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APPENDIX   A 4
CONVERSION FACTORS

Conversion factors are written as equations for simplicity.

Length Angle and Angular Speed

1 km = 0.6215 mi π rad = 180°

1mi = 1.609 km 1 rad = 57.30°

1m = 1.0936 yd = 3.281 ft = 39.37 in 1° = 1.745 × 10–2 rad

1 in = 2.54 cm 1 rev min–1 = 0.1047 rad s–1

1 ft = 12 in = 30.48 cm 1 rad s–1 = 9.549 rev min–1

1 yd = 3ft = 91.44 cm Mass

1 lightyear = 1 ly = 9.461 x 1015m 1 kg = 1000 g

1 A° = 0.1nm 1 tonne = 1000 kg = 1 Mg

Area 1 u = 1.6606 × 10–27 kg

1 m2 = 104 cm2 1 kg = 6.022 × 1026 u

1km2 = 0.3861 mi2 = 247.1 acres 1 slug = 14.59 kg

1 in2= 6.4516 cm2 1 kg = 6.852 × 10–2
 slug

1ft2= 9.29 x 10-2m2 1 u = 931.50 MeV/c2

1 m2= 10.76 ft2 Density

1 acre = 43,560 ft2 1 g cm–3 = 1000 kg m–3 = 1 kg L–1

1 mi2= 460 acres = 2.590 km2 Force

Volume 1 N = 0.2248 lbf = 105 dyn

1m3= 106cm3 1 lbf = 4.4482 N

1 L = 1000 cm3 = 10-3 m3 1 kgf = 2.2046 lbf

1 gal = 3.786 L Time

1 gal = 4 qt = 8 pt = 128 oz = 231 in3 1 h = 60 min = 3.6 ks

1 in3 = 16.39 cm3 1 d = 24 h = 1440 min = 86.4 ks

1ft3 = 1728 in3 = 28.32 L = 2.832 × 104 cm3 1y = 365.24 d = 31.56 Ms

Speed Pressure

1 km h–1 = 0.2778 m s–1 = 0.6215 mi h–1 1 Pa = 1 N m–2

1mi h–1 = 0.4470 m s–1 = 1.609 km h–1 1 bar = 100 kPa

1mi h–1 = 1.467 ft s–1 1 atm = 101.325 kPa = 1.01325 bar

Magnetic Field 1atm =  14.7 lbf/in2 = 760 mm Hg

1 G = 10–4 T          =  29.9 in Hg = 33.8 ft  H2O

1 T = 1 Wb m–2 = 104 G 1 lbf in–2 = 6.895 kPa

1 torr = 1mm Hg = 133.32 Pa
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Energy Power

1 kW h = 3.6 MJ 1 horsepower (hp) = 550 ft lbf/s

1 cal = 4.186 J       = 745.7 W

1ft lbf = 1.356 J = 1.286 × 10–3 Btu 1 Btu min–1 = 17.58 W

1 L atm = 101.325 J 1 W = 1.341 × 10–3  hp

1 L atm = 24.217 cal        =  0.7376 ft lbf/s

1 Btu = 778 ft lb = 252 cal = 1054.35 J Thermal Conductivity

1 eV = 1.602 × 10–19J 1 W m–1 K–1 = 6.938 Btu in/hft2 °F

1 u c2 = 931.50 MeV 1 Btu in/hft2 °F = 0.1441 W/m K

1 erg = 10–7J

APPENDIX   A 5
MATHEMATICAL FORMULAE

Geometry

Circle of radius r: circumference = 2πr;

area = πr2

Sphere of radius r: area = 4πr2;

volume = 
4

3
3π r

Right circular cylinder of radius r

and height h: area = 2π r2 +2π r h;

volume = hr
2π ;

Triangle of base a and altitude h.

area = 
1

2
  a h

Quadratic Formula

If    ax2 + bx + c = 0,

then   
a2

42
acbb

x
−±−

=

Trigonometric Functions of Angle θθθθθ

      

sin cos

tan cot

sec csc

y x
         

r r

y x
         

x y

r r
         

x y

θ θ

θ θ

θ θ

= =

= =

= =

Pythagorean Theorem

In this right triangle, a2 + b2 = c2

Fig. A 5.2

Triangles

Angles are A, B, C

Opposite sides are a, b, c

Angles A + B + C = 1800

c

C

b

B

a

A sinsinsin ==

c2 = a2 + b2 – 2ab  cos C

Exterior angle D = A + CFig. A 5.1
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Fig. A 5.3

Mathematical Signs and Symbols

= equals
≅ equals approximately
~ is the order of magnitude of
≠ is not equal to
≡ is identical to, is defined as
> is greater than (>> is much greater than)
< is less than (<< is much less than)
≥ is greater than or equal to (or, is no less

than)
≤ is less than or equal to (or, is no more

than)
± plus or minus
∝ is proportional to
∑ the sum of

x or < x > or xav the average value of x

Trigonometric Identities

sin (900 – θ ) = cos θ

cos (900 – θ ) = sin θ

sin θ/ cos θ = tan θ

sin2 θ + cos2 θ =1

sec2 θ – tan2 θ = 1

csc2 θ – cot2 θ  = 1

sin2 θ = 2 sin θ cos θ

cos2 θ = cos2 θ – sin2 θ  = 2cos2 θ –1

          = 1– 2 sin2 θ

sin(α ± β ) = sin α cos β ± cos α sin β

cos (α ± β ) = cos α cos β ∓  sin α sin β

tan (α ± β ) = 

sin α ± sin β = ±( ) ( )2
1

2

1

2
  sin cosa b a b∓

cos α + cos β

= ( ) ( )2
1

2

1

2
  cos cos �a a+ b b

cos α – cos β

= - ( ) ( )2
1

2

1

2
  sin sin �a a+ b b

Binomial Theorem

(1– x) =1–
nx

1!
+

n(n -1)x

2!
+.....(x <1)n

2
2

(1– x) =1m
nx

1!
+

n(n+1)x

2!
+.....(x <1)-n

2
2

Exponential Expansion

e =1+ x +
x

2!
+

x

3!
+.....x

2 3

Logarithmic Expansion

Trigonometric Expansion

(θθθθθ in radians)

     

Products of Vectors

Let be unit vectors in the x, y and z

directions.  Then

Any vector a with components ax, ay, and az

along the x,y, and z axes can be written,
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Let a, b and c be arbitary vectors with
magnitudes a, b and c.  Then

( ) ( ) ( )+× = × + ×a b c a b a c

( a) b a ( b) (a b)s s s× = × = ×   (s is a scalar)

Let θ be the smaller of the two angles
between a and b.  Then

θcosabbababa zzyyxx  =++=⋅=⋅ abba

θsinab =× ba

( ) ( ) ( )

ˆ ˆ ˆ

 

ˆ ˆ ˆ

x y z

x y z

y z y z z x z x x y x y

 

 a a a

 b b b

a b b a a b b a a b b a

¥ = - ¥ =

= - + - + -

i j k

a b b a

 i  j  k

a . (b × c) = b. (c × a) = c . (a × b)

a × (b × c) = (a . c) b – (a . b) c

APPENDIX A 6

SI DERIVED UNITS

A 6.1  Some SI Derived Units expressed in SI Base Units
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A 6.2   SI Derived Units with special names

A 6.3   Some SI Derived Units expressed by means of SI Units with special names

pascal
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APPENDIX  A 7
GENERAL GUIDELINES FOR USING SYMBOLS FOR PHYSICAL QUANTITIES, CHEMICAL

ELEMENTS AND NUCLIDES

• Symbols for physical quantities are normally single letters and printed in italic (or sloping) type.
However, in case of the two letter symbols,  appearing as a factor in a product, some spacing is
necessary to separate this symbol from other symbols.

• Abbreviations, i.e., shortened forms of names or expressions, such as p.e. for potential energy,
are not used in physical equations.  These abbreviations in the text are written in ordinary
normal/roman (upright) type.

• Vectors are printed in bold and normal/roman (upright) type.  However, in class room situations,
vectors may be indicated by an arrow on the top of the symbol.

• Multiplication or product of two physical quantities is written with some spacing between them.
Division of one physical quantity by another may be indicated with a horizontal bar or with

Absorbed dose rate
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solidus, a slash or a short oblique stroke mark (/) or by writing it as a product of the
numerator and the inverse first power of the denominator, using brackets at appropriate
places to clearly distinguish between the numerator and the denominator.

• Symbols for chemical elements are written in normal/roman (upright) type.  The symbol is
not followed by a full stop.
For example, Ca, C, H, He, U, etc.

• The attached numerals specifying a nuclide are placed as a left subscript (atomic number)
and superscript (mass number).

For example, a U-235 nuclide is expressed as 92
235 U  (with 235 expressing the mass number

and 92 as the atomic number of uranium with chemical symbol U).
• The right superscript position is used, if required, for indicating a state of ionisation (in

case of ions).

For example, Ca2+,  −3
4PO

APPENDIX  A 8

GENERAL  GUIDELINES FOR USING SYMBOLS FOR SI UNITS, SOME OTHER UNITS, AND
SI PREFIXES

• Symbols for units of physical quantities are printed/written in Normal/Roman (upright) type.

• Standard and recommended symbols for units are written in lower case roman (upright)

type, starting with small letters. The shorter designations for units such as kg, m, s, cd,
etc., are symbols and not the abbreviations.  The unit names are never capitalised. However,
the unit symbols are capitalised only if the symbol for a unit is derived from a proper name
of scientist, beginning with a capital, normal/roman letter.
For example, m for the unit ‘metre’, d for the unit ‘day’, atm for the unit ‘atmospheric
pressure’, Hz for the unit ‘hertz’, Wb for the unit ‘weber’, J for the unit ‘joule’, A for the unit
‘ampere’, V for the unit ‘volt’, etc.  The single exception is L, which is the symbol for the
unit ‘litre’.  This exception is made to avoid confusion of the lower case letter l with the
Arabic numeral l.

• Symbols for units do not contain any final full stop at the end of recommended   letter and

remain unaltered in the plural, using only singular form of the unit.
For example, for a length of 25 centimetres the unit symbol is written as 25 cm

     and not 25 cms or 25 cm. or 25 cms., etc.

• Use of solidus ( / ) is recommended only for indicating a division of one letter unit symbol by

another unit symbol.  Not more than one solidus is used.
For example :
m/s2 or m s–2 (with a spacing between m and s–2) but not m/s/s;
1 Pl =1 N s m –2 = 1 N s/m2 = 1 kg/s m=1 kg m–1 s–1, but not 1 kg/m/s;
J/K mol or J K–1 mol–1, but not J/K/mol; etc.

• Prefix symbols are printed in normal/roman (upright) type without spacing between the

prefix symbol and the unit symbol.  Thus certain approved prefixes written very close to the
unit symbol are used to indicate decimal fractions or multiples of a SI unit, when it is
inconveniently small or large.
For example :
megawatt ( 1MW = 106 W); nanosecond (1 ns = 10–9 s);
centimetre (1 cm = 10–2 m); picofarad (1 pF = 10–12 F);.
kilometre ( 1 km = 103 m); microsecond (1µs = 10–6 s);
millivolt (1 mV= 10–3  V);     gigahertz (1GHz = 109 Hz);
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kilowatt-hour (1 kW h = 103 W h = 3.6 MJ = 3.6 × 106 J);
microampere  (1µ A = 10–6 A); micron (1µm = 10–6 m);
angstrom (1 Α° =0.1 nm = 10–10 m); etc.

The unit ‘micron’ which equals 10–6 m, i.e. a micrometre, is simply the name given to
convenient sub-multiple of the metre.  In the same spirit, the unit ‘fermi’, equal to a
femtometre or 10–15 m has been used as the convenient length unit in nuclear studies.
Similarly, the unit ‘barn’, equal to 10–28 m2, is a convenient measure of cross-sectional
areas in sub-atomic particle collisions.  However, the unit ‘micron’ is preferred over the
unit ‘micrometre’ to avoid confusion of the ‘micrometre’ with the length measuring
instrument called ‘micrometer’. These newly formed multiples or sub-multiples (cm, km,
µm, µs, ns) of SI units, metre and second, constitute a new composite inseparable symbol
for units.

• When a prefix is placed before the symbol of a unit, the combination of prefix and symbol is

considered as a new symbol, for the unit, which can be raised to a positive or negative
power without using brackets.  These can be combined with other unit symbols to form
compound unit.  Rules for binding-in indices are not those of ordinary algebra.
For example :
cm3 means always (cm)3 = (0.01 m)3 = (10–2 m)3 = 10–6 m3, but never 0.01 m3 or
10–2 m3 or 1cm3 (prefix c with a spacing with m3 is meaningless as prefix c is to be attached
to a unit symbol and it has no physical significance or independent existence without
attachment with a unit symbol).
Similarly, mA2 means always (mA)2= (0.001A)2 = (10–3 A)2 =10–6 A2, but never 0.001 A2 or
10–3 A2 or m A2;
1 cm–1 = (10–2m)–1=102 m–1, but not 1c m–1 or 10–2 m–1;
1µs–1 means always (10–6s)–1=106 s–1, but not 1 × 10–6 s–1;
1 km2 means always (km)2 = (103 m)2=106 m2, but not 103 m2;
1mm2 means always (mm)2= (10–3 m)2=10–6 m2, but not 10–3 m2.

• A prefix is never used alone.  It is always attached to a unit symbol and written or fixed

before (pre-fix) the unit symbol.
For example :
103/m3 means 1000/m3 or 1000 m-3, but not k/m3 or k m-3.
106/m3 means 10,00,000/m3 or 10,00,000 m–3, but not M/m3 or M m–3

• Prefix symbol is written very close to the unit symbol without spacing between them, while
unit symbols are written separately with spacing when units are multiplied together.
For example :
m s-1 (symbols m and s–1, in lower case, small letter m and s, are separate and independent
unit symbols  for metre and second respectively, with spacing between them) means ‘metre
per second’, but not ‘milli per second’.
Similarly, ms–1 [symbol m and s are written very close to each other, with prefix symbol m
(for prefix milli) and unit symbol s, in lower case, small letter (for unit ‘second’) without
any spacing between them and making ms as a new composite unit] means ‘per millisecond’,
but never ‘metre per second’.
mS–1[symbol m and S are written very close to  each other, with prefix symbol m (for prefix
milli) and unit symbol S, in capital roman letter S (for unit ‘siemens’) without any spacing
between them, and making mS as a new composite unit] means ‘per millisiemens’, but
never ‘per millisecond’.
C m [symbol C and m are written separately, representing unit symbols C (for unit ‘coulomb’)
and m (for unit ‘metre’), with spacing between them] means ‘coulomb metre’, but never
‘centimetre’, etc.

• The use of double prefixes is avoided when single prefixes are available.

For example :
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10–9 m = 1nm (nanometre), but not 1mµm (millimicrometre),
10–6 m= 1µm (micron), but not 1mmm(millimillimetre),
10–12 F= 1 pF (picofarad), but not 1µµF (micromicrofarad),
109 W=1 GW (giga watt), but not 1 kMW (kilomegawatt), etc.

• The use of a combination of unit and the symbols for units is avoided when the physical quantity

is expressed by combining two or more units.
For example :
joule per mole kelvin is written as J/mol K or J mol–1 K–1, but not joule/mole K or
J/ mol kelvin or J/mole K, etc.
joule per tesla is written as J/T or J T–1, but not joule /T or J per tesla or J/tesla, etc.
newton metre second is written as N m s, but not Newton m second or N m second or N metre s
or newton metre s, etc.
joule per kilogram kelvin is written as J/kg K or J kg–1 K–1, but not J/kilog  K or joule/kg K or J/
kg kelvin or J/kilogram K, etc.

• To simplify calculations, the prefix symbol is attached to the unit symbol in the numerator and

not to the denominator.
For example :
106 N/m2 is written more conveniently as MN/m2, in preference to N/mm2.
A preference has been expressed for multiples or sub-multiples involving the factor 1000, 10+3n

where n is the integer.

• Proper care is needed when same symbols are used for physical quantities and units of    physical

quantities.
For example :
The physical quantity weight (W) expressed as a product of mass (m) and acceleration due to
gravity (g) may be written in terms of symbols W, m and g printed in italic ( or sloping) type as W
= m g, preferably with a spacing between m and g.  It should not be confused with the unit
symbols for the units watt (W), metre (m) and gram (g).  However, in the equation W=m g, the
symbol W expresses the weight with a unit symbol J, m as the mass with a unit symbol kg and
g as the acceleration due to gravity with a unit symbol m/s2.  Similarly, in equation F = m a, the
symbol F expresses the force with a unit symbol N, m as the mass with a unit symbol kg, and a
as the acceleration with a unit symbol m/s2.  These symbols for physical quantities should not
be confused with the unit symbols for the units ‘farad’ (F), ‘metre’(m) and ‘are’ (a).
Proper distinction must be made while using the symbols h (prefix hecto, and unit hour), c
(prefix centi, and unit carat), d (prefix deci and unit day), T (prefix tera, and unit tesla), a (prefix
atto, and unit are), da (prefix deca, and unit deciare), etc.

• SI base unit ‘kilogram’ for mass is formed by attaching SI prefix (a multiple equal to 103) ‘kilo’ to

a cgs (centimetre, gram, second) unit ‘gram’ and this may seem to result in an anomaly.  Thus,
while a thousandth part of unit of length (metre) is called a millimetre (mm), a thousandth part
of the unit of mass (kg) is not called a millikilogram, but just a gram. This appears to give the
impression that the unit of mass is a gram (g) which is not true. Such a situation has arisen
because we are unable to replace the name ‘kilogram’ by any other suitable unit.  Therefore, as
an exception, name of the multiples and sub-multiples of the unit of mass are formed by attaching
prefixes to the word ‘gram’ and not to the word ‘kilogram’.
For example :
103 kg =1 megagram ( 1Mg), but not 1 kilo kilogram (1 kkg);
10–6 kg = 1 milligram ( 1 mg), but not 1 microkilogram ( 1µkg);
10–3 kg = 1 gram (1g), but not 1 millikilogram (1 mkg), etc.

It may be emphasised again that you should use the internationally approved and recommended
symbols only. Continual practice of following general rules and guidelines in unit symbol writing
would make you learn mastering the correct use of SI units, prefixes and related symbols for physical
quantities in a proper perspective.
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APPENDIX  A 9

DIMENSIONAL FORMULAE OF PHYSICAL QUANTITIES
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Chapter   1

1.1 (a) 10–6 ;  (b) 1.5 × 104 ; (c) 5 ; (d) 11.3, 1.13 × 104.

