Av _dv

= lima = lim — =—

At- 0 at-0 At dt
The acceleration of an object at a particular time is the slope of the velocity-time
graph at that instant of time. For uniform motion, acceleration is zero and the x-t
graph is a straight line inclined to the time axis and the v-t graph is a straight line
parallel to the time axis. For motion with uniform acceleration, x-¢ graph is a parabola

while the v-t graph is a straight line inclined to the time axis.

5. The area under the velocity-time curve between times ¢, and ¢, is equal to the displacement
of the object during that interval of time.

6. For objects in uniformly accelerated rectilinear motion, the five quantities, displacement
x, time taken ¢, initial velocity v, final velocity vand acceleration a are related by a set
of simple equations called kinematic equations of motion :

v=v,+ at
1 5
X =yt +—at
2
v’ =v§+2ax

if the position of the object at time ¢ =0 is 0. If the particle starts at x = x,, xin above
equations is replaced by (x - x,).

Physical Symbol |Dimensions Remarks
quantity

Path length
Displacement Ax [L] m =X, - X
In one dimension, its sign
indicates the direction.
Velocity [LT] ms’
- Ax
(a) Average v =—
At
(b) Instantaneous » _ lim  Ax _dx
At - 0 At dt
In one dimension, its sign
indicates the direction.
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2.

POINTS TO PONDER
1.

The origin and the positive direction of an axis are a matter of choice. You should first specify
this choice before you assign signs to quantities like displacement, velocity and acceleration.
If a particle is speeding up, acceleration is in the direction of velocity; if its speed is
decreasing, acceleration is in the direction opposite to that of the velocity. This
statement is independent of the choice of the origin and the axis.

The sign of acceleration does not tell us whether the particle’s speed is increasing or
decreasing. The sign of acceleration (as mentioned in point 3) depends on the choice
of the positive direction of the axis. For example, if the vertically upward direction is
chosen to be the positive direction of the axis, the acceleration due to gravity is
negative. If a particle is falling under gravity, this acceleration, though negative,
results in increase in speed. For a particle thrown upward, the same negative
acceleration (of gravity) results in decrease in speed.

The zero velocity of a particle at any instant does not necessarily imply zero acceleration
at that instant. A particle may be momentarily at rest and yet have non-zero acceleration.
For example, a particle thrown up has zero velocity at its uppermost point but the
acceleration at that instant continues to be the acceleration due to gravity.

In the kinematic equations of motion [Eq. (2.9)], the various quantities are algebraic,
i.e. they may be positive or negative. The equations are applicable in all situations
(for one dimensional motion with constant acceleration) provided the values of different
quantities are substituted in the equations with proper signs.

The definitions of instantaneous velocity and acceleration (Egs. (2.1) and (2.3)) are
exact and are always correct while the kinematic equations (Eq. (2.9)) are true only for
motion in which the magnitude and the direction of acceleration are constant during
the course of motion.

2024-25
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2.1

2.2

2.3

2.4

2.5

2.6

2.7

EXERCISES

In which of the following examples of motion, can the body be considered
approximately a point object:

(a) a railway carriage moving without jerks between two stations.

(b) a monkey sitting on top of a man cycling smoothly on a circular track.

(c) a spinning cricket ball that turns sharply on hitting the ground.

(d) a tumbling beaker that has slipped off the edge of a table.

The position-time (x-¢ graphs for two children A and B returning from their school
O to their homes P and Q respectively are shown in Fig. 2.9. Choose the correct
entries in the brackets below ;

(a) (A/B) lives closer to the school than (B/A)

(b) (A/B) starts from the school earlier than (B/A)
(c) (A/B) walks faster than (B/A)
(d) A and B reach home at the (same/different) time
(e) (A/B) overtakes (B/A) on the road (once/twice).
X
ol
Pl
A
B
0 t
Fig. 2.9

A woman starts from her home at 9.00 am, walks with a speed of 5 km hlona
straight road up to her office 2.5 km away, stays at the office up to 5.00 pm, and
returns home by an auto with a speed of 25 km h~Ll. Choose suitable scales and
plot the x-t graph of her motion.

A drunkard walking in a narrow lane takes 5 steps forward and 3 steps backward,
followed again by 5 steps forward and 3 steps backward, and so on. Each step is 1 m
long and requires 1 s. Plot the x-¢ graph of his motion. Determine graphically and
otherwise how long the drunkard takes to fall in a pit 13 m away from the start.

A car moving along a straight highway with speed of 126 km h1lis brought to a

stop within a distance of 200 m. What is the retardation of the car (assumed

uniform), and how long does it take for the car to stop ?

A player throws a ball upwards with an initial speed of 29.4 m s!.

(a) What is the direction of acceleration during the upward motion of the ball ?

(b) What are the velocity and acceleration of the ball at the highest point of its motion ?

(c) Choose the x=0 m and ¢ = 0 s to be the location and time of the ball at its
highest point, vertically downward direction to be the positive direction of
x-axis, and give the signs of position, velocity and acceleration of the ball
during its upward, and downward motion.

(d) To what height does the ball rise and after how long does the ball return to the
player’s hands ? (Take g= 9.8 m s? and neglect air resistance).

Read each statement below carefully and state with reasons and examples, if it is

true or false ;

A particle in one-dimensional motion

(a) with zero speed at an instant may have non-zero acceleration at that instant

(b) with zero speed may have non-zero velocity,

(c) with constant speed must have zero acceleration,

(d) with positive value of acceleration must be speeding up.
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2.8

2.9

2.11

2.12

A ball is dropped from a height of 90 m on a floor. At each collision with the floor,
the ball loses one tenth of its speed. Plot the speed-time graph of its motion
between t=0 to 12 s.