1.2 (a) 107 ;   (b) 10–16  ; (c) 3.9 × 104 ; (d) 6.67 × 10–8.

1.5 500

1.6 (c)

1.7 0.035 mm

1.9 94.1

1.10 (a) 1 ; (b) 3 ; (c) 4 ; (d) 4 ; (e) 4 ; (f) 4.

1.11 8.72 m2; 0.0855 m3

1.12 (a) 2.3 kg ; (b) 0.02 g

1.13 The correct formula is m = m0 
(1 – v2/c2)–½

1.14 ≅ 3 × 10–7 m3

1.15 ≅  104; intermolecular separation in a gas is much larger than the size of a molecule.

1.16 Near objects make greater angle than distant (far off) objects at the eye of the observer.
When you are moving, the angular change is less for distant objects than nearer objects.
So, these distant objects seem to move along with you, but the nearer objects in opposite
direction.

1.17 1.4 × 103 kg m-3; the mass density of the Sun is in the range of densities of liquids /
solids and not gases. This high density arises due to inward gravitational attraction
on outer layers due to inner layers of the Sun.

Chapter  2

2.1  (a), (b)

2.2 (a) A....B, (b) A....B, (c) B....A, (d) Same, (e) B....A....once.

2.4 37 s

2.5 3.06 m s–2 ; 11.4 s

 ANSWERS
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2.6 (a) Vertically downwards; (b) zero velocity, acceleration of 9.8 m s-2 downwards;
(c) x > 0 (upward and downward motion); v < 0 (upward), v > 0 (downward), a > 0
throughout; (d) 44.1 m, 6 s.

2.7 (a) True;, (b) False; (c) True (if the particle rebounds instantly with the same speed, it
implies infinite acceleration which is unphysical); (d) False (true only when the chosen
positive direction is along the direction of motion)

2.10 (a) 5 km h–1, 5 km h–1; (b) 0, 6 km h–1;  (c)  
15

8

 km h–1, 
45

8

 km h–1

2.11 Because, for an arbitrarily small interval of time, the magnitude of displacement is equal
to the length of the path.

2.12 All the four graphs are impossible. (a) a particle cannot have two different positions at
the same time;  (b) a particle cannot have velocity in opposite directions at the same
time;  (c) speed is  always non-negative;  (d) total path length of a particle can never
decrease with time. (Note, the  arrows on  the graphs are meaningless).

2.13 No, wrong. x- t plot does not show the trajectory of a particle. Context: A body is dropped
from a tower (x = 0) at  t = 0.

2.14 105 m s-1

2.15 (a)  A ball at rest on a smooth floor is kicked, it rebounds from a wall with reduced speed
and moves to the opposite wall which stops it; (b) A ball thrown up with some initial
velocity rebounding from the floor with reduced speed after each hit; (c) A uniformly
moving cricket ball turned back by hitting it with a bat for a very short time-interval.

2.16 x < 0, v < 0, a  > 0;  x > 0, v > 0, a < 0;  x < 0, v > 0, a > 0.

2.17 Greatest in 3, least in 2;  v > 0 in 1 and 2, v < 0 in 3.

2.18 Acceleration magnitude greatest in 2; speed greatest in 3;  v > 0 in 1, 2 and 3; a > 0 in 1
and 3, a  < 0 in 2; a = 0 at A, B, C, D.

Chapter   3

3.1 Volume, mass, speed, density, number of moles, angular frequency are scalars; the rest
are vectors.

3.2 Work, current

3.3 Impulse

3.4 Only (c) and (d) are permissible

3.5 (a) T, (b) F, (c) F, (d) T, (e) T

3.6 Hint: The sum (difference) of any two sides of a triangle is never less (greater) than the
third side. Equality holds for collinear vectors.

3.7 All statements except (a) are correct

3.8 400 m for each; B

3.9 (a) O;  (b) O;  (c) 21.4 km h–1

3.10 Displacement of magnitude 1 km and direction 60o with the initial direction; total path
length = 1.5 km (third turn); null displacement vector; path length = 3 km (sixth turn);
866 m, 30o, 4 km (eighth turn)
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3.11 (a) 49.3 km h–1 ; (b) 21.4 km h–1. No, the average speed equals average velocity magnitude
only for a straight path.

3.12 150.5 m

3.13 50 m

3.14 9.9 m s-2, along the radius at every point towards the centre.

3.15 6.4 g

3.16 (a) False (true only for uniform circular motion)

(b) True, (c) True.

3.17 (a) v i j( ) ( . ɵ ɵ)t t= −3 0 4.0  ɵ ( ) ɵa jt = −4.0

(b) 8.54 m s–1,  70° with x-axis.

3.18 (a) 2 s, 24 m, 21.26 m s–1

3.19 2 , 45o with the x-axis;  2 , – 45o  with the x - axis,  ( )5 2 1 2/ , /− .

3.20 (b) and (e)

3.21 Only (e) is true

3.22 182 m s–1

Chapter    4

4.1 (a) to (d)  No net force according to the First Law
(e)  No force, since it is far away  from all material agencies producing electromagnetic
and gravitational forces.

4.2 The only force in each case is the force of gravity, (neglecting effects of air) equal to
0.5 N vertically downward. The answers do not change, even if the motion of the pebble
is not along the vertical. The pebble is not at rest at the highest point. It has a constant
horizontal component of velocity throughout its motion.

4.3 (a) 1 N vertically downwards (b)  same as in (a)
(c) same as in (a);  force at an instant depends on the situation at that instant, not
on history.
(d)  0.1 N in the direction of motion of the train.

4.4 (i) T

4.5 a = – 2.5 m s–2.  Using v = u + at,  0 = 15 – 2.5 t i.e.,    t = 6.0 s

4.6 a = 1.5/25  =  0.06 m s–2

F =  3 × 0.06  =  0.18 N in the direction of motion.

4.7 Resultant force = 10 N at an angle of tan–1 (3/4) = 37° with the direction of 8 N force.
Acceleration = 2 m s–2 in the direction of the resultant force.

4.8 a = – 2.5 m s–2 , Retarding force = 465 × 2.5 = 1.2 × 103  N

4.9 F – 20,000 × 10 = 20000 × 5.0,     i.e.,   F = 3.0  × 105  N

4.10 a = – 20 m s–2 0  ≤  t  ≤  30 s

t = –5 s : x = u t = – 10 × 5 = –50 m

2024-25



ANSWERS 163

t = 25 s : x  =  u t + (½)  a t2  =  (10 × 25 – 10 × 625)m  =  – 6 km

t = 100 s : First consider motion up to 30 s

x
1 
= 10 × 30 – 10 × 900 =  – 8700 m

At  t = 30 s,   v = 10 – 20 × 30 = –590 m s-1

For  motion from 30 s to 100 s : x
2 
= – 590 × 70 = – 41300 m

x = x
1
 + x

2 
= – 50 km

4.11 (a)  Velocity of car ( at t = 10 s ) = 0 + 2 × 10 = 20 m s–1

By the First Law, the horizontal component of velocity is 20 m s–1 throughout.
Vertical component of velocity (at t = 11s) =  0 + 10 × 1  =  10 m s–1

Velocity of stone (at t = 11s) = 20 10 500 22 4
2 2+ = = .

–1
  m s  at an angle of tan–1 ( ½) with

the horizontal.
(b)10 m s-2 vertically downwards.

4.12 (a) At the extreme position, the speed of the bob is zero. If the string is cut, it  will fall
vertically downwards.
(b) At the mean position, the bob has a horizontal velocity. If the string is cut, it will fall
along a parabolic path.

4.13 The reading on the scale is a measure of the force on the floor by the man.  By the Third
Law, this is equal and opposite to the normal force N on the man by the floor.

(a) N = 70 × 10 = 700 N ; Reading is 70 kg
(b) 70 × 10 – N = 70 × 5 ; Reading is 35 kg
(c) N – 70 × 10 = 70 × 5 ; Reading is 105 kg
(d) 70 × 10 – N = 70 × 10; Reading would be zero; the scale would read zero.

4.14 (a) In all the three intervals, acceleration and, therefore, force are zero.
(b) 3 kg m s–1 at  t = 0  ; (c) –3 kg m s–1  at  t = 4 s.

4.15 If the 20 kg mass is pulled,
600 – T = 20 a, T = 10 a
a = 20 m s–2, T = 200 N

If the 10 kg mass is pulled, a = 20 m s–2, T = 400 N

4.16 T – 8 × 10 = 8 a, 12 × 10 – T = 12a

i.e. a = 2 m s–2,  T  =  96 N

4.17 By momentum conservation principle, total final momentum is zero.  Two momentum
vectors cannot sum to a null momentum unless they are equal and opposite.

4.18 Impulse on each ball = 0.05 ×12 = 0.6 kg m s-1 in magnitude.  The two impulses are
opposite in direction.

4.19 Use momentum conservation :  100 v = 0.02 ×  80
v = 0.016 m s–1 = 1.6 cm s–1

4.20 Impulse is directed along the bisector of the initial and final directions.  Its magnitude is
0.15  ×  2  ×  15 ×  cos 22.5° = 4.2  kg m s–1

4.21
–140

2 1.5 2 m s
60

v π π= × × =

2 20.25 4
6.6 N

1.5

mv
T

R

π×
= = =

2
–1200 ,which gives 35 m smax

max

mv
v

R
= =
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4.22 Alternative (b) is correct, according to the First Law

4.23 (a) The horse-cart system has no external force in empty space. The mutual forces
between  the horse and the cart cancel  (Third Law).  On the ground, the contact force
between the system and the ground (friction) causes their motion from rest.

(b) Due to inertia of the body not directly in contact with the seat.
(c) A lawn mower is pulled or pushed by applying force at an angle. When you push, the
normal force (N ) must be more than its weight, for equilibrium in the vertical direction.
This results in greater friction f ( f ∝  N ) and, therefore, a greater applied force to move.
Just the opposite happens while pulling.

(d) To reduce the rate of change of momentum and hence to reduce the force necessary
to stop the ball.

Chapter    5

5.1 (a) +ve (b) –ve (c) –ve (d) + ve              (e) – ve

5.2 (a) 882 J ;  (b) –247 J;  (c) 635 J ;   (d) 635 J;
Work done by the net force on a body equals change in its kinetic energy.

5.3 (a)    x >  a ; 0 (c)  x < a,  x > b ; - V1

(b)  −∞ < x  < ∞; V
1

(d) - b/2  <  x  < - a / 2,   a / 2 <  x  <  b / 2;  -V
1

5.5 (a) rocket; (b) For a conservative force work done over a path is minus of change in
potential energy. Over a complete orbit, there is no change in potential energy;  (c) K.E.
increases, but P.E. decreases, and the sum decreases due to dissipation against friction;
(d) in the second case.

5.6 (a) decrease;  (b) kinetic energy; (c) external force; (d) total linear momentum, and also
total energy (if the system of two bodies is isolated).

5.7 (a) F ;  (b) F ;  (c) F ;  (d) F (true usually but not always, why?)

5.8 (a) No
(b) Yes
(c) Linear momentum is conserved during an inelastic collision, kinetic energy is, of

course, not conserved even after the collision is over.
(d) elastic.

5.9 (b) t

5.10 (c) t3/2

5.11 12 J

5.12 The electron is faster,  v
e 
/ v

p  
= 13.5

5.13 0.082 J in each half ;   – 0.163 J

5.14 Yes, momentum of the molecule + wall system is conserved.  The wall has a recoil
momentum such that the momentum of the wall + momentum of the outgoing molecule
equals momentum of the incoming molecule, assuming the wall to be stationary initially.
However, the recoil momentum produces negligible velocity because of the large mass of
the wall.  Since kinetic energy is also conserved, the collision is elastic.

5.15 43.6 kW

5.16 (b)

5.17 It transfers its entire momentum to the ball on the table, and does not rise at all.

5.18 5.3 m s-1
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5.19 27 km h–1 (no change in speed)

5.20 50 J

5.21 (a) m Avtρ= (b) 3
/2K Av tρ=    (c) P = 4.5 kW

5.22 (a) 49,000 J (b) 6.45 10-3 kg

5.23 (a) 200 m2 (b) comparable to the roof of a large house of dimension 14m × 14m.

Chapter    6

6.1 The geometrical centre of each. No, the CM may lie outside the body, as in case of a

ring, a hollow sphere, a  hollow cylinder, a hollow cube etc.

6.2 Located on the line joining H and C1 nuclei at a distance of 1.24 Å from the H end.

6.3 The speed of the CM of the (trolley + child) system remains unchanged (equal to v)
because no external force acts on the system.  The forces involved in running on the
trolley are internal to this system.

6.6 l
z
 = xp

y
 – yp

x
, l

x
 = yp

z
 – zp

y
, l

y
 = zp

x
 – xp

z

6.8 72 cm
6.9 3675 N  on each front wheel, 5145 N on each back wheel.
6.10 Sphere

6.11 Kinetic Energy = 3125 J; Angular Momentum = 62.5 J s

6.12 (a)  100 rev/min (use angular momentum conservation).

(b)  The new kinetic energy is 2.5 times the initial kinetic energy of rotation.  The child
uses his internal energy to increase his rotational kinetic energy.

6.13 25 s-2;  10 m s-2

6.14 36 kW

6.15 at R/6 from the center of original disc opposite to the center of cut portion.

6.16 66.0 g

6.17 6.75×1012 rad s–1

Chapter    7

7.1 (a ) No.
(b) Yes, if the size of the space ship is large enough for him to detect the variation in g.

(c) Tidal effect depends inversely on the cube of the distance unlike force, which depends
inversely on the square of the distance.

7.2 (a)  decreases; (b) decreases; (c) mass of the body; (d) more.

7.3 Smaller by a factor of 0.63.

7.5 3.54 × 108 years.

7.6 (a) Kinetic energy, (b) less,

7.7 (a) No, (b) No, (c) No, (d) Yes

[The escape velocity is independent of mass of the body and the direction of projection.
It depends upon  the gravitational potential at the point from where the body is launched.
Since this potential depends (slightly) on the latitude and height of the point, the escape
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velocity (speed) depends (slightly) on these factors.]

7.8  All quantities vary over an orbit except angular momentum and total energy.

7.9  (b), (c) and (d)

7.10 and 7.11 For  these two problems, complete the hemisphere to sphere. At both P, and C,
potential is constant and hence intensity = 0. Therefore, for the hemisphere, (c) and (e)
are correct.

7.12 2.6 × 108 m

7.13 2.0 × 1030 kg

7.14 1.43 × 1012 m

7.15 28 N

7.16 125 N

7.17 8.0 × 106 m from the earth’s centre

7.18 31.7 km/s

7.19 5.9 × 109 J

7.20 2.6 × 106 m/s

7.21 0, 2.7 × 10-8 J/kg; an object placed at the mid point is in an unstable equilibrium

 P                 C
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FOREWORD

The National Curriculum Framework (NCF), 2005 recommends that children’s life
at  school must be linked to their life outside the school. This principle marks a
departure from the legacy of bookish learning which continues to shape our system
and causes a gap between the school, home and community. The syllabi and
textbooks developed on the basis of NCF signify an attempt to implement this basic
idea. They also attempt to discourage rote learning and the maintenance of sharp
boundaries between different subject areas. We hope these measures will take us
significantly further in the direction of a child-centred system of education outlined
in the National Policy on Education (1986).

The success of this effort depends on the steps that school principals and teachers
will take to encourage children to reflect on their own learning and to pursue
imaginative activities and questions. We must recognise that, given space, time and
freedom, children generate new knowledge by engaging with the information passed
on to them by adults. Treating the prescribed textbook as the sole basis of examination
is one of the key reasons why other resources and sites of learning are ignored.
Inculcating creativity and initiative is possible if we perceive and treat children as
participants in learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change is school routines and mode of functioning.
Flexibility in the daily time-table is as necessary as rigour in implementing the annual
calendar so that the required number of teaching days are actually devoted to
teaching. The methods used for teaching and evaluation will also determine how
effective this textbook proves for making children’s life at school a happy experience,
rather than a source of stress or boredom. Syllabus designers have tried to address
the problem of curricular burden by restructuring and reorienting knowledge at
different stages with greater consideration for child psychology and the time available
for teaching. The textbook attempts to enhance this endeavour by giving higher
priority and space to opportunities for contemplation and wondering, discussion in
small groups, and activities requiring hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates
the hard work done by the textbook development committee responsible for this
book. We wish to thank the Chairperson of the advisory group in science
and mathematics, Professor J.V. Narlikar and the Chief Advisor for this book,
Professor A.W. Joshi for guiding the work of this committee. Several teachers
contributed to the development of this textbook; we are grateful to their principals
for making this possible. We are indebted to the institutions and organisations
which have generously permitted us to draw upon their resources, material and
personnel. We are especially grateful to the members of the National Monitoring
Committee, appointed by the Department of Secondary and Higher Education,
Ministry of Human Resource Development under the Chairpersonship of Professor
Mrinal Miri and Professor G.P. Deshpande, for their valuable time and contribution.
As an organisation committed to systemic reform and continuous improvement in
the quality of its products, NCERT welcomes comments and suggestions which will
enable us to undertake further revision and refinement.

Director
New Delhi National Council of Educational
20 December 2005 Research and Training
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RATIONALISATION OF CONTENT IN THE TEXTBOOKS

In view of the COVID-19 pandemic, it is imperative to reduce content

load on students. The National Education Policy 2020, also emphasises

reducing the content load and providing opportunities for experiential

learning with creative mindset. In this background, the NCERT has

undertaken the exercise to rationalise the textbooks across all classes.

Learning Outcomes already developed by the NCERT across classes have

been taken into consideration in this exercise.