Explain clearly, with examples, the distinction between :

(a) magnitude of displacement (sometimes called distance) over an interval of time,
and the total length of path covered by a particle over the same interval;

(b) magnitude of average velocity over an interval of time, and the average speed
over the same interval. [Average speed of a particle over an interval of time is
defined as the total path length divided by the time interval]. Show in both (a)
and (b) that the second quantity
is either greater than or equal to
the first. When is the equality sign x
true ? [For simplicity, consider

\

N
v
one-dimensional motion only]. / \
A man walks on a straight road from >
his home to a market 2.5 km away with \_/ t
a speed of 5 km h~1l, Finding the
market closed, he instantly turns and
walks back home with a speed of 7.5
km h~l. What is the () (b)
(a) magnitude of average velocity, and
(b) average speed of the man over the Speed
interval of time (i) O to 30 min, (ii) 4
0 to 50 min, (iii) O to 40 min ?
[Note: You will appreciate from this
exercise why it is better to define /\ /\ «
average speed as total path length \/ \ R
divided by time, and not as
magnitude of average velocity. You [
would not like to tell the tired man t

on his return home that his (c) (d)
average speed was zero !] Fig. 2.10

In Exercises 2.9 and 2.10, we have
carefully distinguished between
average speed and magnitude of average
velocity. No such distinction is necessary when N
we consider instantaneous speed and XZ
magnitude of velocity. The instantaneous speed
is always equal to the magnitude of
instantaneous velocity. Why?

Look at the graphs (a) to (d) (Fig. 2.10) carefully
and state, with reasons, which of these cannot
possibly represent one-dimensional motion of
a particle.

Figure 2.11shows the x-t plot of one- 0 t
dimensional motion of a particle. Is it correct
to say from the graph that the particle moves Fig. 2.11
in a straight line for ¢ < 0 and on a parabolic

path for £>0 ? If not, suggest a suitable physical

context for this graph.

A police van moving on a highway with a speed of
30 km h fires a bullet at a thief's car speeding away in
the same direction with a speed of 192 km h!. If the muzzle
speed of the bullet is 150 m s, with what speed does the
bullet hit the thief's car ? (Note: Obtain that speed which
is relevant for damaging the thief's car).

Total path
length

v
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2.15

Suggest a suitable physical situation for each of the following graphs (Fig 2.12):

AR

B;t,

(a)

1)

)\

(b) (©

\

Fig. 2.12

Figure 2.13 gives the x-t plot of a particle executing one-dimensional simple
harmonic motion. (You will learn about this motion in more detail in Chapter13).
Give the signs of position, velocity and acceleration variables of the particle at

t=0.3s,1.2s,-1.2s.

N
X

Fig. 2.13

Figure 2.14 gives the x-t plot of a
particle in one-dimensional motion.
Three different equal intervals of time
are shown. In which interval is the
average speed greatest, and in which
is it the least ? Give the sign of average
velocity for each interval.

Figure 2.15 gives a speed-time graph of
a particle in motion along a constant
direction. Three equal intervals of time
are shown. In which interval is the
average acceleration greatest in
magnitude? In which interval is the
average speed greatest ? Choosing the
positive direction as the constant
direction of motion, give the signs of v
and a in the three intervals. What are
the accelerations at the points A, B, C
and D ?

2024-25
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CHAPTER THREE
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MorTiON IN A PLANE

3.1
3.2
3.3

3.4

3.5
3.6

3.7
3.8

3.9

Introduction
Scalars and vectors

Multiplication of vectors by
real numbers

Addition and subtraction of
vectors — graphical method
Resolution of vectors

Vector addition — analytical
method

Motion in a plane

Motion in a plane with
constant acceleration

Projectile motion

3.10 Uniform circular motion

Summary
Points to ponder
Exercises

3.1 INTRODUCTION

In the last chapter we developed the concepts of position,
displacement, velocity and acceleration that are needed to
describe the motion of an object along a straight line. We
found that the directional aspect of these quantities can be
taken care of by + and - signs, as in one dimension only two
directions are possible. But in order to describe motion of an
object in two dimensions (a plane) or three dimensions
(space), we need to use vectors to describe the above-
mentioned physical quantities. Therefore, it is first necessary
to learn the language of vectors. What is a vector? How to
add, subtract and multiply vectors ? What is the result of
multiplying a vector by a real number ? We shall learn this
to enable us to use vectors for defining velocity and
acceleration in a plane. We then discuss motion of an object
in a plane. As a simple case of motion in a plane, we shall
discuss motion with constant acceleration and treat in detail
the projectile motion. Circular motion is a familiar class of
motion that has a special significance in daily-life situations.
We shall discuss uniform circular motion in some detail.
The equations developed in this chapter for motion in a
plane can be easily extended to the case of three dimensions.

3.2 SCALARS AND VECTORS

In physics, we can classify quantities as scalars or
vectors. Basically, the difference is that a direction is
associated with a vector but not with a scalar. A scalar
quantity is a quantity with magnitude only. It is specified
completely by a single number, along with the proper
unit. Examples are : the distance between two points,
mass of an object, the temperature of a body and the
time at which a certain event happened. The rules for
combining scalars are the rules of ordinary algebra.
Scalars can be added, subtracted, multiplied and divided
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just as the ordinary numbers®. For example,
if the length and breadth of a rectangle are
1.0 m and 0.5 m respectively, then its
perimeter is the sum of the lengths of the
four sides, 1.0 m + 0.5 m +1.0 m + 0.5 m =
3.0 m. The length of each side is a scalar
and the perimeter is also a scalar. Take
another example: the maximum and
minimum temperatures on a particular day
are 35.6 C and 24.2 C respectively. Then,
the difference between the two temperatures
is 11.4 C. Similarly, if a uniform solid cube
of aluminium of side 10 cm has a mass of
2.7 kg, then its volume is 10® m? (a scalar)
and its density is 2.7x10% kg m= (a scalar).

A vector quantity is a quantity that has both
a magnitude and a direction and obeys the
triangle law of addition or equivalently the
parallelogram law of addition. So, a vector is
specified by giving its magnitude by a number
and its direction. Some physical quantities that
are represented by vectors are displacement,
velocity, acceleration and force.