Contents of the textbooks have been rationalised in view of the

following:

• Overlapping with similar content included in other subject areas in

the same class

• Similar content included in the lower or higher class in the same

subject

• Difficulty level

• Content, which is easily accessible to students without much

interventions from teachers and can be learned by children through

self-learning or peer-learning

• Content, which is irrelevant in the present context

This present edition, is a reformatted version after carrying out

the changes given above.
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PREFACE

More than a decade ago, based on National Policy of Education (NPE-1986),
National Council of Educational Research and Training published physics
textbooks for Classes XI and XII, prepared under the chairmanship of
Professor T. V. Ramakrishnan, F.R.S., with the help of a team of learned co-authors.
The books were well received by the teachers and students alike. The books, in
fact, proved to be milestones and trend-setters. However, the development of
textbooks, particularly science books, is a dynamic process in view of the changing
perceptions, needs, feedback and the experiences of the students, educators and
the society. Another version of the physics books, which was the result of the
revised syllabus based on National Curriculum Framework for School Education-2000
(NCFSE-2000), was brought out under the guidance of Professor Suresh Chandra,
which continued up to now. Recently the NCERT brought out the National Curriculum
Framework-2005 (NCF-2005), and the syllabus was accordingly revised during a
curriculum renewal process at school level. The higher secondary stage syllabus
(NCERT, 2005) has been developed accordingly. The Class XI textbook contains
fifteen chapters in two parts. Part I contains first eight chapters while Part II contains
next seven chapters. This book is the result of the renewed efforts of the present
Textbook Development Team with the hope that the students will appreciate the
beauty and logic of physics. The students may or may not continue to study physics
beyond the higher secondary stage, but we feel that they will find the thought
process of physics useful in any other branch they may like to pursue, be it finance,
administration, social sciences, environment, engineering, technology, biology or
medicine. For those who pursue physics beyond this stage, the matter developed
in these books will certainly provide a sound base.

Physics is basic to the understanding of almost all the branches of science and
technology. It is interesting to note that the ideas and concepts of physics are
increasingly being used in other branches such as economics and commerce, and
behavioural sciences too. We are conscious of the fact that some of the underlying
simple basic physics principles are often conceptually quite intricate. In this book,
we have tried to bring in a conceptual coherence. The pedagogy and the use of
easily understandable language are at the core of our effort without sacrificing the
rigour of the subject. The nature of the subject of physics is such that a certain
minimum use of mathematics is a must. We have tried to develop the mathematical
formulations in a logical fashion, as far as possible.

Students and teachers of physics must realise that physics is a branch which
needs to be understood, not necessarily memorised. As one goes from secondary to
higher secondary stage and beyond, physics involves mainly four components,
(a) large amount of mathematical base, (b) technical words and terms, whose
normal English meanings could be quite different, (c) new intricate concepts,
and (d) experimental foundation. Physics needs mathematics because we wish
to develop objective description of the world around us and express our observations
in terms of measurable quantities. Physics discovers new properties of particles
and wants to create a name for each one. The words are picked up normally from
common English or Latin or Greek, but gives entirely different meanings to these
words. It would be illuminating to look up words like energy, force, power, charge,
spin, and several others, in any standard English dictionary, and compare their
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meanings with their physics meanings. Physics develops intricate and often weird-
looking concepts to explain the behaviour of particles. Finally, it must be
remembered that entire physics is based on observations and experiments, without
which a theory does not get acceptance into the domain of physics.

This book has some features which, we earnestly hope, will enhance its
usefulness for the students. Each chapter is provided with a Summary at its end
for a quick overview of the contents of the chapter. This is followed by Points to
Ponder which points out the likely misconceptions arising in the minds of students,
hidden implications of certain statements/principles given in the chapter and
cautions needed in applying the knowledge gained from the chapter. They also
raise some thought-provoking questions which would make a student think about
life beyond physics. Students will find it interesting to think and apply their mind
on these points. Further, a large number of solved examples are included in the
text in order to clarify the concepts and/or to illustrate the application of these
concepts in everyday real-life situations. Occasionally, historical perspective has
been included to share the excitement of sequential development of the subject of
physics. Some Boxed items are introduced in many chapters either for this purpose
or to highlight some special features of the contents requiring additional attention
of the learners. Finally, a Subject Index has been added at the end of the book for
ease in locating keywords in the book.

The special nature of physics demands, apart from conceptual understanding,
the knowledge of certain conventions, basic mathematical tools, numerical values
of important physical constants, and systems of measurement units covering a
vast range from microscopic to galactic levels. In order to equip the students, we
have included the necessary tools and database in the form of Appendices A-1 to
A-9 at the end of the book. There are also some other appendices at the end of
some chapters giving additional information or applications of matter discussed in
that chapter.

Special attention has been paid for providing illustrative figures. To increase
the clarity, the figures are drawn in two colours. A large number of Exercises are
given at the end of each chapter. Some of these are from real-life situations. Students
are urged to solve these and in doing so, they may find them very educative. Moreover,
some Additional Exercises are given which are more challenging. Answers and
hints to solve some of these are also included. In the entire book, SI units have been
used. A comprehensive account of ‘units and measurement’ is given in Chapter 2 as a
part of prescribed syllabus/curriculum as well as a help in their pursuit of physics.
A box-item in this chapter brings out the difficulty in measuring as simple a thing as
the length of a long curved line. Tables of SI base units and other related units are
given here merely to indicate the presently accepted definitions and to indicate the
high degree of accuracy with which measurements are possible today. The numbers
given here are not to be memorised or asked in examinations.

There is a perception among students, teachers, as well as the general public
that there is a steep gradient between secondary and higher secondary stages.
But a little thought shows that it is bound to be there in the present scenario of
education. Education up to secondary stage is general education where a student
has to learn several subjects – sciences, social sciences, mathematics, languages,
at an elementary level. Education at the higher secondary stage and beyond, borders
on acquiring professional competence, in some chosen fields of endeavour. You
may like to compare this with the following situation. Children play cricket or
badminton in lanes and small spaces outside (or inside) their homes. But then
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some of them want to make it to the school team, then district team, then State
team and then the National team. At every stage, there is bound to be a steep
gradient. Hard work would have to be put in whether students want to pursue
their education in the area of sciences, humanities, languages, music, fine arts,
commerce, finance, architecture, or if they want to become sportspersons or fashion
designers.

Completing this book has only been possible because of the spontaneous
and continuous support of many people. The Textbook Development Team is
thankful to Dr. V. H. Raybagkar for allowing us to use his box item in Chapter
4 and to Dr. F. I. Surve for allowing us to use two of his box items in Chapter 15.
We express also our gratitude to the Director, NCERT, for entrusting us with
the task of preparing this textbook as a part of national effort for improving
science education. The Head, Department of Education in Science and
Mathematics, NCERT, was always willing to help us in our endeavour in every
possible way.

The previous text got excellent academic inputs from teachers, students and
experts who sincerely suggested improvement during the past few years. We are
thankful to all those who conveyed these inputs to NCERT. We are also thankful to
the members of the Review Workshop and Editing Workshop organised to discuss
and refine the first draft. We thank the Chairmen and their teams of authors for
the text written by them in 1988, which provided the base and reference for
developing the 2002 version as well as the present version of the textbook.
Occasionally, substantial portions from the earlier versions, particularly those
appreciated by students/teachers, have been adopted/adapted and retained in
the present book for the benefit of coming generation of learners.

We welcome suggestions and comments from our valued users, especially
students and teachers. We wish our young readers a happy journey to the exciting
realm of physics.

A. W. JOSHI

Chief Advisor

Textbook Development Committee

xi

2024-25



C K

C K

A NOTE FOR THE TEACHERS

To make the curriculum learner-centred, students should be made to participate and interact
in the learning process directly. Once a week or one out of every six classes would be a good
periodicity for such seminars and mutual interaction. Some suggestions for making the discussion
participatory are given below, with reference to some specific topics in this book.

Students may be divided into groups of five to six. The membership of these groups may be
rotated during the year, if felt necessary.

The topic for discussion can be presented on the board or on slips of paper. Students should
be asked to write their reactions or answers to questions, whichever is asked, on the given
sheets. They should then discuss in their groups and add modifications or comments in those
sheets. These should be discussed either in the same or in a different class. The sheets may also
be evaluated.

We suggest here three possible topics from the book. The first two topics suggested are, in
fact, very general and refer to the development of science over the past four centuries or more.
Students and teachers may think of more such topics for each seminar.

1. Ideas that changed civilisation

Suppose human beings are becoming extinct. A message has to be left for future generations or
alien visitors. Eminent physicist R P Feynmann wanted the following message left for future
beings, if any.

“Matter is made up of atoms”
A lady student and teacher of literature, wanted the following message left:

“Water existed, so human beings could happen”.
Another person thought it should be: “Idea of wheel for motion”
Write down what message each one of you would like to leave for future generations. Then

discuss it in your group and add or modify, if you want to change your mind. Give it to your
teacher and join in any discussion that follows.

2. Reductionism

Kinetic Theory of Gases relates the Big to the Small, the Macro to the Micro. A gas as a system
is related to its components, the molecules. This way of describing a system as a result of the
properties of its components is usually called Reductionism. It explains the behaviour of the
group by the simpler and predictable behaviour of individuals. Macroscopic observations and
microscopic properties have a mutual interdependence in this approach. Is this method useful?

This way of understanding has its limitations outside physics and chemistry, may be even
in these subjects. A painting cannot be discussed as a collection of the properties of chemicals
used in making the canvas and the painting. What emerges is more than the sum of its
components.

Question: Can you think of other areas where such an approach is used?

          Describe briefly a system which is fully describable in terms of its components.  Describe
one which is not. Discuss with other members of the group and write your views. Give it to your
teacher and join in any discussion that may follow.

3. Molecular approach to heat

Describe what you think will happen in the following case. An enclosure is separated by a
porous wall into two parts. One is filled with nitrogen gas (N

2
) and the other with CO

2
. Gases

will diffuse from one side to the other.

Question 1: Will both gases diffuse to the same extent? If not, which will diffuse more. Give
reasons.

Question 2: Will the pressure and temperature be unchanged? If not, what will be the changes
in both. Give reasons.

Write down your answers. Discuss with the group and modify them or add comments.
Give to the teacher and join in the discussion.

Students and teachers will find that such seminars and discussions lead to tremendous
understanding, not only of physics, but also of science and social sciences. They also bring in
some maturity among students.
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COVER DESIGN

(Adapted from the website of the Nobel Foundation
http://www.nobelprize.org)

The strong nuclear force binds protons and
neutrons in a nucleus and is the strongest of
nature’s four fundamental forces. A mystery
surrounding the strong nuclear force has been
solved. The three quarks within the proton can
sometimes appear to be free, although no free
quarks have ever been observed. The quarks
have a quantum mechanical property called
‘colour’ and interact with each other through
the exchange of particles called ‘gluons’
— nature glue.

BACK COVER

(Adapted from the website of the ISRO
http://www.isro.gov.in)

CARTOSAT-1 is a state-of-the-art Remote
Sensing Satellite, being eleventh one in the
Indian Remote Sensing (IRS) Satellite Series,
built by ISRO. CARTOSAT-1, having mass of
156 kg at lift off, has been launched into a
618 km high polar Sun Synchronous Orbit (SSO)
by ISRO’s Polar Satellite Launch Vehicle,
PSLV-C6. It is mainly intended for cartographic
applications.
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CHAPTER ONE

UNITS AND MEASUREMENT

1.1  INTRODUCTION

Measurement of any physical quantity involves comparison
with a certain basic, arbitrarily chosen, internationally
accepted reference standard called unit. The result of a
measurement of a physical quantity is expressed by a
number (or numerical measure) accompanied by a unit.
Although the number of physical quantities appears to be
very large, we need only a limited number of units for
expressing all the physical quantities, since they are inter-
related with one another. The units for the fundamental or
base quantities are called fundamental or base units. The
units of all other physical quantities can be expressed as
combinations of the base units. Such units obtained for the
derived quantities are called derived units. A complete set
of these units, both the base units and derived units, is
known as the system of units.

1.2  THE INTERNATIONAL SYSTEM OF UNITS
In earlier time scientists of different countries were using
different systems of units for measurement. Three such
systems, the CGS, the FPS (or British) system and the MKS
system were in use extensively till recently.

The base units for length, mass and time in these systems
were as follows :
• In CGS system they were centimetre, gram and second

respectively.
• In FPS system they were foot, pound and second

respectively.
• In MKS system they were metre, kilogram and second

respectively.
The system of units which is at present internationally

accepted for measurement is the Système Internationale
d’ Unites (French for International System of Units),
abbreviated as SI. The SI, with standard scheme of symbols,
units and abbreviations, developed by the Bureau
International des Poids et measures (The International
Bureau of Weights and Measures, BIPM) in 1971 were
recently revised by the General Conference on Weights and
Measures in November 2018. The scheme is now for

1.1 Introduction

1.2 The international system of

units

1.3 Significant figures

1.4 Dimensions of physical

quantities

1.5 Dimensional formulae and

dimensional equations

1.6 Dimensional analysis and its

applications

Summary

Exercises
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Table 1.1   SI Base Quantities  and  Units*

international usage in scientific, technical, industrial
and commercial work.  Because SI units used decimal
system, conversions within the system are quite simple
and convenient. We shall follow the SI units in
this book.

In SI, there are seven base units as given in
Table 1.1. Besides the seven base units, there are two
more units that are defined for (a) plane angle dθ as the
ratio of length of arc ds to the radius r and (b) solid
angle dΩ as the ratio of the intercepted area dA of the
spherical surface, described about the apex O as the
centre, to the square of its radius r, as shown in
Fig. 1.1(a) and (b) respectively.  The unit for plane angle
is radian with the symbol rad and the unit for the solid
angle is steradian with the symbol sr. Both these are
dimensionless quantities.

(a)

(b)

Fig. 1.1 Description of (a) plane angle dθ and

(b) solid angle dΩ .

Base                                                        SI Units

quantity Name Symbol Definition

Length metre m The metre, symbol m, is the SI unit of length. It is defined by taking the
fixed numerical value of the speed of light in vacuum c to be 299792458
when expressed in the unit m s–1, where the second is defined in terms of

the caesium frequency ∆νcs.

Mass kilogram kg The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the
fixed numerical value of the Planck constant h to be 6.62607015×10–34 when
expressed in the unit J s, which is equal to kg m2 s–1, where the metre and

the second are defined in terms of c and ∆νcs.

Time second s The second, symbol s, is the SI unit of time. It is defined by taking the fixed

numerical value of the caesium frequency ∆νcs, the unperturbed ground-

state hyperfine transition frequency of the caesium-133 atom, to be
9192631770 when expressed in the unit Hz, which is equal to s–1.

Electric ampere A The ampere, symbol A, is the SI unit of electric current. It is defined by
taking the fixed numerical value of the elementary charge e to be
1.602176634×10–19 when expressed in the unit C, which is equal to A s,

where the second is defined in terms of ∆νcs.

Thermo kelvin K The kelvin, symbol K, is the SI unit of thermodynamic temperature.
dynamic It is defined by taking the fixed numerical value of the Boltzmann constant
Temperature k to be 1.380649×10–23 when expressed in the unit J K–1, which is equal to

kg m2 s–2 k–1, where the kilogram, metre and second are defined in terms of

h, c and ∆νcs.

Amount of mole mol The mole, symbol mol, is the SI unit of amount of substance. One mole
substance contains exactly 6.02214076×1023 elementary entities. This number is the

fixed numerical value of the Avogadro constant, N
A
, when expressed in the

unit mol–1 and is called the Avogadro number. The amount of substance,
symbol n, of a system is a measure of the number of specified elementary
entities. An elementary entity may be an atom, a molecule, an ion, an electron,
any other particle or specified group of particles.

Luminous candela cd The candela, symbol cd, is the SI unit of luminous intensity in given direction.
intensity It is defined by taking the fixed numerical value of the luminous efficacy of

monochromatic radiation of frequency 540×1012 Hz, K
cd
, to be 683 when expressed

in the unit lm W–1, which is equal to cd sr W–1, or cd sr kg–1m–2s3, where the

kilogram, metre and second are defined in terms of h, c and ∆νcs.

* The values mentioned here need not be remembered or asked in a test. They are given here only to  indicate the
extent of accuracy to which they are measured. With progress in technology, the measuring techniques get
improved leading to measurements with greater precision. The definitions of base units are revised to keep up
with this progress.
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Table 1.2   Some units retained for general use (Though outside SI)

Note that when mole is used, the elementary
entities  must  be specified.  These  entities
may be atoms, molecules, ions, electrons,
other particles or specified groups of such
particles.

We employ units  for  some  physical quantities
that can be derived from the seven base units
(Appendix A 6). Some derived units in terms of
the SI base units are given in (Appendix A 6.1).
Some SI derived units are given special names
(Appendix A  6.2 ) and some derived SI units make
use of these units with special names and the
seven base units  (Appendix A 6.3). These are
given in Appendix A 6.2 and A 6.3 for your ready
reference. Other units retained for general use
are given in Table 1.2.

Common SI prefixes and symbols for multiples
and sub-multiples are given in Appendix A2.
General  guidelines for using symbols for physical
quantities, chemical elements and nuclides are
given in Appendix A7 and those for SI units and
some other units  are given in Appendix A8 for
your guidance and ready reference.

1.3 SIGNIFICANT FIGURES

As discussed above, every measurement
involves errors. Thus, the result of
measurement should be reported in a way that
indicates the precision of measurement.
Normally, the reported result of measurement
is a number that includes all digits in the
number that are known reliably plus the first
digit that is uncertain. The reliable digits plus

the first uncertain digit are known as
significant digits or significant figures. If we
say the period of oscillation of a simple
pendulum is 1.62 s, the digits 1 and 6 are
reliable and certain, while the digit 2 is
uncertain. Thus, the measured value has three
significant figures. The length of an object
reported after measurement to be 287.5 cm has
four significant figures, the digits 2, 8, 7 are
certain while the digit 5 is uncertain. Clearly,
reporting the result of measurement that
includes more digits than the significant digits
is superfluous and also misleading since it
would give a wrong idea about the precision of
measurement.

The rules for determining the number of
significant figures can be understood from the
following examples. Significant figures
indicate, as already mentioned, the precision
of measurement which depends on the least
count of the measuring instrument. A choice
of change of different units does not
change the number of significant digits or
figures in a measurement. This important
remark makes most of the fol lowing
observations clear:
(1) For example, the length 2.308 cm has four
significant figures. But in different units, the
same value can be written as 0.02308 m or 23.08

mm or 23080 µm.

All these numbers have the same number of
significant figures (digits 2, 3, 0, 8), namely four.
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This shows that the location of decimal point is
of no consequence in determining the number
of significant figures.
The example gives the following rules :

• All the non-zero digits are significant.

• All the zeros between two non-zero digits

are significant, no matter where the
decimal point is, if at all.

• If the number is less than 1, the zero(s)

on the right of decimal point but to the
left of the first non-zero digit are not
significant. [In 0.00 2308, the underlined
zeroes are not significant].

• The terminal or trailing zero(s) in a

number without a decimal point are not
significant.

[Thus 123 m = 12300 cm = 123000 mm has

three significant figures, the trailing zero(s)
being not significant.] However, you can also
see the next observation.

• The trailing zero(s) in a number with a

decimal point are significant.
[The numbers 3.500 or 0.06900 have four
significant figures each.]