To represent a vector, we use a bold face type
in this book. Thus, a velocity vector can be
represented by a symbol v. Since bold face is
difficult to produce, when written by hand, a
vector is often represented by an arrow placed
over a letter, say U. Thus, both v and D
represent the velocity vector. The magnitude of
a vector is often called its absolute value,
indicated by |Ivl = v. Thus, a vector is
represented by a bold face, e.g. by A, a, p, q, T, ...
X, y, with respective magnitudes denoted by light
faceA,a,p,q. r,...x, y.

3.2.1 Position and Displacement Vectors

To describe the position of an object moving in
a plane, we need to choose a convenient point,
say O as origin. Let P and P’ be the positions of
the object at time tand ¢, respectively [Fig. 3.1(a)].
We join O and P by a straight line. Then, OP is
the position vector of the object at time . An
arrow is marked at the head of this line. It is
represented by a symbolr, i.e. OP =r. Point P'is

represented by another position vector, OP’
denoted by r’. The length of the vector r
represents the magnitude of the vector and its
direction is the direction in which P lies as seen
from O. If the object moves from P to P, the
vector PP’ (with tail at P and tip at P') is called
the displacement vector corresponding to
motion from point P (at time 9 to point P’ (at time 7).

y4 F
Yy
P’ D Q
b E
r’ B
\y
P
o) > O] -5 >
X X
(a) (b)
Fig. 3.1 (a) Position and displacement vectors.

(b) Displacement vector PQ and different
courses of motion.

It is important to note that displacement
vector is the straight line joining the initial and
final positions and does not depend on the actual
path undertaken by the object between the two
positions. For example, in Fig. 3.1(b), given the
initial and final positions as P and Q, the
displacement vector is the same PQ for different
paths of journey, say PABCQ, PDQ, and PBEFQ.
Therefore, the magnitude of displacement is
either less or equal to the path length of an
object between two points. This fact was
emphasised in the previous chapter also while
discussing motion along a straight line.

3.2.2 Equality of Vectors

Two vectors A and B are said to be equal if, and
only if, they have the same magnitude and the
same direction.**

Figure 3.2(a) shows two equal vectors A and
B. We can easily check their equality. Shift B
parallel to itself until its tail Q coincides with that
of A, i.e. Q coincides with O. Then, since their
tips S and P also coincide, the two vectors are
said to be equal. In general, equality is indicated

* Addition and subtraction of scalars make sense only for quantities with same units. However, you can multiply

and divide scalars of different units.

** In our study, vectors do not have fixed locations. So displacing a vector parallel to itself leaves the vector
unchanged. Such vectors are called free vectors. However, in some physical applications, location or line of
application of a vector is important. Such vectors are called localised vectors.
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Fig. 3.2 (a) Two equal vectors A and B. (b) Two
vectors A' and B' are unequal though they

are of the same length.

as A = B. Note that in Fig. 3.2(b), vectors A’ and
B’ have the same magnitude but they are not
equal because they have different directions.
Even if we shift B' parallel to itself so that its tail
Q' coincides with the tail O' of A', the tip S' of B'
does not coincide with the tip P' of A'.

3.3 MULTIPLICATION OF VECTORS BY REAL
NUMBERS

Multiplying a vector A with a positive number A
gives a vector whose magnitude is changed by
the factor A but the direction is the same as that
ofA:

(hAl=AUALifA> 0.

For example, if A is multiplied by 2, the resultant
vector 2A is in the same direction as A and has
a magnitude twice of | A| as shown in Fig. 3.3(a).

Multiplying a vector A by a negative number
-\ gives another vector whose direction is
opposite to the direction of A and whose
magnitude is A times |A|.

Multiplying a given vector A by negative
numbers, say -1 and -1.5, gives vectors as
shown in Fig 3.3(b).

A
g
(a)

Fig. 3.3 (a) Vector A and the resultant vector after
multiplying A by a positive number 2.
(b) Vector A and resultant vectors after
multiplying it by a negative number —1
and —1.5.

The factor A by which a vector A is multiplied
could be a scalar having its own physical
dimension. Then, the dimension of A A is the
product of the dimensions of A and A. For
example, if we multiply a constant velocity vector
by duration (of time), we get a displacement
vector.

3.4 ADDITION AND SUBTRACTION
VECTORS — GRAPHICAL METHOD

OF

As mentioned in section 4.2, vectors, by
definition, obey the triangle law or equivalently,
the parallelogram law of addition. We shall now
describe this law of addition using the graphical
method. Let us consider two vectors A and B that
lie in a plane as shown in Fig. 3.4(a). The lengths
of the line segments representing these vectors
are proportional to the magnitude of the vectors.
To find the sum A + B, we place vector B so that
its tail is at the head of the vector A, as in
Fig. 3.4(b). Then, we join the tail of A to the head
of B. This line OQ represents a vector R, that is,
the sum of the vectors A and B. Since, in this
procedure of vector addition, vectors are

(a) (b)
A
et
) B
SN

C

() (d)

Fig. 3.4 (a) Vectors A and B. (b) Vectors A and B
added graphically. (c) Vectors B and A
added graphically. (d) Illustrating the
associative law of vector addition.
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arranged head to tail, this graphical method is
called the head-to-tail method. The two vectors
and their resultant form three sides of a triangle,
so this method is also known as triangle method
of vector addition. If we find the resultant of
B + A as in Fig. 3.4(c), the same vector R is
obtained. Thus, vector addition is commutative:

A+B=B+A (3.1)

The addition of vectors also obeys the associative
law as illustrated in Fig. 3.4(d). The result of
adding vectors A and B first and then adding
vector C is the same as the result of adding B
and C first and then adding vector A :

A+B)+C=A+(B+C) (3.2)

What is the result of adding two equal and
opposite vectors ? Consider two vectors A and
—A shown in Fig. 3.3(b). Their sum is A + (-A).
Since the magnitudes of the two vectors are the
same, but the directions are opposite, the
resultant vector has zero magnitude and is
represented by O called a null vector or a zero
vector:

A-A=0 |0|=0 (8.3)
Since the magnitude of a null vector is zero, its
direction cannot be specified.

The null vector also results when we multiply
a vector A by the number zero. The main
properties of O are :

A+0=A
A0O=0
0A=0 (3.4)
/
B
-B

(a)

What is the physical meaning of a zero vector?
Consider the position and displacement vectors
in a plane as shown in Fig. 3.1(a). Now suppose
that an object which is at P at time ¢, moves to
P’ and then comes back to P. Then, what is its
displacement? Since the initial and final
positions coincide, the displacement is a “null
vector”.

Subtraction of vectors can be defined in terms
of addition of vectors. We define the difference
of two vectors A and B as the sum of two vectors
Aand-B:

A-B=A+(-B) (3.5)

It is shown in Fig 3.5. The vector -B is added to
vector Ato get R,= (A-B). Thevector R, =A+B
is also shown in the same figure for comparison.
We can also use the parallelogram method to
find the sum of two vectors. Suppose we have
two vectors A and B. To add these vectors, we
bring their tails to a common origin O as
shown in Fig. 3.6(a). Then we draw a line from
the head of A parallel to B and another line from
the head of B parallel to A to complete a
parallelogram OQSP. Now we join the point of
the intersection of these two lines to the origin
O. The resultant vector R is directed from the
common origin O along the diagonal (OS) of the
parallelogram [Fig. 3.6(b)]. In Fig.3.6(c), the
triangle law is used to obtain the resultant of A
and B and we see that the two methods yield the
same result. Thus, the two methods are
equivalent.

(b)

Fig. 3.5 (a) Two vectors A and B, - B is also shown. (b) Subtracting vector B from vector A - the result is R,. For
comparison, addition of vectors A and B, i.e. R, is also shown.
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A
(a) (b)

(©)

Fig. 3.6 (a) Two vectors A and B with their tails brought to a common origin. (b) The sum A + B obtained using
the parallelogram method. (c) The parallelogram method of vector addition is equivalent to the triangle

method.

P Example 3.1 Rain is falling vertically with
a speed of 35 m s!. Winds starts blowing
after sometime with a speed of 12 m s! in
east to west direction. In which direction
should a boy waiting at a bus stop hold
his umbrella ?

Vyw

Fig. 3.7

Answer The velocity of the rain and the wind
are represented by the vectorsv_andv_in  Fig.
3.7 and are in the direction specified by the
problem. Using the rule of vector addition, we
see that the resultant of v_and v_ is R as shown
in the figure. The magnitude of R is

R:\/vr2+uL2U :x/352 +12° ms ' =37ms !
The direction 6 that R makes with the vertical
is given by

12

tan 6 =2 =22 = 0,343
35

D,

r

Or,  g=tan'(0.343)=19°

Therefore, the boy should hold his umbrella
in the vertical plane at an angle of about 19°
with the vertical towards the east. <

3.5 RESOLUTION OF VECTORS

Let a and b be any two non-zero vectors in a
plane with different directions and let A be
another vector in the same plane (Fig. 3.8). A
can be expressed as a sum of two vectors — one
obtained by multiplying a by a real number and
the other obtained by multiplying b by another
real number. To see this, let O and P be the tail
and head of the vector A. Then, through O, draw
a straight line parallel to a, and through P, a
straight line parallel to b. Let them intersect at
Q. Then, we have

A=0P =0Q + QP 3.6)

But since OQ is parallel to a, and QP is parallel
to b, we can write :

OQ=2Aa,andQP=pub (8.7)
where A and p are real numbers.
Therefore, A=Aa+ub (3.8

P
A\
A ub
T 0
Aa Q
(a) (b)

Fig. 3.8 (a) Two non-colinear vectors a and b.
(b) Resolving a vector A in terms of vectors
a andb.

We say that A has been resolved into two
component vectors A a and ub along a and b
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respectively. Using this method one can resolve
a given vector into two component vectors along
a set of two vectors — all the three lie in the same
plane. It is convenient to resolve a general vector
along the axes of a rectangular coordinate
system using vectors of unit magnitude. These
are called unit vectors that we discuss now. A
unit vector is a vector of unit magnitude and
points in a particular direction. It has no
dimension and unit. It is used to specify a
direction only. Unit vectors along the x-, y- and
z-axes of a rectangular coordinate system are

denoted by i 3 and k, respectively, as shown

in Fig. 3.9(a).
Since these are unit vectors, we have

0i0=0j0= Ok 01

These unit vectors are perpendicular to each
other. In this text, they are printed in bold face
with a cap (#) to distinguish them from other
vectors. Since we are dealing with motion in two
dimensions in this chapter, we require use of
only two unit vectors. If we multiply a unit vector,

(3.9

say N by a scalar, the result is a vector
A =N In general, a vector A can be written as

A=|A|n (3.10)

where R is a unit vector along A.

We can now resolve a vector A in terms

PHYSICS
and A, is parallel to 3 we have :
A=A, A=A (3.11)
where A_and A, are real numbers.
Thus, A=A _i+A j (3.12)

This is represented in Fig. 3.9(c). The quantities
A, and A are called x-, and y- components of the
vector A. Note that A_is itself not a vector, but

A 1 is a vector, and so is A, 3 Using simple
trigonometry, we can express A_and A in terms
of the magnitude of A and the angle 0 it makes
with the x-axis :

A, =Acos 0

Ay =Asin 6 (3.13)

As is clear from Eq. (3.13), a component of a
vector can be positive, negative or zero
depending on the value of 6.