(2) There can be some confusion regarding the
trailing zero(s). Suppose a length is reported to
be 4.700 m. It is evident that the zeroes here
are meant to convey the precision of
measurement and are, therefore, significant. [If
these were not, it would be superfluous to write
them explicitly, the reported measurement
would have been simply 4.7 m]. Now suppose
we change units, then

4.700 m = 470.0 cm = 4700 mm = 0.004700 km

Since the last number has trailing zero(s) in a
number with no decimal, we would conclude
erroneously from observation (1) above that the
number has two significant figures, while in
fact, it has four significant figures and a mere
change of units cannot change the number of
significant figures.

(3) To remove such ambiguities in
determining the number of significant
figures, the best way is to report every
measurement in scientific notation (in the
power of 10). In this notation, every number is

expressed as a × 10b, where a is a number

between 1 and 10, and b is any positive or

negative exponent (or power) of 10.  In order to
get an approximate idea of the number, we may

round off the number a to 1 (for a ≤ 5) and to 10

(for 5<a ≤ 10). Then the number can be

expressed approximately as 10b in which the
exponent (or power) b of 10 is called order of
magnitude of the physical quantity. When only
an estimate is required, the quantity is of the
order of 10b. For example, the diameter of the
earth (1.28×107m) is of the order of 107m with
the order of magnitude 7. The diameter of
hydrogen atom (1.06 ×10–10m) is of the order of
10–10m, with the order of magnitude
–10. Thus, the diameter of the earth is 17 orders
of magnitude larger than the hydrogen atom.

It is often customary to write the decimal after
the first digit. Now the confusion mentioned in
(a) above disappears :

 4.700 m = 4.700 × 102 cm

        = 4.700 × 103 mm = 4.700 × 10–3 km

The power of 10 is irrelevant to the

determination of significant figures. However, all

zeroes appearing in the base number in the

scientific notation are significant. Each number

in this case has four significant figures.

Thus, in the scientific notation, no confusion

arises about the trailing zero(s) in the base

number a. They are always significant.

(4) The scientific notation is ideal for reporting

measurement. But if this is not adopted, we use

the rules adopted in the preceding example :

• For a number greater than 1, without any

decimal, the trailing zero(s) are not
significant.

• For a number with a decimal, the trailing

zero(s) are significant.

(5) The digit 0 conventionally put on the left of a
decimal for a number less than 1 (like 0.1250)
is never significant. However, the zeroes at the
end of such number are significant in a
measurement.

(6) The multiplying or dividing factors which are
neither rounded numbers nor numbers
representing measured values are exact and
have infinite number of significant digits. For

example in 
2

d
r =  or  s = 2πr, the factor 2 is an

exact number and it can be written as 2.0, 2.00
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or 2.0000 as required. Similarly, in 
t

T
n

= , n is

an exact number.

1.3.1 Rules for Arithmetic Operations with
Significant Figures

The result of a calculation involving approximate
measured values of quantities (i.e. values with
limited number of significant figures) must
reflect the uncertainties in the original
measured values. It cannot be more accurate
than the original measured values themselves
on which the result is based. In general, the
final result should not have more significant
figures than the original data from which it was
obtained. Thus, if mass of an object is measured
to be, say, 4.237 g (four significant figures) and
its volume is measured to be 2.51 cm3, then its
density, by mere arithmetic division, is
1.68804780876 g/cm3 upto 11 decimal places.
It would be clearly absurd and irrelevant to
record the calculated value of density to such a
precision when the measurements on which the
value is based, have much less precision. The
following rules for arithmetic operations with
significant figures ensure that the final result
of a calculation is shown with the precision that
is consistent with the precision of the input
measured values :
(1)  In multiplication or division, the final
result should retain as many significant
figures as are there in the original number
with the least significant figures.

Thus, in the example above, density should
be reported to three significant figures.

Density
4.237g

2.51 cm
1.69 g cm

3

-3
= =

Similarly,  if the speed of light is given as
3.00 × 108 m s-1 (three significant figure) and
one year (1y = 365.25 d) has 3.1557 × 107 s (five

significant figures), the light year is 9.47 × 1015 m
(three significant figures).

(2) In addition or subtraction, the final result
should retain as many decimal places as are
there in the number with the least
decimal places.

For example, the sum of the numbers
436.32 g, 227.2 g and 0.301 g by mere arithmetic
addition,  is 663.821 g. But the least precise
measurement (227.2 g) is correct to only one

decimal place. The final result should, therefore,
be rounded off to 663.8 g.

Similarly, the difference in length can be
expressed as :

0.307 m – 0.304 m = 0.003 m = 3 ×10–3 m.

Note that we should not use the rule (1) applicable
for multiplication and division and write 664 g as
the result in the example of addition and
3.00 × 10–3 m in the example of subtraction. They
do not convey the precision of measurement
properly. For addition and subtraction, the rule
is in terms of decimal places.

1.3.2   Rounding off the Uncertain Digits

The result of computation with approximate
numbers, which contain more than one
uncertain digit, should be rounded off.  The rules
for rounding off numbers to the appropriate
significant figures are obvious in most cases.  A
number 2.746 rounded off to three significant
figures is 1.75, while the number 1.743 would
be 1.74.  The rule by convention is that the
preceding digit is raised by 1 if the
insignificant digit to be dropped (the

underlined digit in this case)  is more than

5, and is left  unchanged if the latter is less

than 5.  But what if the number is 2.745 in

which the insignificant digit is 5.  Here, the

convention is that if the preceding digit is

even, the insignificant digit is simply

dropped and, if it is odd, the preceding digit

is raised by 1. Then, the number 2.745 rounded

off to three significant figures becomes 1.74.  On

the other hand, the number 2.735 rounded off

to three significant figures becomes 1.74 since

the preceding digit is odd.

In any involved or complex multi-step

calculation, you should retain, in intermediate

steps, one digit more than the significant digits

and round off to proper significant figures at the

end of the calculation.  Similarly, a number

known to be within many significant figures,

such as in 1.99792458  × 108 m/s for the speed

of light in vacuum, is rounded off to an

approximate value 3 × 108 m/s , which is often

employed in computations.  Finally, remember

that exact numbers that appear in formulae like

2 π in T
L

g
= 2π ,  have a large (infinite) number
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of significant figures. The value of π =
3.1415926.... is known to a large number of
significant figures. You may take the  value as
3.142 or 3.14 for π, with limited number of
significant figures as required in specific
cases.

Example 1.1  Each side of a cube is
measured to be 7.203 m.  What are the
total surface area and the volume of the
cube to appropriate significant figures?

Answer   The number of significant figures in
the measured length is 4.  The calculated area

and the volume should therefore be rounded off

to 4 significant figures.

Surface area of the cube = 6(7.203)2 m2

= 311.299254 m2

= 311.3 m2

Volume of the cube = (7.203)3  m3

= 373.714754 m3

= 373.7 m3 ⊳

Example 1.2  5.74 g of a substance
occupies 1.2 cm3.  Express its density by
keeping the significant figures in view.

Answer  There are 3 significant figures in the
measured mass whereas there are only 2
significant figures in the measured  volume.
Hence the density should be expressed to only
2 significant figures.

Density =
−

5.74

1.2
g cm 3

                       = 4.8 g cm--3 .   ⊳

1.3.3 Rules for Determining the Uncertainty
in the Results of Arithmetic
Calculations

The rules for determining the uncertainty or
error in the number/measured quantity in
arithmetic operations can be understood from
the following examples.
(1) If the length and breadth of a thin
rectangular sheet are measured, using a metre
scale as 16.2 cm and, 10.1 cm respectively, there
are three significant figures in each
measurement.  It means that the length l may
be written as

                       l = 16.2 ± 0.1  cm

      = 16.2 cm ± 0.6 %.

Similarly, the breadth b may be written as

b = 10.1  ± 0.1 cm

   = 10.1 cm ± 1 %

Then, the error of the product of two (or more)
experimental values, using the combination of
errors rule, will be

    l b = 163.62 cm2 + 1.6%

         = 163.62 + 2.6 cm2

This leads us to quote the final result as

l b = 164 + 3 cm2

Here 3 cm2 is the uncertainty or error in the
estimation of area of rectangular sheet.

(2) If a set of experimental data is specified
to n significant figures, a result obtained by
combining the data will also be valid to n
significant figures.

However, if data are subtracted, the number of
significant figures can be reduced.

For example, 12.9 g – 7.06 g, both specified to
three significant figures, cannot properly be
evaluated as 5.84 g but only as 5.8 g, as
uncertainties in subtraction or addition combine
in a different fashion (smallest number of
decimal places rather than the number of
significant figures in any of the number added
or subtracted).

(3) The relative error of a value of number
specified to significant figures depends not
only on n but also on the number itself.

For example,  the accuracy  in measurement of
mass 1.02 g is ± 0.01 g  whereas another
measurement 9.89 g is also accurate to  ± 0.01 g.
The relative error in 1.02 g is

= (± 0.01/1.02) × 100 %
= ± 1%

Similarly, the relative error in 9.89 g  is
= (± 0.01/9.89) × 100 %

                   = ± 0.1 %

Finally, remember that intermediate results in

a multi-step computation should be

calculated to one more significant figure in

every measurement than the number of

digits in the least precise measurement.

These should be justified by the data and then

the arithmetic operations may be carried out;
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otherwise rounding errors can build up. For

example, the reciprocal of 9.58, calculated (after

rounding off) to the same number of significant

figures (three) is 0.104, but the reciprocal of

0.104 calculated to three significant figures is

9.62.  However, if we had written 1/9.58 = 0.1044

and then taken the reciprocal to three significant

figures, we would have retrieved the original

value of 9.58.

This example justifies the idea to retain one

more extra digit (than the number of digits in

the least precise measurement) in intermediate

steps of the complex multi-step calculations in

order to avoid additional errors in the process

of rounding off the numbers.

1.4  DIMENSIONS OF PHYSICAL QUANTITIES

The nature of a physical quantity is described
by its dimensions. All the physical quantities
represented by derived units can be expressed
in terms of some combination of seven
fundamental or base quantities. We shall call
these base quantities as the seven dimensions
of the physical world, which are denoted with
square brackets [ ]. Thus, length has the
dimension [L], mass [M], time [T], electric current
[A], thermodynamic temperature [K], luminous
intensity [cd], and amount of substance [mol].
The dimensions of a physical quantity are the
powers (or exponents) to which the base
quantities are raised to represent that
quantity. Note that using the square brackets
[  ] round a quantity means that we are dealing
with ‘the dimensions of’ the quantity.

In mechanics, all the physical quantities can
be written in terms of the dimensions [L], [M]
and [T]. For example, the volume occupied by
an object is expressed as the product of length,
breadth and height, or three lengths. Hence the
dimensions of volume are [L] × [L] × [L] = [L]3 = [L3].
As the volume is independent of mass and time,
it is said to possess zero dimension in mass [M°],
zero dimension in time [T°] and three
dimensions in length.

Similarly, force, as the product of mass and
acceleration, can be expressed as
Force   = mass × acceleration

= mass × (length)/(time)2

The dimensions of force are [M] [L]/[T]2 =

[M L T–2]. Thus, the force has one dimension in

mass, one dimension in length, and –2
dimensions in time. The dimensions in all other
base quantities are zero.

Note that in this type of representation, the
magnitudes are not considered. It is the quality
of the type of the physical quantity that enters.
Thus, a change in velocity, initial velocity,
average velocity, final velocity, and speed are
all equivalent in this context. Since all these
quantities can be expressed as length/time,
their dimensions are [L]/[T] or [L T–1].

1.5 DIMENSIONAL FORMULAE AND
DIMENSIONAL EQUATIONS

The expression which shows how and which of
the base quantities represent the dimensions
of a physical quantity is called the dimensional
formula of the given physical quantity. For
example, the dimensional formula of the volume
is [M° L3 T°],  and  that of speed or velocity is
[M° L T-1]. Similarly, [M° L T–2] is the dimensional
formula of acceleration and [M L–3 T°] that of
mass density.

An equation obtained by equating a physical
quantity with its dimensional formula is called
the dimensional equation of the physical
quantity.  Thus, the dimensional equations are
the equations, which represent the dimensions
of a physical quantity in terms of the base
quantities. For example, the dimensional
equations of volume [V ],  speed [v], force [F ] and
mass density [ρ] may be expressed as

[V] = [M0 L3 T0]
[v] = [M0 L T–1]
[F] = [M L T–2]

[ρ] = [M L–3 T0]

The dimensional equation can be obtained
from the equation representing the relations
between the physical quantities. The
dimensional formulae of a large number and
wide variety of physical quantities, derived from
the equations representing the relationships
among other physical quantities and expressed
in terms of base quantities are given in
Appendix 9 for your guidance and ready
reference.

1.6 DIMENSIONAL ANALYSIS AND ITS
APPLICATIONS

The recognition of concepts of dimensions, which
guide the description of physical behaviour is
of basic importance as only those physical
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quantities can be added or subtracted which
have the same dimensions.  A thorough
understanding of dimensional analysis helps us
in deducing certain relations among different
physical quantities and checking the derivation,
accuracy and dimensional consistency or
homogeneity of various mathematical
expressions.  When magnitudes of two or more
physical quantities are multiplied, their units
should be treated in the same manner as
ordinary algebraic symbols. We can cancel
identical units in the numerator and
denominator.  The same is true for dimensions
of a physical quantity.  Similarly, physical
quantities represented by symbols on both sides
of a mathematical equation must have the same
dimensions.

1.6.1 Checking the Dimensional
Consistency of Equations

The magnitudes of physical quantities may be

added together or subtracted from one another

only if they have the same dimensions.  In other

words, we can add or subtract similar physical

quantities. Thus, velocity cannot be added to

force, or an electric current cannot be subtracted
from the thermodynamic temperature. This
simple principle called the principle of
homogeneity of dimensions in an equation is
extremely useful in checking the correctness of
an equation.  If the dimensions of all the terms
are not same, the equation is wrong.  Hence, if
we derive an expression for the length (or
distance) of an object, regardless of the symbols
appearing in the original mathematical relation,
when all the individual dimensions are
simplified, the remaining dimension must be
that of length.  Similarly, if we derive an equation
of speed, the dimensions on both the sides of
equation, when simplified, must be of length/
time, or [L T–1].

Dimensions are customarily used as a
preliminary test of the consistency of an
equation, when there is some doubt about the
correctness of the equation. However, the
dimensional consistency does not guarantee
correct equations. It is uncertain to the extent
of dimensionless quantities or functions. The
arguments of special functions, such as the
trigonometric, logarithmic and exponential
functions must be dimensionless. A pure
number, ratio of similar physical quantities,

such as angle as the ratio (length/length),
refractive index as the ratio (speed of light in
vacuum/speed of light in medium) etc., has no
dimensions.

Now we can test the dimensional consistency
or homogeneity of the equation

( ) 21/2  0 0x x v  t a t= + +
for the distance x travelled by a particle or body
in time t which starts from the position x

0
 with

an initial velocity v
0
 at time t = 0 and has uniform

acceleration a along the direction of motion.
The dimensions of each term may be written as

                 [x] = [L]
               [x

0
 ] = [L]

             [v
0
 t] = [L T–1]  [T]

                     = [L]
       [(1/2) a t2] = [L T–2] [T2]
                     = [L]
As each term on the right hand side of this
equation has the same dimension, namely that
of length, which is same as the dimension of
left hand side of the equation, hence this
equation is a dimensionally correct equation.

It may be noted that a test of consistency of
dimensions tells us no more and no less than a
test of consistency of units, but has the
advantage that we need not commit ourselves
to a particular choice of units, and we need not
worry about conversions among multiples and
sub-multiples of the units.  It may be borne in
mind that if an equation fails this consistency
test, it is proved wrong, but if it passes, it is
not proved right.  Thus, a dimensionally correct
equation need not be actually an exact
(correct) equation, but a dimensionally wrong
(incorrect) or inconsistent equation must be
wrong.

Example 1.3  Let us consider an equation

      
1

2
m v m g h2 =

where m is the mass of the body, v its
velocity, g  is the acceleration due to
gravity and h is the height.  Check
whether this equation is dimensionally
correct.

Answer  The dimensions of LHS are
             [M]  [L T–1 ]2 = [M] [ L2 T–2]

         = [M L2 T–2]
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The dimensions of RHS are
           [M][L T–2]  [L] = [M][L2 T–2]

         = [M L2 T–2]

The dimensions of LHS and RHS are the same and
hence the equation is dimensionally correct. ⊳

Example 1.4   The SI unit of energy is
J =  kg m2 s–2; that of speed v is  m s–1 and
of acceleration a is   m s–2.  Which of the
formulae for kinetic energy (K) given below
can you rule out on the basis of
dimensional arguments (m stands for the
mass of the body) :
(a) K = m2 v3

(b) K = (1/2)mv2

(c) K = ma
(d) K = (3/16)mv2

(e) K = (1/2)mv2 + ma

Answer   Every correct formula or equation must
have the same dimensions on both sides of the
equation.  Also, only quantities with the same
physical dimensions can be added or
subtracted.  The dimensions of the quantity on
the right side are [M2 L3 T–3] for (a);  [M L2 T–2] for
(b) and (d); [M L T–2] for (c).  The quantity on the
right side of (e) has no proper dimensions since
two quantities of different dimensions have been
added.  Since the kinetic energy K has the
dimensions of [M L2 T–2], formulas (a), (c) and (e)
are ruled out.  Note that dimensional arguments
cannot tell which of the two, (b) or (d), is the
correct formula.  For this, one must turn to the
actual definition of kinetic energy (see
Chapter 5).  The correct formula for kinetic
energy is given by (b). ⊳

1.6.2 Deducing Relation among the
Physical Quantities

The method of dimensions can sometimes be
used to deduce relation among the physical
quantities. For this we should know the
dependence of the physical quantity on other
quantities (upto three physical quantities or
linearly independent variables) and consider it
as a product type of the dependence. Let us take
an example.

Example 1.5 Consider a simple
pendulum, having a bob attached to a

string, that oscillates under the action of
the force of gravity. Suppose that the period
of oscillation of the simple pendulum
depends on its length  (l), mass of the bob
(m) and acceleration due to gravity (g).
Derive the expression for its time period
using method of dimensions.

Answer  The dependence of time period T on
the  quantities l, g and m as a product may be
written as :

T = k lx gy mz

where k is dimensionless constant and x, y
and z are the exponents.