Now, we have two ways to specify a vector A
in a plane. It can be specified by :
(i) its magnitude A and the direction 0 it makes

with the x-axis; or

(ii) its components A and Ay

IfAand 8 are given, A and A can be obtained
using Eq. (3.13). If A and A are given, Aand 6
can be obtained as follows :

Ai + Aj = Azcoszé? +Azsin29

= A2
of component vectors that lie along unit vectors
i and j. Consider a vector A that lies in x-y O, A= \/Af +A; (3.14)
plane as shown in Fig. 3.9(b). We draw lines from
the head of A perpendicular to the coordinate . A, 0 tan! A,
axes as in Fig. 3.9(b), and get vectors A, and A,  And anv= A an A, (3.19)
such that A, + A,=A. Since A, is parallel to i
V4 ya YA
AN TTTTTTTTTS i Y, \
4 Az i A A i
A A i Ay.] |
of! —> > 0 SHN o 5
N i * A, x 0 A x/i\ X
k
(a) (b) (c)

z

Fig. 3.9 (a) Unit vectors ; , 3 and l; lie along the x-, y-, and z-axes. (b) A vector A is resolved into its
components A_and A, along x-, and y- axes. (c) A, and A, expressed in terms of i and j.
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So far we have considered a vector lying in
an x-y plane. The same procedure can be used
to resolve a general vector A into three
components along x-, y-, and z-axes in three
dimensions. If @, B, and Y are the angles™
between A and the x-, y-, and z-axes, respectively
[Fig. 3.9(d)], we have

Ay
Ay § SN
/R
s/
y a Ay /l .
AL
Az
............................. A
Ay >
l/Z\ (d)

Fig. 3.9 (d) A vector A resolved into components along
x-, Y-, and z-axes

A, =Acosa, Ay =Acosf, A, =Acosy (3.16a)
In general, we have

A=Ai+Aj+AKk (3.16Db)
The magnitude of vector A is

A= AL +A +A] (3.160)
A position vector r can be expressed as

r=xi+yj+zk (3.17)

where x, y, and z are the components of r along
X-, Y-, z-axes, respectively.

3.6 VECTOR ADDITION - ANALYTICAL
METHOD

Although the graphical method of adding vectors
helps us in visualising the vectors and the
resultant vector, it is sometimes tedious and has
limited accuracy. It is much easier to add vectors
by combining their respective components.
Consider two vectors A and B in x-y plane with
components A, A, and B, B, :

A
.

A=A d+A (3.18)

~
.

B=B,i+B,]
Let R be their sum. We have
R=A+B

= (Axi +ij) +(Bxi +Byj) (3.19a)

Since vectors obey the commutative and
associative laws, we can arrange and regroup
the vectors in Eq. (3.19a) as convenient to us :

R=(a, +B,)i+(a, +B)j (3.19D)
SinceR = R,i +R,j (3.20)
we have, R, =A, +B,, R, =A, +B, (8.21)

Thus, each component of the resultant
vector R is the sum of the corresponding
components of A and B.

In three dimensions, we have
A=Ad+Aj+AK
B=B,i+B,j+Bk
R=A+B=Ri+R,j+Rk
with R, = A, + B,
R, = A, +B,
R,=A,+B, (3.22)

This method can be extended to addition and
subtraction of any number of vectors. For
example, if vectors a, b and ¢ are given as

a=ad+a,j+ak
b=hi+b,j+bk

(3.23a)

then, a vector T = a + b — ¢ has components :
T,=a,+b, -c

c=cd+c,j+ck

X

= +b -
Ty ay by Cy

T,

z

(3.23b)

=a,+b,-c,.

» Example 3.2 Find the magnitude and
direction of the resultant of two vectors A
and B in terms of their magnitudes and
angle 6 between them.

* Note that angles a, B. and y are angles in space. They are between pairs of lines, which are not coplanar:
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Fig. 3.10

Answer Let OP and OQ represent the two vectors

A and B making an angle 6 (Fig. 3.10). Then,

using the parallelogram method of vector

addition, OS represents the resultant vector R :
R=A+B

SN is normal to OP and PM is normal to OS.

From the geometry of the figure,

OS? = ON? + SN?

ON=OP+ PN=A+ Bcos 0

SN = Bsin 0

OS? = (A + B cos 6)? + (B sin 6)?

or, R?=A?+ B?+ 2AB cos 0

but

R=+A? + B% + 2AB cos 0 (3.242)

In A OSN, SN =0Ssina=Rsina, and
in APSN, SN=PSsin 6= Bsin 0
Therefore, Rsin a = Bsin 6

R B
or. sin® sina (3.24b)
Similarly,

PM=A sina =B sin

A B

or, (3.24¢)

sin B Tsina
Combining Eqs. (3.24b) and (3.24c), we get

R A B
T T (3.24d)
sin & sinf sina
Using Eq. (3.24d), we get:
sin @ =—sin 8 (3.24€)
R
where Ris given by Eq. (3.24a).
SN Bsiné
or, tana= (3.241)

OP+PN A +Bcos8

Equation (3.24a) gives the magnitude of the
resultant and Eqgs. (3.24¢) and (3.24{) its direction.
Equation (3.244a) is known as the Law of cosines
and Eq. (3.24d) as the Law of sines. <
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» Example 3.3 A motorboat is racing
towards north at 25 km/h and the water
current in that region is 10 km/h in the
direction of 60° east of south. Find the
resultant velocity of the boat.

Answer The vector v, representing the velocity
of the motorboat and the vector v_representing
the water current are shown in Fig. 3.11 in
directions specified by the problem. Using the
parallelogram method of addition, the resultant
R is obtained in the direction shown in the
figure.

1\
S

Fig. 3.11

We can obtain the magnitude of R using the Law
of cosine :

R= \/vﬁ +02 +20,0.c08120°

= /257 +10% +2x25 x10(-1/2) 022 km/h
To obtain the direction, we apply the Law of sines
R v

- C

v
— — or, sin g=—S<sin 6

sin & sin ¢

10xsin120° 103

21.8

00.397

2x21.8

o0 23.4° <
3.7 MOTION IN A PLANE

In this section we shall see how to describe
motion in two dimensions using vectors.
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3.7.1 Position Vector and Displacement

The position vector r of a particle P located in a
plane with reference to the origin of an x-y
reference frame (Fig. 3.12) is given by

r=xi+yj
where x and y are components of r along x-, and

y- axes or simply they are the coordinates of
the object.

YA
P
I
i
A i
Y r |
i
i
O \i S
(a)
N
Direction 0 ¥
V P’
P e T
1 1
i r' '
1
r i i
i i
i i
(@) - :

\%

— AY —> X

(b)
Fig. 3.12 (a) Position vectorr. (b) Displacement Ar and
average velocity v of a particle.

Suppose a particle moves along the curve shown
by the thick line and is at P at time t and P' at
time t [Fig. 3.12(b)]. Then, the displacement is :

AT =T —-T (3.25)
and is directed from P to P'.

We can write Eq. (3.25) in a component form:
AT = (x’i+y'j) —(xi +yj)
= iAx + jAy
where Ax=x'-x,0y=y -y (3.26)
Velocity

The average velocity (V) of an object is the ratio

of the displacement and the corresponding time
interval :

_ Ar Axi+Ayj .Ax Ay
Vea—=—"——=i—+j— (8.27)
At At At At
O  ¥=0,i+D,]
Ar

Since V = E , the direction of the average velocity

is the same as that of ar (Fig. 3.12). The velocity
(instantaneous velocity) is given by the limiting
value of the average velocity as the time interval
approaches zero :

. Ar _dr
v=Ilm—=—

a0 At dt

The meaning of the limiting process can be easily
understood with the help of Fig 3.13(a) to (d). In
these figures, the thick line represents the path
of an object, which is at P at time t. P, P, and
P, represent the positions of the object after
times At ,At,, and At,. Ar|, Ar,, and Ar, are the
displacements of the object in times At , At,, and

(3.28)

< @ %<1 A &4
y/\ aon ot yA . &00 0 y A 3 oo™ o y . QO
Pwed o8¢ 0“60 &°
P: P A e
bf‘ b‘l Ar3 Q\
P PA7Ps P
v/ /m, /L v/ r

(a) (b) (c) (d)

Fig. 3.13 As the time interval At approaches zero, the average velocity approaches the velocity v. The direction

of WV is parallel to the line tangent to the path.

2024-25



36

PHYSICS

At,, respectively. The direction of the average

velocity v is shown in figures (a), (b) and (c) for
three decreasing values of A, i.e. Af,,At,, and Af,,
(at, > At, > at)). As At - 0O, ar - O
and is along the tangent to the path [Fig. 3.13(d)].
Therefore, the direction of velocity at any point
on the path of an object is tangential to the
path at that point and is in the direction of
motion.

We can express v in a component form :

dr
v=—
dt

= lim {£;+£3}

(3.29)
At—>0\ At At

N Ax Ay
=ilim —+j lim —
At—0 At At—0 At
o ;dx . dy s A
I, v=i—+j—=v,+v,].
at Jae T U0
dx = _dy

E,vy = dt (3.30&)

where v, =
So, if the expressions for the coordinates xand
y are known as functions of time, we can use
these equations to find v,_and v,

The magnitude of v is then

V= 1lv)zc + vi (3.30b)

and the direction of v is given by the angle 0:

(v )
v v
tan = ——, @ = tan_lL—yJ

Uy Uy

(8.30c)

v, v, and angle 6 are shown in Fig. 3.14 for a
velocity vector v at point p.

Acceleration

The average acceleration a of an object for a
time interval A¢ moving in x-y plane is the change
in velocity divided by the time interval :

A A(v i+vj) Av. -~ Av, .
a-—-—— o xj, Y]
At At At At

(3.31a)

Or. a=ad+ayj. (3.31b)

* In terms of x and y, a_and a, can be expressed as
X v

d (dx) a®x d (dy) a%y
a,=—|—|=—%5,a,=—| —=|=—=
*at\de ) a2’ Y ar\ar) a2
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Fig. 3.14 The components v, and v, of velocity v and
the angle 0 it makes with x-axis. Note that
v,=vcos 0, v =vsin 6.

The acceleration (instantaneous acceleration)
is the limiting value of the average acceleration
as the time interval approaches zero :

. AV
a= lim — (3. 32a)
At—>0 At
Since Av = Avxi + Avyj,we have
N N Av
a=ilim £ 4§ lim
At—>0 At At—>0 At
Or, a-= axi+ayj (3.32b)
h Px i (3.320)*
where, a, = ,a, =—- .32¢
Y oodar Y dt

As in the case of velocity, we can understand
graphically the limiting process used in defining
acceleration on a graph showing the path of the
object’s motion. This is shown in Figs. 3.15(a) to
(d). P represents the position of the object at
time tand P, P,, P, positions after time Az, AL,
At,, respectively (At > At >At). The velocity vectors
atpoints P, P , P, P_are also shown in Figs. 3.15
(@), (b) and (c). In each case of At, Av is obtained
using the triangle law of vector addition. By

definition, the direction of average acceleration
is the same as that of Av. We see that as At
decreases, the direction of Av changes and
consequently, the direction of the acceleration
changes. Finally, in the limit A =0 [Fig. 3.15(d)],
the average acceleration becomes the
instantaneous acceleration and has the direction
as shown.
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(a) (b)

() (d)

Fig. 3.15 The average acceleration for three time intervals (a) At;, (b) Aty, and (c) Ats, (At;> Aty> Atg). (d) In the
limit At = 0, the average acceleration becomes the acceleration.

Note that in one dimension, the velocity and
the acceleration of an object are always along
the same straight line (either in the same
direction or in the opposite direction).
However, for motion in two or three
dimensions, velocity and acceleration vectors
may have any angle between 0° and 180°
between them.