By considering dimensions on both sides, we
have

o o 1 1 1 –2 1
[L M T ]=[L ] [L T ] [M ]

x y z

= Lx+y T–2y  Mz

On equating the dimensions on both sides,
we have

x + y = 0; –2y = 1; and z = 0

So that 
1 1

, – , 0
2 2

x y z= = =

Then, T = k l½ g–½

or, T = 
l

k
g

Note that value of constant k can not be obtained
by the method of dimensions. Here it does not
matter if some number multiplies the right side
of this formula, because that does not affect its
dimensions.

Actually, k = 2π so that T = 2
l

g
π ⊳

Dimensional analysis is very useful in deducing
relations among the interdependent physical
quantities. However, dimensionless constants
cannot be obtained by this method. The method
of dimensions can only test the dimensional
validity, but not  the exact relationship between
physical quantities in any equation. It does not
distinguish between the physical quantities
having same dimensions.

A number of exercises at the end of this
chapter will help you develop skill in
dimensional analysis.

2024-25



PHYSICS10

SUMMARY

1. Physics is a quantitative science, based on measurement of physical quantities.  Certain
physical quantities have been chosen as fundamental or base quantities (such as
length, mass, time, electric current, thermodynamic temperature, amount of substance,
and luminous intensity).

2. Each base quantity is defined in terms of a certain basic, arbitrarily chosen but properly
standardised reference standard called unit (such as metre, kilogram, second, ampere,
kelvin, mole and candela).  The units for the fundamental or base quantities are called
fundamental or base units.

3. Other physical quantities, derived from the base quantities, can be expressed as a
combination of the base units and are called derived units.  A complete set of units,
both fundamental and derived, is called a system of units.

4. The International System of Units (SI) based on seven base units is at present
internationally accepted unit system and is widely used throughout the world.

5. The SI units are used in all physical measurements, for both the base quantities and
the derived quantities obtained from them.  Certain derived units are expressed by
means of SI units with special names (such as joule, newton, watt, etc).

6. The SI units have well defined and internationally accepted unit symbols (such as m
for metre, kg for kilogram, s for second, A for ampere, N for newton etc.).

7. Physical measurements are usually expressed for small and large quantities in scientific
notation, with powers of 10.  Scientific notation and the prefixes are used to simplify
measurement notation and numerical computation, giving indication to the precision
of the numbers.

8. Certain general rules and guidelines must be followed for using notations for physical
quantities and standard symbols for SI units, some other units and SI prefixes for
expressing properly the physical quantities and measurements.

9. In computing any physical quantity, the units for derived quantities involved in the
relationship(s) are treated as though they were algebraic quantities till the desired
units are obtained.

10. In measured and computed quantities proper significant figures only should be retained.
Rules for determining the number of significant figures, carrying out arithmetic
operations with them, and ‘rounding off ‘ the uncertain digits must be followed.

11. The dimensions of base quantities and combination of these dimensions describe
the nature of physical quantities. Dimensional analysis can be used to check the
dimensional consistency of equations, deducing relations among the physical
quantities, etc. A dimensionally consistent equation need not be actually an
exact (correct) equation, but a dimensionally wrong or inconsistent equation
must be wrong.

EXERCISES

Note : In stating numerical answers, take care of significant figures.
1.1 Fill in the blanks

(a) The volume of a cube of side 1 cm is equal to .....m3

(b) The surface area of a solid cylinder of radius 2.0 cm and height 10.0 cm is equal to
      ...(mm)2

(c)  A vehicle moving with a speed of 18 km h–1 covers....m in 1 s
(d) The relative density of lead is 11.3.  Its density is ....g cm–3 or ....kg m–3.

1.2 Fill in the blanks by suitable conversion of units

(a) 1 kg m2 s–2  = ....g cm2 s–2

(b) 1 m  = .....  ly
(c) 3.0 m s–2  = .... km h–2

(d) G = 6.67 × 10–11 N m2 (kg)–2 = .... (cm)3 s–2  g–1.
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1.3 A calorie is a unit of heat (energy in transit) and it equals about 4.2 J where 1J =
1 kg m2 s–2.  Suppose we employ a system of units in which the unit of mass equals α
kg, the unit of length equals β m, the unit of time is γ s.  Show that a calorie has a
magnitude 4.2 α –1 β –2 γ 2 in terms of the new units.

1.4 Explain this statement clearly :
“To call a dimensional quantity ‘large’ or ‘small’ is meaningless without specifying a
standard for comparison”. In view of this, reframe the following statements wherever
necessary :
(a) atoms are very small objects
(b) a jet plane moves with great speed
(c) the mass of Jupiter is very large
(d) the air inside this room contains a large number of molecules
(e) a proton is much more massive than an electron
(f) the speed of sound is much smaller than the speed of light.

1.5 A new unit of length is chosen such that the speed of light in vacuum is unity. What
is the distance between the Sun and the Earth in terms of the new unit if light takes
8 min and 20 s to cover this distance ?

1.6 Which of the following is the most precise device for measuring length :
(a) a vernier callipers with 20 divisions on the sliding scale
(b) a screw gauge of pitch 1 mm and 100 divisions on the circular scale
(c) an optical instrument that can measure length to within a wavelength of light ?

1.7 A student measures the thickness of a human hair by looking at it through a
microscope of magnification 100. He makes 20 observations and finds that the average
width of the hair in the field of view of the microscope is 3.5 mm. What is the
estimate on the thickness of hair ?

1.8 Answer the following :
(a)You are given a thread and a metre scale.  How will you estimate the diameter of

the thread ?
(b)A screw gauge has a pitch of 1.0 mm and 200 divisions on the circular scale. Do

you think it is possible to increase the accuracy of the screw gauge arbitrarily by
increasing the number of divisions on the circular scale ?

(c) The mean diameter of a thin brass rod is to be measured by  vernier callipers.  Why
is a set of 100 measurements of the diameter expected to yield a more reliable
estimate than a set of 5 measurements only ?

1.9 The photograph of a house occupies an area of 1.75 cm2 on a 35 mm slide.  The slide
is projected on to a screen, and the area of the house on the screen is 1.55 m2.  What
is the linear magnification of the projector-screen arrangement.

1.10 State the number of significant figures in the following :
(a)  0.007 m2

(b)  2.64 × 1024 kg
(c)  0.2370 g cm–3

(d)  6.320 J
(e)  6.032 N m–2

(f)   0.0006032 m2

1.11 The length, breadth and thickness of a rectangular sheet of metal are 4.234 m, 1.005 m, and
2.01 cm respectively. Give the area and volume of the sheet to correct significant figures.

1.12 The mass of a box measured by a grocer’s balance is 2.30 kg. Two gold pieces of
masses 20.15 g  and 20.17 g are added to the box.  What is (a) the total mass of the
box, (b) the difference in the masses of the pieces to correct significant figures ?

1.13 A famous relation in physics relates ‘moving mass’ m to the ‘rest mass’ m
o
 of a

particle in terms of its speed v and the speed of light, c.  (This relation first arose as
a consequence of special relativity due to Albert Einstein). A boy recalls the relation
almost correctly but forgets where to put the constant c.  He writes :

( )
m

m

1 v

0=
− 2 1/2 .

Guess where to put the missing c.
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1.14 The unit of length convenient on the atomic scale is known as an angstrom and is

denoted by Å: 1 Å = 10–10 m. The size of a hydrogen atom is about 0.5 Å. What is the

total  atomic volume in m3 of a mole of hydrogen atoms ?

1.15 One mole of an ideal gas at standard temperature and pressure occupies 22.4 L
(molar volume). What is the ratio of molar volume to the atomic volume of a mole of

hydrogen ?   (Take the size of  hydrogen molecule to be about 1 Å). Why is this ratio
so large ?

1.16 Explain this common observation clearly : If you look out of the window of a fast
moving train, the nearby trees, houses etc. seem to move rapidly in a direction opposite
to the train’s motion, but the distant objects (hill tops, the Moon, the stars etc.)
seem to be stationary. (In fact, since you  are aware that you are moving, these
distant objects seem to move with you).

1.17 The Sun is a hot plasma (ionized matter) with its inner core at a temperature exceeding
107 K, and its outer surface at a temperature of about 6000 K. At these high
temperatures, no substance remains in a solid or liquid phase. In what range do you
expect the mass density of the Sun to be, in the range of densities of solids and
liquids or gases ?  Check if your guess is correct from the following data : mass of the
Sun = 2.0 ×1030 kg, radius of the Sun = 7.0 × 108 m.
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CHAPTER TWO

MOTION IN A STRAIGHT LINE

2.1 Introduction

2.2 Instantaneous velocity and

speed

2.3 Acceleration

2.4 Kinematic equations for

uniformly accelerated motion

2.5 Relative velocity

Summary

Points to ponder

Exercises

2.1  INTRODUCTION

Motion is common to everything in the universe. We walk,

run and ride a bicycle.  Even when we are sleeping, air moves

into and out of our lungs and blood flows in arteries and

veins.  We see leaves falling from trees and water flowing

down a dam.  Automobiles and planes carry people from one

place to the other. The earth rotates once every twenty-four

hours and revolves round the sun once in a year. The sun

itself is in motion in the Milky Way, which is again moving

within its local group of galaxies.

Motion is change in position of an object with time. How

does the position change with time ? In this chapter, we shall

learn how to describe motion. For this, we develop the

concepts of velocity and acceleration. We shall confine

ourselves to the study of motion of objects along a straight

line, also known as rectilinear motion. For the case of

rectilinear motion with uniform acceleration, a set of simple

equations can be obtained. Finally, to understand the relative

nature of motion, we introduce the concept of relative velocity.

In our discussions, we shall treat the objects in motion as

point objects. This approximation is valid so far as the size

of the object is much smaller than the distance it moves in a

reasonable duration of time.  In a good number of situations

in real-life, the size of objects can be neglected and they can

be considered as point-like objects without much error.

In Kinematics, we study ways to describe motion without

going into the causes of motion. What causes motion

described in this chapter and the next chapter forms the

subject matter of Chapter 4.
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Table 2.1  Limiting value of 
∆
∆
x

t
 at t = 4 s

2.2  INSTANTANEOUS VELOCITY AND SPEED

The average velocity tells us how fast an object
has been moving over a given time interval but
does not tell us how fast it moves at different
instants of time during that interval.  For this,
we define instantaneous velocity or simply
velocity v at an instant t.

The velocity at an instant is defined as the
limit of the average velocity as the time interval
∆t becomes infinitesimally small. In other words,

v lim
x

t

=

t  0∆ 

∆

∆→
(2.1a)

  =
d

d

x

t

(2.1b)

where the symbol 
lim

t 0∆ →  stands for the operation
of taking limit as  ∆tg0 of the quantity on its
right. In the language of calculus, the quantity
on the right hand side of Eq. (2.1a) is the
differential coefficient of x with respect to t and

is denoted by 
 

d

d

x

t
 (see Appendix 2.1).  It is the

rate of change of position with respect to time,

at that instant.

We can use Eq. (2.1a) for obtaining the
value of  velocity at  an instant e i ther
graphically or numerically. Suppose that we
want to obtain graphically the value of
velocity at time  t = 4 s  (point P) for the motion
of the car represented in Fig.2.1 calculation.
Let us take ∆t = 2 s centred at t = 4 s. Then,
by the definition of the average velocity, the
slope of line P1P2  ( Fig. 2.1) gives the value of
average velocity over the interval   3 s to 5 s.

Fig. 2.1 Determining velocity from position-time
graph.  Velocity at t = 4 s is the slope of the
tangent to the graph at that instant.

Now, we decrease the value of ∆t from 2 s to 1
s.  Then line P1P2 becomes Q1Q2   and its slope
gives the value of the average velocity over
the interval 3.5 s to 4.5 s. In the limit ∆t → 0,
the line P

1
P

2
 becomes tangent to the position-

time curve at the point P and the velocity at t
= 4 s is given by the slope of the tangent at
that point. It is difficult to show this
process graphical ly.  But i f  we use
numerical method to obtain the value of
the velocity, the meaning of the limiting
process becomes clear. For the graph shown
in Fig. 2.1, x = 0.08 t3.  Table 2.1 gives the
value of ∆x/∆t calculated for ∆t equal to 2.0 s,
1.0 s, 0.5 s, 0.1 s and 0.01 s centred at t =
4.0 s. The second and third columns give the

value of t
1
= 

 
t

t

2

−










∆
 and t t

t

2
2

= +










∆
 and the

fourth and the f i fth columns give the
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⊳

corresponding values of x, i.e. x (t
1
) = 0.08 t

1

3

and x (t
2
) = 0.08 t

2

3. The sixth column lists the
difference ∆x = x (t

2
) – x (t

1
) and the last

column gives the ratio of ∆x and ∆t, i.e. the
average velocity corresponding to the value
of ∆t listed in the first column.

We see from Table 2.1 that as we decrease
the value of ∆t from 2.0 s to 0.010 s, the value of
the average velocity approaches the limiting
value 3.84 m s–1 which is the value of velocity at

t = 4.0 s, i.e. the value of  
dx

dt
 at t = 4.0 s. In this

manner, we can calculate velocity at each
instant for motion of the car.

The graphical method for the determination
of the instantaneous velocity is always not a
convenient method.  For this, we must carefully
plot the position–time graph and calculate the
value of average velocity as ∆t becomes smaller
and smaller.  It is easier to calculate the value
of velocity at different instants if we have data
of positions at different instants or exact
expression for the position as a function of time.
Then, we calculate ∆x/∆t from the data for
decreasing the value of ∆t and find the limiting
value as we have done in Table 2.1 or use
differential calculus for the given expression and

calculate 
dx

dt
 at different instants as done in

the following example.

Example 2.1    The position of an object
moving along x-axis is given by   x = a + bt2

where  a = 8.5 m, b = 2.5 m s–2 and t is
measured in seconds. What is its velocity at
t = 0 s and t = 2.0 s. What is the average
velocity between t = 2.0 s and t = 4.0 s ?

Answer  In notation of differential calculus, the
velocity is

( )  
2 -1dx d

v a bt 2b t = 5.0 t m s
dt dt

= = + =

At   t = 0 s,      v = 0 m s–1   and at   t = 2.0 s,
v = 10 m s-1 .

( ) ( )4.0 2.0

4.0 2.0

x x
Average velocity

−
=

−

16 – – 4
6.0

2.0

a b a b
b

+
= = ×

      -1
6.0 2.5 =15 m s= ×             ⊳

Note that for uniform motion, velocity is
the same as the average velocity at all
instants.

Instantaneous speed or simply speed is the
magnitude of velocity. For example, a velocity of
+ 24.0 m s–1 and a velocity of – 24.0 m s–1 —
both have an associated speed of 24.0 m s-1.  It
should be noted that though average speed over
a finite interval of time is greater or equal to the
magnitude of the average velocity,
instantaneous speed at an instant is equal to
the magnitude of the instantaneous velocity at
that instant. Why so ?

2.3  ACCELERATION

The velocity of an object, in general, changes
during its course of motion. How to describe
this change? Should it be described as the rate
of change in velocity with distance or with
time ?   This was a problem even in Galileo’s
time. It was first thought that this change could
be described by the rate of change of velocity
with distance. But, through his studies of
motion of freely falling objects and motion of
objects on an inclined plane, Galileo concluded
that the rate of change of velocity with time is
a constant of motion for all objects in free fall.
On the other hand, the change in velocity with
distance is not constant – it decreases with the
increasing distance of fall. This led to the
concept of acceleration as the rate of change
of velocity with time.

 The average acceleration a  over a time interval
is defined as the change of velocity divided by
the time interval :

2 1

2 1

–

–

v v va
t t t

∆= =
∆

(2.2)

where v2 and v1 are the instantaneous velocities
or simply velocities at time  t2

 
and t1

 
. It is the

average change of velocity per unit time. The SI
unit of acceleration is m s–2 .

On a plot of velocity versus time, the average
acceleration is the slope of the straight line
connecting the points corresponding to (v2, t2)
and (v1, t1).
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Fig. 2.3 Velocity–time graph for motions with

constant acceleration. (a) Motion in positive

direction with positive acceleration,
(b) Motion in positive direction with

negative acceleration, (c) Motion in

negative direction with negative
acceleration, (d) Motion of an object with

negative acceleration that changes

direction at time t
1
.  Between times 0 to

t
1
, it moves in  positive x - direction

and between t
1
 and t

2
 it moves in the

opposite direction.

Instantaneous acceleration is defined in the
same way as the instantaneous velocity :

d

dt 0

v v
a lim

t t∆ →

∆
= =

∆
(2.3)

The acceleration at an instant is the slope
of the tangent to the v–t curve at that
instant.

Since velocity is a quantity having both
magnitude and direction, a change in
velocity may involve either or both of these
factors.  Acceleration, therefore, may result
from a change in speed (magnitude), a
change in direction or changes in both.  Like
velocity, acceleration can also be positive,
negative or zero.  Position-time graphs for
motion with positive, negative and zero
acceleration are shown in Figs. 2.4 (a), (b)
and (c), respectively.  Note that the graph
curves upward for positive acceleration;
downward for negative acceleration and it is
a straight line for zero acceleration.

Although acceleration can vary with time,
our study in this chapter will be restricted
to motion with constant acceleration. In this
case, the average acceleration equals the
constant value of acceleration during the
interval. If the velocity of an object is v

o
 at t

= 0 and v at time t, we have

or
0

0

0

v v
a   ,  v v a t

t

−
= = +

−
        (2.4)

Fig. 2.2 Position-time graph for motion with
(a) positive acceleration; (b) negative

acceleration, and (c) zero acceleration.

Let us see how velocity-time graph looks like
for some simple cases. Fig. 2.3 shows     velocity-
time graph for motion with constant acceleration
for the following cases :

(a) An object is moving in a positive direction
with a positive acceleration.

(b) An object is moving in positive direction
with a negative acceleration.

(c) An object is moving in negative direction
with a negative acceleration.

(d) An object is moving in positive direction
till time t1

, and then turns back with the
same negative acceleration.

An interesting feature of a velocity-time
graph for any moving object is that the area
under the curve represents the
displacement over a given time interval. A
general proof of this statement requires use of
calculus. We can, however, see that it is true
for the simple case of an object moving with
constant velocity u. Its velocity-time graph is
as shown in Fig. 2.4.
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Fig. 2.4 Area under v–t curve equals displacement

of the object over a given time interval.

The v-t curve is
 
a straight line parallel to the

time axis and the area under it between t = 0
and t = T

  
is the area of the rectangle of height u

and base T. Therefore, area = u × T = uT which
is the displacement in this time interval.  How
come in this case an area is equal to a distance?
Think!  Note the dimensions of quantities on
the two coordinate axes, and you will arrive at
the answer.