P Example 3.4 The position of a particle is
given by

r=3.0ti +2.0t%j +5.0k

where t is in seconds and the
coefficients have the proper units for r to
be in metres. (a) Find v(f) and a(t) of the
particle. (b) Find the magnitude ‘and
direction of v(t) at t= 1.0 s.

Answer
dr d A 2 A
v(t)=— =—|[8.0ti+2.0t" j+5.0k
dt dt

= 3.0i +4.0tj
dv .
a (t) =— = +4.0j

dt
a=4.0 m s? along y- direction

At t=1.0s, v=3.0i+4.0j

It’s magnitude is U = 3> +4®> =5.0m st
and direction is

v, O o
f=tan! Eﬁ%z tan™! %ﬁ 053 with x-axis.

<

3.8 MOTION IN A PLANE WITH CONSTANT
ACCELERATION

Suppose that an object is moving in x-y plane
and its acceleration a is constant. Over an
interval of time, the average acceleration will
equal this constant value. Now, let the velocity
of the object be v, at time t = 0 and v at time ¢.

Then, by definition

vV -— VO vV -— VO
a-= =
t-0 t
Or, v=v,+at (3.33a)
In terms of components :
v, =v, ta,t
Dy = Uyt ayt (3.33b)

Let us now find how the position r changes with
time. We follow the method used in the one-
dimensional case. Let r, and r be the position
vectors of the particle at time O and tand let the
velocities at these instants be v and v. Then,
over this time interval ¢, the average velocity is
(v, + v)/2. The displacement is the average
velocity multiplied by the time interval :
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1
Or, r=rg+vget+ Ea\t2 (3.34a)

It can be easily verified that the derivative of

d
Eq. (3.34a), i.e. d_lt' gives Eq.(3.33a) and it also

satisfies the condition that at =0, r = r_.
Equation (3.34a) can be written in component
form as

1
X=X, +U,,t+ Eaxt2

Y=yYp 0t + %aytz (3.34b)
One immediate interpretation of Eq.(3.34b) is that
the motions in x- and y-directions can be treated
independently of each other. That is, motion in
a plane (two-dimensions) can be treated as two
separate simultaneous one-dimensional
motions with constant acceleration along two
perpendicular directions. This is an important
result and is useful in analysing motion of objects
in two dimensions. A similar result holds for three
dimensions. The choice of perpendicular
directions is convenient in many physical
situations, as we shall see in section 3.9 for
projectile motion.

Example 3.5 A particle starts from origin
at t= 0 with a velocity 5.01 m/s and moves
in x-y plane under action of a force which
produces a constant acceleration of

(3.0i+2.0j) my/s2. (a) What is the
y-coordinate of the particle at the instant

its x-coordinate is 84 m ? (b) What is the
speed of the particle at this time ?

Answer From Eq. (3.344a) for ro= 0, the position
of the particle is given by

r(t) = v0t+%at2

= 5.0it + (1/2)(3.01 +2.0j) 2
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= (5.0t +1.5¢*)i+1.0¢*]

Therefore, x(t)=5.0t +1.5¢

y(t)=+1.0¢>
Given x()=84m, t=?

5.0t+1.5¢>=840 t=6s
Att=6s, y=1.0(6)>=36.0m

d . .
Now, the velocity v = d_i =(5.0+3.0t)i+2.0¢ j

At t=6s, v=23.0i+12.0j
speed =|v|=+23* +12°> 026 ms™ <

3.9 PROJECTILE MOTION

As an application of the ideas developed in the
previous sections, we consider the motion of a
projectile. An object that is in flight after being
thrown or projected is called a projectile. Such
a projectile might be a football, a cricket ball, a
baseball or any other object. The motion of a
projectile may be thought of as the result of two
separate, simultaneously occurring components
of motions. One component is along a horizontal
direction without any acceleration and the other
along the vertical direction with constant
acceleration due to the force of gravity. It was
Galileo who first stated this independency of the
horizontal and the vertical components of
projectile motion in his Dialogue on the great
world systems (1632).

In our discussion, we shall assume that the
air resistance has negligible effect on the motion
of the projectile. Suppose that the projectile is
launched with velocity v that makes an angle
6 with the x-axis as shown in Fig. 3.16.

After the object has been projected, the
acceleration acting on it is that due to gravity
which is directed vertically downward:

a=-gj
Or, a_ =0, a=-g (3.35)
The components of initial velocity v_ are :
v =V cos 6,
(3.36)

v =V sin 6,
oy o
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1
2 1 A
VS la:-gl
7 1
= i
1
i
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(0] ! X
€1, oS O—>

Fig 3.16 Motion of an object projected with velocity
v_at angle 6,

If we take the initial position to be the origin of

the reference frame as shown in Fig. 3.16, we

have :

x=0,y =0
Then, Eq.(3.34b) becomes :

x=v _t=(v cosf)t

and y=(v,sinf)t-(%)g? (3.37)

The components of velocity at time ¢ can be
obtained using Eq.(3.33b) :

v.=v =V cos 0
(3.38)

Equation (3.37) gives the x-, and y-coordinates
of the position of a projectile at time ¢in terms of
two parameters — initial speed v, and projection
angle 6. Notice that the choice of mutually
perpendicular x-, and y-directions for the
analysis of the projectile motion has resulted in
a simplification. One of the components of
velocity, i.e. x-component remains constant
throughout the motion and only the
y- component changes, like an object in free fall
in vertical direction. This is shown graphically
at few instants in Fig. 3.17. Note that at the point
of maximum height, v = 0 and therefore,

v,=v,sinf -gt

v
f=tan! <L =o
v

X

Equation of path of a projectile

What is the shape of the path followed by the
projectile? This can be seen by eliminating the
time between the expressions for x and y as
given in Eq. (3.37). We obtain:
y=(tang,)x S R

2 (vocos 6, )2 (3.39)

Now, since g, 6 and v, are constants, Eq. (3.39)
is of the form y =a x + b x2, in which aand b are
constants. This is the equation of a parabola,
i.e. the path of the projectile is a parabola
(Fig. 3.17).