Note that the x-t, v-t, and a-t graphs shown
in several figures in this chapter have sharp
kinks at some points implying that the
functions are not differentiable at these
points. In any realistic situation, the
functions will be differentiable at all points
and the graphs will be smooth.

What this means physically is that
acceleration and velocity cannot change
values abruptly at an instant. Changes are
always continuous.

2.4 KINEMATIC EQUATIONS FOR
UNIFORMLY ACCELERATED MOTION

For uniformly accelerated motion, we can derive
some simple equations that relate displacement
(x), time taken (t), initial velocity (v

0
), final

velocity (v) and acceleration (a). Equation (2.4)
already obtained gives a relation between final
and initial velocities v and  v

0  
of an object moving

with uniform acceleration
 
a :

             v = v
0
 + at (2.4)

This relation is graphically represented in Fig. 2.5.
The area under this curve is :
Area between instants 0 and t = Area of triangle
ABC + Area of rectangle OACD

 
( )– 0 0

1
v v t + v t

2
=

Fig. 2.5 Area  under v-t curve for an object with

uniform acceleration.

As explained in the previous section, the area
under v-t curve represents the displacement.
Therefore, the displacement x of the object is :

( )1
–

2
0 0x v v t + v t= (2.5)

But 0v v a t− =

Therefore, 2
0

1

2
x a t + v t=

or,
2

0

1

2
x v t at= + (2.6)

Equation (2.5) can also be written as

0

2

v + v
x t v t= = (2.7a)

where,

0

2

v v
v

+
=   (constant acceleration only)

(2.7b)

Equations (2.7a) and  (2.7b) mean that the object
has undergone displacement x with an average
velocity equal to the arithmetic average of the
initial and final velocities.
From Eq. (2.4), t = (v – v

0
)/a. Substituting this in

Eq. (2.7a), we get

       x v t
v v v v

a

v v

a
= =

+





−





=
−0 0

2
0
2

2 2

     2 2
0 2v v ax= + (2.8)
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⊳

This equation can also be obtained by
substituting the value of t from Eq. (2.4) into Eq.
(2.6). Thus, we have obtained three important
equations :

0v v at= +

         
2

0

1

2
x v t at= +

2 2
0 2v v ax= + (2.9a)

connecting five quantities v0,  v, a, t and x.  These
are kinematic equations of rectilinear motion for
constant acceleration.

The set of Eq. (2.9a) were obtained by
assuming that at t = 0, the position of the particle,
x is 0.  We can obtain a more general equation if
we take  the  position coordinate at t = 0 as non-
zero, say x

0
.  Then Eqs. (2.9a) are modified

(replacing x by x – x
0
 ) to :

0v v at= +

2
0 0

1

2
x x v t at= + + (2.9b)

2 2
0 02 ( )v v a x x= + − (2.9c)

Example 2.2 Obtain equations of motion
for constant acceleration using method of
calculus.

Answer  By definition

d

d

v
a

t
=

 dv = a dt

Integrating both sides

d dv a t
v

v t

0 0∫ ∫=

= ∫a t
t

d
0

         (a is

constant)

0–v v at=

       0v v at= +

Further,        
d

d

x
v

t
=

      dx = v dt

Integrating both sides

dx
x

x

0
∫ = ∫ v t

t

d
0

⊳

= +( )∫ v at t
t

0
0

d

2
0 0

1
–

2
x x v t a t= +

      x   = 
2

0 0

1

2
x v t a t+ +

We can write

d d d d

d d d d

v v x v
a v

t x t x
= = =

or, v dv = a dx

Integrating both sides,

v v a x
v

v

x

x

d d
0 0

∫ ∫=

( )
2 2

0
0

–
–

2

v v
a x x=

( )2 2
0 02 –v v a x x= +

The advantage of this method is that it can be used

for motion with non-uniform acceleration

also.

Now, we shall use these equations to some
important cases. ⊳

Example 2.3 A ball is thrown vertically
upwards with a velocity of 20 m s–1 from
the top of a multistorey building. The
height of the point from where the ball is
thrown is 25.0 m from the ground. (a) How
high will the ball rise ?  and (b) how long
will it be before the ball hits the ground?
Take g = 10 m s–2.

Answer  (a) Let us take the y-axis in the

vertically upward direction with zero at the

ground, as shown in Fig. 2.6.

Now  v
o
 
= + 20 m s–1,

   a  =  – g = –10 m s–2,

   v  =  0 m s–1

If the ball rises to height y from the point of

launch, then using the equation

( )0   2 2
0v v 2 a y – y= +

we get

0 = (20)2 + 2(–10)(y – y
0
)

Solving,  we get, (y – y
0
) = 20 m.

(b) We can solve this part of the problem in two

ways.  Note carefully the methods used.
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Fig. 2.6

FIRST METHOD :  In the first method, we split
the path in two parts : the upward motion  (A to
B) and the downward motion (B to C) and
calculate the corresponding time taken t

1
 and

t
2
.  Since the velocity  at B is zero, we have :
                  v  =  v

o
 +  at

0 = 20  – 10t
1

Or,            t
1 
= 2 s

This is the time in going from A to B.  From B, or
the point of  the maximum height, the ball falls
freely under the acceleration due to gravity.  The
ball is moving in negative y direction.  We use
equation

          
2

0 0

1

2
y y v t at= + +

We have, y
0
 = 45 m, y = 0, v

0
 = 0, a = – g  = –10 m s–2

   0  =  45 + (½) (–10) t
2

2

Solving, we get t
2
 = 3 s

Therefore, the total time taken by the ball before
it hits the ground = t

1 
+

   
t
2
  = 

 
2

  
s

 
+ 3 s = 5 s.

SECOND METHOD : The total time taken can
also be calculated by noting the coordinates of
initial and final positions of the ball with respect
to the origin chosen and using equation

2
0 0

1

2
y y v t at= + +

Now y
0  

=
  
25 m        y = 0 m

v
o
 = 20 m s-1, a  = –10m s–2,  t  =  ?

0 = 25  +20 t  + (½)  (-10) t2

Or, 5t2 – 20t  – 25  =  0

Solving this quadratic equation for t, we get

t = 5s

Note that the second method is better since we
do not have to worry about the path of the motion
as the motion is under constant acceleration.

  ⊳

Example 2.4  Free-fall : Discuss the
motion of an object under free  fall.  Neglect
air resistance.

Answer  An object released near the surface of
the Earth is accelerated downward under the
influence of the force of gravity. The magnitude
of acceleration due to gravity is represented by
g.  If air resistance is neglected, the object is
said to be in free fall. If the height through
which the object falls is small compared to the
earth’s radius, g can be taken to be constant,
equal to   9.8 m s–2. Free fall is thus a case of
motion with uniform acceleration.

We assume that the motion is in y-direction,
more correctly in –y-direction because we
choose upward direction as positive. Since the
acceleration due to gravity is always downward,
it is in the negative direction and we have

a = – g  = – 9.8 m s–2

The object is released from rest at y = 0. Therefore,
v

0
 = 0 and the equations of motion become:

v =  0 – g t       = –9.8 t      m s–1

y =  0 – ½  g t2   = –4.9 t 2    m
v2 = 0 – 2 g y     = –19.6 y   m2 s–2

These equations give the velocity and the
distance travelled as a function of time and also
the variation of velocity with distance. The
variation of acceleration, velocity, and distance,
with time have been plotted in Fig.  2.7(a), (b)
and (c).

(a)
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(b)

      (c)

Fig. 2.7 Motion of an object under free fall.
(a)  Variation of acceleration with time.
(b) Variation of velocity with time.

(c) Variation of distance with time ⊳

Example 2.5 Galileo’s law of odd
numbers : “The distances traversed, during

equal intervals    of time, by a body falling

from rest, stand to one another in the same

ratio as the odd numbers beginning with

unity [namely, 1: 3: 5: 7…...].”  Prove it.

Answer  Let us divide the time interval of
motion of an object under free fall into many
equal intervals

 τ   and find out the distances

traversed during successive intervals of
time. Since initial velocity is zero, we have

Using this equation, we can calculate the

position of the object after different time

intervals, 0, τ, 2τ,  3τ… which are given in

second column of Table 2.2. If we take

(–1/
 
2) gτ2 as y

0 
— the position coordinate after

first time interval τ, then third column gives

the positions in the unit of y
o
. The fourth

column gives the distances traversed in

successive τs. We find that the distances are

in the simple ratio 1: 3: 5: 7: 9: 11… as  shown

in the last column. This  law was established

by Galileo Galilei (1564-1642) who was the first

to make quantitative studies of free fall. ⊳

Example 2.6  Stopping distance of
vehicles : When brakes are applied to a
moving vehicle, the distance it travels before
stopping is called stopping distance.  It is
an important factor for road safety and
depends on the initial velocity (v

0
) and the

braking capacity, or deceleration, –a that
is caused by the braking. Derive an
expression for stopping distance of a vehicle
in terms of v

o
 and

 
a.

Answer  Let the distance travelled by the vehicle
before it stops be d

s
. Then, using equation of

motion  v2 = v
o
2 + 2 ax, and noting that  v = 0, we

have the stopping distance

d
v

a
s =

– 0
2

2

Thus, the stopping distance is proportional to
the square of the initial velocity. Doubling the

⊳

Table 2.2

y gt= − 1

2
2
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⊳

initial velocity increases the stopping distance
by a factor of 4 (for the same deceleration).

For  the car of a particular make, the braking
distance was found to be 10 m, 20 m, 34 m and
50 m corresponding to velocities of 11, 15, 20
and 25 m/s which are nearly consistent with
the above formula.

Stopping distance is an important factor
considered in setting speed limits, for example,
in school zones. ⊳

Example 2.7  Reaction time :  When a
situation demands our immediate
action, it takes some time before we
really respond. Reaction time is the
time a person takes to observe, think
and act.  For example, if a person is
driving and suddenly a boy appears on
the road, then the time elapsed before
he slams the brakes of the car is the
reaction time. Reaction time depends
on complexity of the situation and on
an individual.

You can measure your reaction
time by a simple experiment. Take a
ruler and ask your friend to drop it
vertically through the gap between
your thumb and forefinger (Fig. 2.8).
After you catch it, find the distance d
travelled by the ruler. In a particular
case, d was found to be 21.0 cm.
Estimate reaction time.

Answer  The ruler drops under free fall.
Therefore, v

o
 = 0, and a = – g = –9.8 m s–2. The

distance travelled d and the reaction time t
r
 are

related by

Or,

Given d = 21.0 cm and g = 9.8 m s–2  the reaction
time is

⊳

Fig. 2.8   Measuring the reaction time.

SUMMARY

1. An object is said to be in motion if its position changes with time.  The position of the
object can be specified with reference to a conveniently chosen origin.  For motion in
a straight line, position to the right of the origin is taken as positive and to the left as
negative.

The average speed of an object is greater or equal to the magnitude of the average
velocity over a given time interval.

2. Instantaneous velocity or simply velocity is defined as the limit of the average velocity
as the time interval ∆t becomes infinitesimally small :

d

dt 0 t 0

x x
v lim v lim

t t∆ → ∆ →

∆
= = =

∆

The velocity at a particular instant is equal to the slope of the tangent drawn on
position-time graph at that instant.
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3. Average acceleration is the change in velocity divided by the time interval during which
the change occurs :

v
a

t

∆
=

∆
4. Instantaneous acceleration is defined as the limit of the average acceleration as the

time interval ∆t goes to zero :

d

dt 0 t 0

v v
a lim a lim

t t∆ → ∆ →

∆
= = =

∆
The acceleration of an object at a particular time is the slope of the velocity-time
graph at that instant of time.  For uniform motion, acceleration is zero and the x-t
graph is a straight line inclined to the time axis and the v-t graph is a straight line
parallel to the time axis. For motion with uniform acceleration, x-t graph is a parabola
while the v-t graph is a straight line inclined to the time axis.

5. The area under the velocity-time curve between times t
1 
and t

2
 is equal to the displacement

of the object during that interval of time.

6. For objects in uniformly accelerated rectilinear motion, the five quantities, displacement
x, time taken t, initial velocity v

0
, final velocity v and acceleration a are related by a set

of simple equations called kinematic equations of motion :

        v = v
0
 +  at

       x v t
1

2
at

0

2= +

        v v 2ax
2

0

2= +

if the position of the object at time t = 0 is 0.  If the particle starts at x = x
0
 , x in above

equations is replaced by (x – x
0
).
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POINTS TO PONDER

1. The origin and the positive direction of an axis are a matter of choice. You should first specify
this choice before you assign signs to quantities like displacement, velocity and acceleration.

2. If a particle is speeding up, acceleration is in the direction of velocity; if its speed is
decreasing, acceleration is in the direction opposite to that of the velocity.  This
statement is independent of the choice of the origin and the axis.

3. The sign of acceleration does not tell us whether the particle’s speed is increasing or
decreasing.  The sign of acceleration (as mentioned in point 3) depends on the choice
of the positive direction of the axis.  For example, if the vertically upward direction is
chosen to be the positive direction of the axis, the acceleration due to gravity is
negative.  If a particle is falling under gravity, this acceleration, though negative,
results in increase in speed.  For a particle thrown upward, the same negative
acceleration (of gravity) results in decrease in speed.

4. The zero velocity of a particle at any instant does not necessarily imply zero acceleration
at that instant.  A particle may be momentarily at rest and yet have non-zero acceleration.
For example, a particle thrown up has zero velocity at its uppermost point but the
acceleration at that instant continues to be the acceleration due to gravity.

5. In the kinematic equations of motion [Eq. (2.9)], the various quantities are algebraic,
i.e. they may be positive or negative.  The equations are applicable in all situations
(for one dimensional motion with constant acceleration) provided the values of different
quantities are substituted in the equations with proper signs.

6. The definitions of instantaneous velocity and acceleration (Eqs. (2.1) and (2.3)) are
exact and are always correct while the kinematic equations (Eq. (2.9)) are true only for
motion in which the magnitude and the direction of acceleration are constant during
the course of motion.
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EXERCISES

2.1 In which of the following examples of motion, can the body be considered
approximately a point object:
(a) a railway carriage moving without jerks between two stations.
(b) a monkey sitting on top of a man cycling smoothly on a circular track.
(c) a spinning cricket ball that turns sharply on hitting the ground.
(d) a tumbling beaker that has slipped off the edge of a table.

2.2 The position-time (x-t) graphs for two children A and B returning from their school
O to their homes P and Q respectively are shown in Fig. 2.9. Choose the correct
entries in the brackets below ;
(a) (A/B) lives closer to the school than (B/A)
(b) (A/B) starts from the school earlier than (B/A)
(c) (A/B) walks faster than (B/A)
(d) A and B reach home at the (same/different) time
(e) (A/B) overtakes (B/A) on the road (once/twice).

2.3 A woman starts from her home at 9.00 am, walks with a speed of 5 km h–1 on a
straight road up to her office 2.5 km away, stays at the office up to 5.00 pm, and
returns home by an auto with a speed of 25 km h–1. Choose suitable scales and
plot the x-t graph of her motion.

2.4 A drunkard walking in a narrow lane takes 5 steps forward and 3 steps backward,
followed again by 5 steps forward and 3 steps backward, and so on. Each step is 1 m
long and requires 1 s. Plot the x-t graph of his motion. Determine graphically and
otherwise how long the drunkard takes to fall in a pit 13 m away from the start.

2.5 A car moving along a straight highway with speed of 126 km h–1 is brought to a
stop within a distance of 200 m. What is the retardation of the car (assumed
uniform), and how long does it take for the car to stop ?

2.6 A player throws a ball upwards with an initial speed of 29.4 m s–1.
(a) What is the direction of acceleration during the upward motion of the ball ?
(b) What are the velocity and acceleration of the ball at the highest point of its motion ?
(c) Choose the x = 0 m and t = 0 s to be the location and time of the ball at its

highest point, vertically downward direction to be the positive direction of
x-axis, and give the signs of position, velocity and acceleration of the ball
during its upward, and downward motion.

(d) To what height does the ball rise and after how long does the ball return to the
player’s hands ? (Take g = 9.8 m s–2 and neglect air resistance).

2.7 Read each statement below carefully and state with reasons and examples, if it is
true or false ;

            A particle in one-dimensional motion
(a) with zero speed at an instant may have non-zero acceleration at that instant
(b) with zero speed may have non-zero velocity,
(c) with constant speed must have zero acceleration,
(d) with positive value of acceleration must be speeding up.

Fig. 2.9

2024-25



MOTION IN A STRAIGHT LINE 25

2.8 A ball is dropped from a height of 90 m on a floor. At each collision with the floor,
the ball loses one tenth of its speed. Plot the speed-time graph of its motion
between t = 0 to 12 s.

2.9 Explain clearly, with examples, the distinction between :
(a) magnitude of displacement (sometimes called distance) over an interval of time,

and the total length of path covered by a particle over the same interval;
(b) magnitude of average velocity over an interval of time, and the average speed

over the same interval. [Average speed of a particle over an interval of time is
defined as the total path length divided by the time interval]. Show in both (a)
and (b) that the second quantity
is either greater than or equal to
the first. When is the equality sign
true ? [For simplicity, consider
one-dimensional motion only].

2.10 A man walks on a straight road from
his home to a market 2.5 km away with
a speed of 5 km h–1. Finding the
market closed, he instantly turns and
walks back home with a speed of 7.5
km h–1. What is the
(a) magnitude of average velocity, and
(b) average speed of the man over the

interval of time (i) 0 to 30 min, (ii)
0 to 50 min, (iii) 0 to 40 min ?
[Note: You will appreciate from this
exercise why it is better to define
average speed as total path length
divided by time, and not as
magnitude of average velocity. You
would not like to tell the tired man
on his return home that his
average speed was zero !]

2.11 In Exercises 2.9 and 2.10, we have
carefully distinguished between
average speed and magnitude of average
velocity. No such distinction is necessary when
we consider instantaneous speed and
magnitude of velocity. The instantaneous speed
is always equal to the magnitude of
instantaneous velocity. Why?

2.12 Look at the graphs (a) to (d) (Fig. 2.10) carefully
and state, with reasons, which of these cannot
possibly represent one-dimensional motion of
a particle.

2.13 Figure 2.11shows the x-t plot of one-
dimensional motion of a particle. Is it correct
to say from the graph that the particle moves
in a straight line for    t < 0 and on a parabolic
path for t >0 ? If not, suggest a suitable physical
context for this graph.

2.14 A police van moving on a highway with a speed of
30 km h–1 fires a bullet at a thief’s car speeding away in
the same direction with a speed of 192 km h–1. If the muzzle
speed of the bullet is 150 m s–1, with what speed does the
bullet hit the thief’s car ? (Note: Obtain that speed which
is relevant for damaging the thief’s car).

Fig. 2.10

        Fig. 2.11
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2.15 Suggest a suitable physical situation for each of the following graphs (Fig 2.12):

Fig. 2.12

2.16 Figure 2.13 gives the x-t plot of a particle executing one-dimensional simple
harmonic motion. (You will learn about this motion in more detail in Chapter13).
Give the signs of position, velocity and acceleration variables of the particle at
t = 0.3 s, 1.2 s, – 1.2 s.

Fig. 2.13

2.17 Figure 2.14 gives the x-t plot of a
particle in one-dimensional motion.
Three different equal intervals of time
are shown. In which interval is the
average speed greatest, and in which
is it the least ?  Give the sign of average
velocity for each interval.

2.18 Figure 2.15 gives a speed-time graph of
a particle in motion along a constant
direction. Three equal intervals of time
are shown. In which interval is the
average acceleration greatest in
magnitude? In which interval is the
average speed greatest ? Choosing the
positive direction as the constant
direction of motion, give the signs of v
and a in the three intervals. What are
the accelerations at the points A, B, C
and D ?

Fig. 2.14

Fig. 2.15
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CHAPTER THREE

MOTION IN A PLANE

3.1  INTRODUCTION

In the last chapter we developed the concepts of position,

displacement, velocity and acceleration that are needed to

describe the motion of an object along a straight line. We

found that the directional aspect of these quantities can be

taken care of by + and – signs, as in one dimension only two

directions are possible. But in order to describe motion of an

object in two dimensions (a plane) or three dimensions

(space), we need to use vectors to describe the above-

mentioned physical quantities.  Therefore, it is first necessary

to learn the language of vectors. What is a vector? How to

add, subtract and multiply vectors ? What is the result of

multiplying a vector by a real number ? We shall learn this

to enable us to use vectors for defining velocity and

acceleration in a plane. We then discuss motion of an object

in a plane.  As a simple case of motion in a plane, we shall

discuss motion with constant acceleration and treat in detail

the projectile motion. Circular motion is a familiar class of

motion that has a special significance in daily-life situations.

We shall discuss uniform circular motion in some detail.

The equations developed in this chapter for motion in a

plane can be easily extended to the case of three dimensions.

3.2  SCALARS AND VECTORS

In physics, we can classify quantities as scalars or

vectors.  Basically, the difference is that a direction is
associated with a vector but not with a scalar.  A scalar

quantity is a quantity with magnitude only. It is specified

completely by a single number, along with the proper

unit. Examples are : the distance between two points,

mass of an object, the temperature of a body and the

time at which a certain event happened.  The rules for

combining scalars are the rules of ordinary algebra.

Scalars can be added, subtracted, multiplied and divided

3.1 Introduction

3.2 Scalars and vectors

3.3 Multiplication of vectors by

real numbers

3.4 Addition and subtraction of

vectors — graphical method

3.5 Resolution of vectors

3.6 Vector addition — analytical

method

3.7 Motion in a plane

3.8 Motion in a plane with

constant acceleration

3.9 Projectile motion

3.10 Uniform circular motion

Summary

Points to ponder

Exercises
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just as the ordinary numbers*. For example,

if the length and breadth of a rectangle are
1.0 m and 0.5 m respectively, then its
perimeter is the sum of the lengths of the
four sides, 1.0 m + 0.5 m +1.0 m + 0.5 m =
3.0 m. The length of each side is a scalar
and the perimeter is also a scalar. Take
another example: the maximum and
minimum temperatures on a particular day
are 35.6 °C and 24.2 °C respectively.  Then,
the difference between the two temperatures
is 11.4 °C. Similarly, if a uniform solid cube
of aluminium of side 10 cm has a mass of
2.7 kg, then its volume is 10–3 m3 (a scalar)
and its density is 2.7×103 kg m–3 (a scalar).

A vector quantity is a quantity that has both

a magnitude and a direction and obeys the

triangle law of addition or equivalently the

parallelogram law of addition. So, a vector is

specified by giving its magnitude by a number

and its direction. Some physical quantities that

are represented by vectors are displacement,

velocity, acceleration and force.
To represent a vector, we use a bold face type

in this book. Thus, a velocity vector can be
represented by a symbol v.  Since bold face is
difficult to produce, when written by hand, a
vector is often represented by an arrow placed

over a letter, say 
r

v . Thus, both v and 
r

v

represent the velocity vector. The magnitude of
a vector is often called its absolute value,
indicated by |v| = v.  Thus, a vector is
represented by a bold face, e.g. by A, a, p, q, r, ...
x, y, with respective magnitudes denoted by light
face A, a, p, q, r, ... x, y.

3.2.1  Position and Displacement Vectors

To describe the position of an object moving in
a plane, we  need to choose a convenient point,
say O as origin. Let P and P′ be the positions of
the object at time t and t′, respectively [Fig. 3.1(a)].
We join O and P by a straight line.  Then, OP is
the position vector of the object at time t.  An
arrow is marked at the head of this line.  It is
represented by a symbol r, i.e. OP = r.  Point P′ is

represented by another position vector, OP′
denoted by r′. The length of the vector r
represents the magnitude of the vector and its
direction is the direction in which P lies as seen
from O. If the object moves from P to P′, the
vector PP′ (with tail at P and tip at P′) is called
the displacement vector corresponding to
motion from point P (at time t) to point P′ (at time t′).

Fig. 3.1 (a) Position and displacement vectors.
(b) Displacement vector PQ and different

     courses of motion.

It is important to note that displacement

vector is the straight line joining the initial and

final positions and does not depend on the actual
path undertaken by the object between the two

positions.  For example, in Fig. 3.1(b), given the

initial and final positions as P and Q, the
displacement vector is the same PQ for different

paths of journey, say PABCQ, PDQ, and PBEFQ.

Therefore, the magnitude of displacement is
either less or equal to the path length of an

object between two points. This fact was

emphasised in the previous chapter also while
discussing motion along a straight line.

3.2.2  Equality of Vectors

Two vectors A and B are said to be equal if, and

only if, they have the same magnitude and the

same direction.**
Figure 3.2(a) shows two equal vectors A and

B. We can easily check their equality.  Shift B

parallel to itself until its tail Q coincides with that

of A, i.e. Q coincides with O. Then, since  their

tips S and P also coincide, the two vectors are

said to be equal.  In general, equality is indicated

* Addition and subtraction of scalars make sense only for quantities with same units. However, you can multiply

and divide scalars of different units.

** In our study, vectors do not have fixed locations. So displacing a vector parallel to itself leaves the vector

unchanged. Such vectors are called free vectors. However, in some physical applications, location or line of
application of a vector is important. Such vectors are called localised vectors.
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as A = B. Note that in Fig. 3.2(b), vectors A′ and
B′ have the same magnitude but they are not
equal because they have different directions.
Even if we shift B′ parallel to itself so that its tail
Q′ coincides with the tail O′ of A′, the tip S′ of B′
does not coincide with the tip P′ of A′.
3.3 MULTIPLICATION OF VECTORS BY REAL

NUMBERS

Multiplying a vector A with a positive number λ
gives a vector whose magnitude is changed by
the factor λ but the direction is the same as that
of A :

 λ A  = λ  A  if λ > 0.

For example, if A is multiplied by 2, the resultant
vector 2A is in the same direction as A and has

a magnitude twice of |A| as shown in Fig. 3.3(a).

Multiplying a vector A by a negative number
−λ gives another vector whose direction is
opposite to the direction of A and whose
magnitude is λ times |A|.

Multiplying a given vector A by negative
numbers, say –1 and –1.5, gives vectors as
shown in Fig 3.3(b).

The  factor λ by  which  a vector A is multiplied
could be a scalar having its own physical
dimension. Then, the dimension of λ A is the
product of the dimensions of λ and A. For
example, if we multiply a constant velocity vector
by duration (of time), we get a displacement
vector.

3.4 ADDITION AND SUBTRACTION OF
VECTORS — GRAPHICAL METHOD

As mentioned in section 4.2, vectors, by
definition, obey the triangle law or equivalently,
the parallelogram law of addition.  We shall now
describe this law of addition using the graphical
method. Let us consider two vectors A and B that
lie in a plane as shown in Fig. 3.4(a).  The lengths
of the line segments representing these vectors
are proportional to the magnitude of the vectors.
To find the sum A + B, we place vector B so that
its tail is at the head of the vector A, as in
Fig. 3.4(b). Then, we join the tail of A to the head
of B. This line OQ represents a vector R, that is,
the sum of the vectors A and B. Since, in this
procedure of vector addition, vectors are

Fig. 3.2  (a) Two equal vectors A and B.  (b) Two

vectors A′     and B′ are unequal though they

are of the same length.

Fig. 3.3 (a) Vector A and the resultant vector after

multiplying A by a positive number 2.

(b) Vector A and resultant vectors after

multiplying it by a negative number –1

and –1.5.

(c) (d)

Fig. 3.4  (a) Vectors A and B. (b) Vectors A and B
added graphically. (c) Vectors B and A
added graphically. (d) Illustrating the

associative law of vector addition.
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arranged head to tail, this graphical method is
called the head-to-tail method. The two vectors
and their resultant form three sides of a triangle,
so this method is also known as triangle method
of vector addition. If we find the resultant of
B + A as in Fig. 3.4(c), the same vector R is
obtained. Thus, vector addition is commutative:

A + B = B + A (3.1)

The addition of vectors also obeys the associative
law as illustrated in Fig. 3.4(d). The result of
adding vectors A and B first and then adding
vector C is the same as the result of adding B
and C first and then adding vector A :

(A + B) + C = A + (B + C) (3.2)

What is the result of adding two equal and
opposite vectors ? Consider  two  vectors A and
–A shown in Fig. 3.3(b). Their sum is A + (–A).
Since the magnitudes of the two vectors are the
same, but the directions are opposite, the
resultant vector has zero magnitude and is
represented by 0 called a null vector or a zero
vector :

A – A = 0         |0|= 0 (3.3)

Since the magnitude of a null vector is zero, its
direction cannot be specified.

The null vector also results when we multiply
a vector A by the number zero. The main
properties of 0 are :

A + 0 = A
λ 0 = 0

0 A = 0        (3.4)

Fig. 3.5 (a) Two vectors A and B, – B is also shown. (b) Subtracting vector B from vector A – the result is R
2
. For

comparison, addition of vectors A and B, i.e. R
1
 is also shown.

What is the physical meaning of a zero vector?
Consider the position and displacement vectors
in a plane as shown in Fig. 3.1(a). Now suppose
that an object which is at P at time t, moves to
P′ and then comes back to P. Then, what is its
displacement? Since the initial and final
positions coincide, the displacement is a “null
vector”.

Subtraction of vectors can be defined in terms
of addition of vectors. We define the difference
of two vectors A and B as the sum of two vectors
A and –B :

A – B = A + (–B) (3.5)

It is shown in Fig 3.5. The vector –B is added to

vector A to get R
2 
= (A – B). The vector R

1 
= A + B

is also shown in the same figure for comparison.
We can also use the parallelogram method to
find the sum of two vectors. Suppose we have

two vectors A and B. To add these vectors, we

bring their tails to a common origin O as

shown in Fig. 3.6(a). Then we draw a line from

the head of A parallel to B and another line from
the head of B parallel to A to complete a

parallelogram OQSP.  Now we join the point of

the intersection of these two lines to the origin

O. The resultant vector R is directed from the

common origin O along  the diagonal (OS) of the

parallelogram [Fig. 3.6(b)]. In Fig.3.6(c), the
triangle law is used to obtain the resultant of A
and B and we see that the two methods yield the

same result. Thus, the two methods are

equivalent.
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⊳

Example 3.1 Rain is falling vertically with
a speed of 35 m s–1.  Winds starts blowing
after sometime with a speed of 12 m s–1 in
east to west direction.  In which direction
should a boy waiting at a bus stop hold
his umbrella ?

Fig. 3.7

Answer  The velocity of the rain and the wind
are represented by the vectors v

r
 and v

w
 in      Fig.

3.7 and are in the direction specified by the
problem.  Using the rule of vector addition, we
see that the resultant of v

r
 and v

w
 is R as shown

in the figure.  The magnitude of R is

R v v
r

2

w

2= + = + =− −
35 12  m s 37 m s

2 2 1 1

The direction θ  that R makes with the vertical
is given by

12
tan 0.343

35

w

r

v
 

v
θ = = =

Or,     ( ) θ = = °tan
-

.
1

0 343 19

Therefore, the boy should hold his umbrella
in the vertical plane at an angle of about 19o

with the vertical towards the east.       ⊳

Fig. 3.6 (a) Two vectors A and B with their tails brought to a common origin. (b) The sum A + B obtained using
the parallelogram method. (c) The parallelogram method of vector addition is equivalent to the triangle
method.

3.5  RESOLUTION OF VECTORS

Let a and b be any two non-zero vectors in a
plane with different directions and let A be
another vector in the same plane (Fig. 3.8). A
can be expressed as a sum of two vectors — one
obtained by multiplying a by a real number and
the other obtained by multiplying b by another
real number. To see this, let O and P be the tail
and head of the vector A. Then, through O, draw
a straight line parallel to a, and through P, a
straight line parallel to b. Let them intersect at
Q. Then, we have

A = OP  = OQ + QP (3.6)

But since OQ is parallel to a, and QP is parallel
to b, we can write :

OQ = λ a, and QP = µ b (3.7)

where  λ and µ are real numbers.

Therefore, A = λ a + µ b (3.8)

Fig. 3.8 (a) Two non-colinear vectors a and b.
(b) Resolving a vector A in terms of vectors

a and b.

We say that A has been resolved into two
component vectors λ a and µ b along a and b
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Fig. 3.9 (a) Unit vectors  ɵi  , 
ɵj  and ɵk lie along the x-, y-, and z-axes. (b) A vector A is resolved into its

components A
x 
and A

y
 along x-, and y- axes. (c) A

1
 and  A

2 
expressed in terms of ɵi  and ɵj .

respectively. Using this method one can resolve
a given vector into two component vectors along
a set of two vectors – all the three lie in the same
plane. It is convenient to resolve a general vector
along the axes of a rectangular coordinate
system using vectors of unit magnitude. These
are called unit vectors that we discuss now. A
unit vector is a vector of unit magnitude and
points in a particular direction. It has no
dimension and unit. It is used to specify a
direction only. Unit vectors along the x-, y- and
z-axes of a rectangular coordinate system are

denoted by ɵi , 
ɵj  and k̂ , respectively, as shown

in Fig. 3.9(a).
Since these are unit vectors, we have

 î    =  ĵ   =  k̂  =1 (3.9)

These unit vectors are perpendicular to each
other. In this text, they are printed in bold face
with a cap (^) to distinguish them from other
vectors. Since we are dealing with motion in two
dimensions in this chapter, we require use of
only two unit vectors. If we multiply a unit vector,

say n̂ by a scalar, the result is a vector

λλλλλ = λn̂.  In general, a vector A can be written as

A = |A| n̂ (3.10)

where n̂ is a unit vector along A.

We can now resolve a vector A in terms
of component vectors that lie along unit vectors

î  and ɵj.  Consider a vector A that lies in x-y

plane as shown in Fig. 3.9(b). We draw lines from
the head of A perpendicular to the coordinate
axes as in Fig. 3.9(b), and get vectors A

1
 and A

2

such that  A
1
 + A

2 
= A. Since A

1
 is parallel to  ɵi

and A
2
 is parallel to ɵj ,  we have :

A
1
= A

x
 ɵi ,  A

2
 = A

y 
ɵj (3.11)

where A
x 
 and  A

y
 are real numbers.

Thus,    A = A
x  
ɵi+ A

y
 ɵj              (3.12)

This is represented in Fig. 3.9(c). The quantities
A

x  
and A

y  
are called x-, and y- components of the

vector A. Note that A
x
 is itself not a vector, but

A
x
 ɵi  is a vector, and so is A

y 

ɵj. Using simple

trigonometry, we can express A
x   

and A
y
 in terms

of the magnitude of A and the angle θ it makes
with the x-axis :

A
x 
 = A cos θ

A
y
 = A sin θ (3.13)

As is clear from Eq. (3.13), a component of a
vector can be positive, negative or zero
depending on the value of θ.

Now, we have two ways to specify a vector A
in a plane. It can be specified by :
(i) its magnitude A and the direction θ it makes

with the x-axis; or
(ii) its components A

x
 and A

y

If A and θ  are given,  A
x 
and A

y  
can be obtained

using Eq. (3.13). If A
x  
and A

y  
 are given, A and θ

can be obtained as follows :

A A A Ax

2

y

2 2 2 2 2+ = +cos sinθ θ

 = A2

Or, A A Ax
2

y
2= +      (3.14)

And tan , tanθ θ= =
−

A

A

A

A

y

x

y

x

1

             (3.15)
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⊳

B i j= +B Bx y
ɵ ɵ

Let R be their sum. We have

R = A + B

   ( ) ( )= + + +A A B Bx y x y
ɵ ɵ ɵ ɵi j i j (3.19a)

Since vectors obey the commutative and
associative laws, we can arrange and regroup
the vectors in Eq. (3.19a) as convenient to us :

( ) ( )R i j= + + +A B A Bx x y y
ɵ ɵ (3.19b)

SinceR i j= +R Rx y
ɵ ɵ (3.20)

we have, x x x y y yR A B ,  R A B  = + = + (3.21)

Thus, each component of the resultant
vector R is the sum of the corresponding
components of A and B.

In three dimensions, we have

A i j k= + +A A Ax y z
ɵ ɵ ɵ

B i j k= + +B B Bx y z
ɵ ɵ ɵ

R A B i j k= + = + +R R Rx y z
ɵ ɵ ɵ

with R A Bx x x= +
R A By y y= +

R A Bz z z= + (3.22)

This method can be extended to addition and
subtraction of any number of vectors. For
example, if vectors a, b and c are given as

a i j k= + +a a ax y z
ɵ ɵ ɵ

b i j k= + +b b bx y z
ɵ ɵ ɵ

c i j k= + +c c cx y z
ɵ ɵ ɵ (3.23a)

then, a vector T = a + b – c has components :

T a b cx x x x= + −

T a b cy y y y= + − (3.23b)

T a b cz z z z= + − .

Example 3.2 Find the magnitude and
direction of the resultant of two vectors A
and B in terms of their magnitudes and
angle θ between them.