Yy
Vy:() A
V:V()xl
0=
f].\ v/
V 1
¥y 1 A
A Mox 1
K24 / Voxi A\\E
vyl i
1
A/ -
Voyd !
O, i
O A
Vox 1

Fig. 3.17 The path of a projectile is a parabola.

Time of maximum height

How much time does the projectile take to reach the
maximum height ? Let this time be denoted by ¢ .
Since at this point, V= 0, we have from Eq. (3.38):
v,=v,sin6 -gt =0
Or, t =v sinf /g (3.40a)
The total time T, during which the projectile is
in flight can be obtained by putting y = O in
Eq. (3.37). We get :

T.=2 (v, sin 6,)/g (3.40b)

T, is known as the time of flight of the projectile.
We note that 7, = 2 ¢t _, which is expected
because of the symmetry of the parabolic path.

Maximum height of a projectile
The maximum height h_reached by the

projectile can be calculated by substituting
t=t inEq. (3.37):

ing, 0 gysing, &
y=h, :(vosmeo)é“os;“ (ﬁiﬁ OS;“ 0@
. 2
or, h, = —(vos;nge‘)) (3.41)

Horizontal range of a projectile

The horizontal distance travelled by a projectile from
its initial position (x =y =0) to the position where it
passes y= 0 during its fall is called the horizontal
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range, R Itis the distance travelled during the time
of flight T, . Therefore, the range Ris
R = (v, cos 0) (T))

=(v cos 8) (2 v, sin 0)/g

vg sin 26,
O, R=—7"F"7"—""— (3.42a)

g

Equation (3.42a) shows that for a given
projection velocity v, Ris maximum when sin
26, is maximum, i.e., when 6, = 45°.
The maximum horizontal range is, therefore,

2

o)
R, =— (3.42b)

g

y) =y + Vo t+(1/2) a, t?

Here, x =y =0,v, =04 =-g=-98ms?
v._=15ms".

The stone hits the ground when y(¢) = - 490 m.
-490m =—(1/2)(9.8) £.

This gives t=10s.

The velocity components are v, =v__and
v,=v, -& t

so that when the stone hits the ground :
v _=15ms"
v,=0-98 10=-98ms"

Therefore, the speed of the stone is

JvZ+v? =\15” +98> =99 m 5™ <

Example 3.6 Galileo, in his book Two new
sciences, stated that “for elevations which
exceed or fall short of 45 by equal amounts,
the ranges are equal”. Prove this statement.

Answer For a projectile launched with velocity
v, at an angle 6 , the range is given by

_ v sin2§,

g
Now, for angles, (45 + a) and (45 - a), 26 is
(90 + 2a) and (90 - 2a) , respectively. The
values of sin (90 + 2a) and sin (90 - 2a) are
the same, equal to that of cos 2a. Therefore,
ranges are equal for elevations which exceed or
fall short of 45 by equal amounts a. <

R

» Example 3.7 A hiker stands'on the edge
of a cliff 490 m above the ground and
throws a stone horizontally with an initial
speed of 15 m s’!. Neglecting air resistance,
find the time taken by the stone to reach
the ground, and the speed with which it
hits the ground. (Take g=9.8 m s2).

Answer We choose the origin of the x-,and y-
axis at the edge of the cliff and ¢ = 0 s at the
instant the stone is thrown. Choose the positive
direction of x-axis to be along the initial velocity
and the positive direction of y-axis to be the
vertically upward direction. The x-, and y-
components of the motion can be treated
independently. The equations of motion are :
x(t) =x,+v_t
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L Example 3.8 A cricket ball is thrown at a
speed of 28 m s! in a direction 30 above
the horizontal. Calculate (a) the maximum
height, (b) the time taken by the ball to
return to the same level, and (c) the
distance from the thrower to the point
where the ball returns to the same level.

Answer (a) The maximum height is given by
(v, sing,)* _ (28sin30°)’

h =

" 29 2 (9.8)
_laxia oo
“a2x98 o™

(b) The time taken to return to the same level is
T=((2vsing)/g=(2 28 sin 30 )/9.8
=28/9.8s=29s
(c) The distance from the thrower to the point
where the ball returns to the same level is

. (v2sin26,) 28 x28 xsin60° _

69m <«
g 9.8

3.10 UNIFORM CIRCULAR MOTION

When an object follows a circular path at a
constant speed, the motion of the object is called
uniform circular motion. The word “uniform”
refers to the speed, which is uniform (constant)
throughout the motion. Suppose an object is
moving with uniform speed vin a circle of radius
Ras shown in Fig. 3.18. Since the velocity of the
object is changing continuously in direction, the
object undergoes acceleration. Let us find the
magnitude and the direction of this acceleration.
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(a)

Let r and r' be the position vectors and v and
v' the velocities of the object when it is at point P
and P' as shown in Fig. 3.18(a). By definition,
velocity at a point is along the tangent at that
point in the direction of motion. The velocity
vectors v and v' are as shown in Fig. 3.18(al).
Av is obtained in Fig. 3.18 (a2) using the triangle
law of vector addition. Since the path is circular,
v is perpendicular to r and so is v' to r'.
Therefore, Av is perpendicular to Ar. Since

average acceleration is along Av EE = ﬁ[, the
O Attt

average acceleration a is perpendicular to Ar. If
we place Av on the line that bisects the angle
between r and r', we see that it is directed towards
the centre of the circle. Figure 3.18(b) shows the
same quantities for smaller time interval. Av and
hence a is again directed towards the centre.
In Fig. 3.18(c), At— 0 and the average
acceleration becomes the instantaneous
acceleration. It is directed towards the centre®.
Thus, we find that the acceleration of an object
in uniform circular motion is always directed
towards the centre of the circle. Let us now find
the magnitude of the acceleration.

The magnitude of a is, by definition, given by
v
|a| = lim_ —/<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>