Fig. 3.9 (d) A vector A resolved into components along

x-, y-, and z-axes

* Note that angles α, β, and γ are angles in space. They are between pairs of lines, which are not coplanar.

So far we have considered a vector lying in
an x-y plane. The same procedure can be used
to resolve a general vector A into three
components along x-, y-, and z-axes in three

dimensions. If α , β, and γ are the angles*
between A and the x-, y-, and z-axes, respectively
[Fig. 3.9(d)], we have

(d)

x y zA A cos ,  A A cos ,  A A cos  α β γ= = = (3.16a)

In general, we have

ˆ ˆ ˆ
x y zA A A= + +A i j k (3.16b)

The magnitude of vector A is
2 22

x y zA A A A= + + (3.16c)

A position vector r can be expressed as

r i j k= + +x y z ɵ ɵ ɵ (3.17)

where x, y, and z are the components of r along

x-, y-,  z-axes, respectively.

3.6 VECTOR ADDITION – ANALYTICAL
METHOD

Although the graphical method of adding vectors

helps us in visualising the vectors and the

resultant vector, it is sometimes tedious and has

limited accuracy. It is much easier to add vectors

by combining their respective components.

Consider two vectors A and B in x-y plane with

components A
x
, A

y
 and B

x
, B

y
 :

A i j= +A Ax y
ɵ ɵ (3.18)
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Fig. 3.10

Answer  Let OP and OQ represent the two vectors
A and B making an angle θ  (Fig. 3.10).  Then,
using the parallelogram method of vector
addition, OS represents the resultant vector R :

             R = A + B

SN is normal to OP and PM is normal to OS.

From the geometry of the figure,

OS2 = ON2 + SN2

but ON = OP + PN = A + B cos θ
SN = B sin θ
OS2 = (A + B cos θ)2 + (B sin θ)2

or, R2 = A2 + B2 + 2AB  cos θ

R A B 2AB  2 2= + + cosθ (3.24a)

In ∆ OSN,   SN = OS sinα = R sinα,  and
in ∆ PSN,   SN = PS sin θ = B sin θ
Therefore,   R sin α  = B sin θ

or,      
R B

sin sin θ α
= (3.24b)

Similarly,
      PM = A  sin α  = B  sin β

or,      
A B

sin sin β α
= (3.24c)

Combining Eqs. (3.24b) and (3.24c), we get

      
R A

sin sin sin θ β α
= =

B
(3.24d)

Using Eq. (3.24d), we get:

      sin sin α θ=
B

R
(3.24e)

where R is given by Eq. (3.24a).

or, 
sin

tan
cos

SN B

OP PN A B

θα
θ

= =
+ +

(3.24f)

Equation (3.24a) gives the magnitude of the
resultant and Eqs. (3.24e) and (3.24f) its direction.
Equation (3.24a) is known as the Law of cosines
and Eq. (3.24d) as the Law of sines.                    ⊳

Example 3.3 A motorboat is racing
towards north at 25 km/h and the water
current in that region is 10 km/h in the
direction of 60° east of south. Find the
resultant velocity of the boat.

Answer   The vector v
b
 representing the velocity

of the motorboat and the vector v
c 
representing

the water current are shown in Fig. 3.11 in
directions specified by the problem. Using the
parallelogram method of addition, the resultant
R is obtained in the direction shown in the
figure.

Fig. 3.11

We can obtain the magnitude of R using the Law
of cosine :

R v v v v= b
2

c
2

b c2 cos120+ + o

= 25 10 2 25 10 -1/2 22 km/h2 2+ + × × ( ) ≅

To obtain the direction, we apply the Law of sines

R vc

sin sin θ φ
=   or, sin  φ θ=

v

R 

c
sin 

=
10 sin120

21.8

10 3

2 21.8
0.397

×
=

×
≅

�

φ ≅  23.4
� ⊳

3.7  MOTION IN A PLANE

In this section we shall see how to describe
motion in two dimensions using vectors.
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3.7.1 Position Vector and Displacement

The position vector r of a particle P located in a
plane with reference to the origin of an x-y

reference frame (Fig. 3.12) is given by

r i j= +x y ɵ ɵ

where x and y are components of r along x-, and
y- axes or simply they are the coordinates of
the object.

(a)

(b)

Fig. 3.12 (a) Position vector r. (b) Displacement ∆r and

average velocity v of a particle.

Suppose a particle moves along the curve shown
by the thick line and is at P at time t and P′ at
time t′ [Fig. 3.12(b)].  Then, the displacement is :

∆r  = r′ – r (3.25)
and is directed from P to P′.
We can write Eq. (3.25) in a component form:

∆r   ( ) ( )= + − +x' y' x ɵ ɵ ɵ ɵi j i jy 

= +ɵ ɵi j∆ ∆x y

where ∆x = x ′ – x, ∆y = y′ – y (3.26)

Velocity

The average velocity ( )v  of an object is the ratio

of the displacement and the corresponding time
interval :

v
r i j

i j= =
+

= +
∆ 

∆

∆ ∆

∆

∆

∆

∆

∆t

x y 

t

x

t

y

t

ɵ ɵ
ɵ ɵ (3.27)

Or, �ˆ
x yv v= +v  i j

Since v
r

=
∆

∆t
, the direction of the average velocity

is the same as that of ∆r (Fig. 3.12).  The velocity
(instantaneous velocity) is given by the limiting
value of the average velocity as the time interval
approaches zero :

v
r r= =

→
lim

t tt∆

∆
∆0

d

d
(3.28)

The meaning of the limiting process can be easily
understood with the help of Fig 3.13(a) to (d). In
these figures, the thick line represents the path
of an object, which is at P at time t.   P

1
, P

2
 and

P
3 
represent the positions of the object  after

times ∆t
1
,∆t

2
, and ∆t

3
. ∆r

1
,  ∆r

2
, and ∆r

3
 are the

displacements of the object in times  ∆t
1
, ∆t

2
, and

Fig. 3.13 As the time interval ∆t approaches zero, the average velocity approaches the velocity v. The direction

of  v is parallel to the line tangent to the path.
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∆t
3
, respectively. The direction of the average

velocity v   is shown in figures (a), (b) and (c) for
three decreasing values of ∆t, i.e. ∆t

1
,∆t

2
, and ∆t

3
,

(∆t
1 

>  ∆t
2 

>  ∆t
3
). As ∆t →→→→→ 0, ∆r →→→→→ 0

and is along the tangent to the path [Fig. 3.13(d)].
Therefore, the direction of velocity at any point
on the path of an object is tangential to the
path at that point and is in the direction of
motion.

We can express v in a component form :

v
r

=
d

dt

 = +










→
lim

x

t

y

tt∆

∆

∆

∆

∆0

ɵ ɵi j                   (3.29)

= +
→ →

ɵ ɵi jlim
x

t
lim

y

tt t∆ ∆

∆

∆

∆

∆0 0

Or, v i j i j= + = +ɵ ɵ ɵ ɵd

d

d

d

x

t

y

t
v vx y .

where v
x

t
v

y

tx y= =
d

d

d

d
,                 (3.30a)

So, if the expressions for the coordinates x and
y are known as functions of time, we can use
these equations to find v

x
 and v

y
.

The magnitude of v is then

v v vx

2

y

2= + (3.30b)

and the direction of v is given by the angle θ :

tan   tan
1θ θ= =















−v

v

v

v

y

x

y

x

,               (3.30c)

v
x
, v

y
 and angle θ are shown in Fig. 3.14 for a

velocity vector v at point p.

Acceleration

The average acceleration  a of an object for a
time interval ∆t moving in x-y plane is the change
in velocity divided by the time interval :

  
( )

a
v i j

i j= =
+

= +
∆

∆

∆

∆

∆

∆

∆

∆t

v v

t

v

t

v

t

x y x y
ɵ ɵ

ɵ ɵ         (3.31a)

Or, a i j= +a ax y
ɵ ɵ .        (3.31b)

The acceleration (instantaneous acceleration)
is the limiting value of the average acceleration
as the time interval approaches zero :

a
v

=
→

lim
tt∆

∆

∆0

              (3.  32a)

Since ∆ ∆ ∆v = +v v ,x y
ɵ ɵi j we have

a i j= +
→ →

ɵ ɵlim
v

t
lim

v

tt

x

t

y

∆ ∆

∆

∆

∆

∆0 0

Or, a i j= +a ax y
ɵ ɵ                 (3.32b)

where, a
v

t
,  a

v

t
x

x
y

y
= =

d

d

d

d
   (3.32c)*

As in the case of velocity, we can understand
graphically the limiting process used in defining
acceleration on a graph showing the path of the
object’s motion. This is shown in Figs. 3.15(a) to
(d).  P represents the position of the object at
time t and P

1
, P

2
, P

3
 positions after time ∆t

1
, ∆t

2
,

∆t
3
, respectively (∆t

 1
> ∆t

2
>∆t

3
). The velocity vectors

at points P, P
1
, P

2
, P

3
 are also shown in Figs. 3.15

(a), (b) and (c). In each case of ∆t, ∆v is obtained
using the triangle law of vector addition. By
definition, the direction of average   acceleration
is the same as that of ∆v. We see that as ∆t
decreases, the direction of ∆v changes and
consequently, the direction of the acceleration
changes. Finally, in the limit ∆t g0 [Fig. 3.15(d)],
the average acceleration becomes the
instantaneous acceleration and has the direction
as shown.

Fig. 3.14 The components v
x
 and vy

 
of velocity v and

the angle θ it makes with x-axis. Note that
v

x
 = v cos θ, v

y
 = v sin θ.

* In terms of x and y, a
x
 and a

y
 can be expressed as
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⊳

  x (m)

Note that in one dimension, the velocity and
the acceleration of an object are always along
the same straight line (either in the same
direction or in the opposite direction).
However, for motion in two or three
dimensions, velocity and acceleration vectors
may have any angle between 0° and 180°
between them.

Example 3.4 The position of a particle is
given by

            
 r  i j k = + +3.0t ˆ . ˆ . ˆ2 0 5 02t

where t is in seconds and the
coefficients have the proper units for r to
be in metres. (a) Find v(t) and a(t) of the
particle. (b) Find the magnitude and
direction of v(t) at t = 1.0 s.

Answer

( ) ( )v
r

i  j kt
t t

t t
2= = + +

d

d

d

d
3.0 2.0 5.0 ɵ ɵ ɵ

      = +3.0 .0ɵ ɵi j4 t 

( )a 
v

jt
t

=
d

d
= +4.0ɵ

     a = 4.0 m s–2 along y- direction

At  t = 1.0 s,  ˆ ˆ3.0 4.0v = i + j

It’s magnitude is 
2 2 1-= 3 4 5.0 m sv + =

and direction is

-1 1 4
= tan tan 53

3

y

x

v

v
θ −    °= ≅     

with x-axis.

⊳

3.8   MOTION IN A PLANE WITH CONSTANT
ACCELERATION

Suppose that an object is moving in x-y plane
and its acceleration a is constant.  Over an
interval of time, the average acceleration will
equal this constant value. Now, let the velocity
of the object be v0 at time t = 0 and v at time t.

Then, by definition

a
v v v v0 0=

−
−

=
−

t t0

Or, v v a0= + t (3.33a)

In terms of components :

x ox xv v a t= +

v v a ty oy y= + (3.33b)

Let us now find how the position r changes with
time. We follow the method used in the one-
dimensional case. Let r

o
 and r be the position

vectors of the particle at time 0 and t and let the
velocities at these instants be v

o
 and v. Then,

over this time interval t, the average velocity is
(v

o
 + v)/2. The displacement is the average

velocity multiplied by the time interval :

Fig. 3.15 The average acceleration for three time intervals (a) ∆t1, (b) ∆t2, and (c) ∆t3, (∆t1> ∆t2> ∆t3). (d) In the

limit ∆t g0, the average acceleration becomes the acceleration.

2024-25



PHYSICS38

( )2 2ˆ ˆ5.0 1.5 1.0t t t= + +i j

Therefore, ( ) 2
5.0 1.5x t t t= +

( ) 2
1.0y t t= +

Given x (t) = 84 m, t = ?

5.0 t + 1.5 t 2 = 84 ⇒⇒⇒⇒⇒ t = 6 s
At t = 6 s,  y = 1.0 (6)2 = 36.0 m

 Now, the velocity ( )d ˆ ˆ5.0 3.0 2.0
d

t t
t

= = + +r
v i j

At   t = 6 s,  v i j= +23.
ɵ ɵ

0 12.0

speed  
2 2 1

23 12 26 m s
−= = + ≅v . ⊳

3.9  PROJECTILE MOTION

As an application of the ideas developed in the

previous sections, we consider the motion of a

projectile. An object that is in flight after being

thrown or projected is called a projectile.  Such

a projectile might be a football, a cricket ball, a

baseball or any other object. The motion of a

projectile may be thought of as the result of two

separate, simultaneously occurring components

of motions. One component is along a horizontal

direction without  any acceleration and the other

along the vertical direction with constant

acceleration due to the force of gravity. It was

Galileo who first stated this independency of the

horizontal and the vertical components of

projectile motion in his Dialogue on the great

world systems (1632).

In our discussion, we shall assume that the

air resistance has negligible effect on the motion

of the projectile. Suppose that the projectile is

launched with velocity v
o
 that makes an angle

θ
o
 with  the x-axis as shown in Fig. 3.16.

After the object has been projected, the

acceleration acting on it is that due to gravity

which is directed vertically downward:

a j= −g 
ɵ

Or, a
x
 = 0, a

y
 = – g       (3.35)

The components of initial velocity v
o
 are :

v
ox 

= v
o
 cos θo

v
oy

= v
o
 sin θo       (3.36)

⊳

r r
v v v a v

0
0 0 0− =

+





=
+( ) +




2 2
t

t
t

        
21

2
t t= +0v a

Or, r r v a0 0= + +t t
1

2

2 (3.34a)

It can be easily verified that the derivative of

Eq. (3.34a), i.e. 
d

d

r

t
 gives Eq.(3.33a) and it also

satisfies the condition that at t=0, r = r
o
.

Equation (3.34a) can be written in component
form as

x x v t a tox x= + +
0

21

2

21

2
0 oy yy y v t a t= + + (3.34b)

One immediate interpretation of Eq.(3.34b) is that
the  motions in x- and y-directions can be treated
independently of each other.  That is, motion in
a plane (two-dimensions) can be treated as two
separate simultaneous one-dimensional
motions with constant acceleration along two
perpendicular directions.  This is an important
result and is useful in analysing motion of objects
in two dimensions. A similar result holds for three
dimensions. The choice of perpendicular
directions is convenient in many physical
situations, as we shall see in section 3.9 for
projectile motion.

Example 3.5 A particle starts from origin
at t = 0 with a velocity 5.0 î m/s and moves
in x-y plane under action of a force which
produces a constant acceleration of

(3.0iɵɵɵɵɵ+2.0jɵɵɵɵɵ ) m/s2. (a) What is the

y-coordinate of the particle at the instant
its x-coordinate is 84 m ? (b) What is the
speed of the particle at this time ?

Answer  From Eq. (3.34a) for r0
 
= 0, the position

of the particle is given by

( ) 21

2
t t t= +0r v a

( ) ( ) 2ˆ ˆ ˆ5.0 1/2 3.0 2.0t t= + +i i j
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If we take the initial position to be the origin of
the reference frame as shown in Fig. 3.16, we
have :

x
o 
= 0, y

o
 = 0

Then, Eq.(3.34b) becomes :

x = v
ox 

t = (v
o
 cos θ

o 
) t

and y = (v
o
 sin θ

o
 ) t – ( ½ )g t2       (3.37)

The components of velocity at time t can be
obtained using Eq.(3.33b) :

v
x
 = v

ox
 = v

o
 cos θ

o

v
y = v

o
 sin θ

o
 – g t       (3.38)

Equation (3.37) gives the x-, and y-coordinates

of the position of a projectile at time t in terms of

two parameters — initial speed v
o
 and projection

angle θ
o
. Notice that the choice of mutually

perpendicular x-, and y-directions for the

analysis of the projectile motion has resulted in
a simplification. One of the components of

velocity, i.e. x-component remains constant

throughout the motion and only the
y- component changes, like an object in free fall

in vertical direction.  This is shown graphically

at few instants in Fig. 3.17. Note that at the point
of maximum height, v

y
= 0 and therefore,

-1
tan  o

y

x

v

v
θ = =

Equation of path of a projectile

What is the shape of the path followed by the
projectile?  This can be seen by eliminating the
time between the expressions for x and y as
given in Eq. (3.37).  We obtain:

( )
( )

2

o 2

o o

tan 

2 cos

g
y x x

v
θ

θ
= −

       (3.39)

Fig 3.16   Motion of an object projected with velocity
v

o
 at angle θ

0
.

Now, since g, θ
o 
and v

o
 are constants, Eq. (3.39)

is of the form y = a x + b x2, in which a and b are
constants.  This is the equation of a parabola,
i.e. the path of the projectile is a parabola
(Fig. 3.17).

Fig. 3.17  The path of a projectile is a parabola.

Time of maximum height

How much time does the projectile take to reach the

maximum height ?  Let this time be denoted by t
m
.

Since at this point, v
y
= 0, we have from Eq. (3.38):

v
y
 = v

o
 sinθ

o
 – g t

m
 = 0

Or, t
m
 = v

o
 sinθ

o 
/g                (3.40a)

The total time T
f  
during which the projectile is

in flight can be obtained by putting y = 0 in

Eq. (3.37). We get :

T
f
 = 2 (v

o
 sin θ

o
 )/g                 (3.40b)

T
f
  is known as the time of flight of the projectile.

We note that T
f
  = 2 t

m 
, which is expected

because of the symmetry of the parabolic path.

Maximum height of a projectile

The maximum height h
m
 reached by the

projectile can be calculated by substituting

t = t
m
 in Eq. (3.37) :

( )y h v
v

g

g v

g
m 0

0 0= =








 −









sin

sin

2

sin

0

0 0

2

θ
θ θ

Or,
( )

h
v

m

0=
sin

0
θ

2

2g
                              (3.41)

Horizontal range of a projectile

The horizontal distance travelled by a projectile from
its initial position (x = y = 0) to the position where it
passes y = 0 during its fall is called the horizontal
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⊳

⊳

⊳

range, R. It is the distance travelled during the time
of flight T

f
  . Therefore, the range R is

R  = (v
o
 cos θ

o
) (T

f 
)

    =(v
o
 cos θ

o
)  (2 v

o
 sin θ

o
)/g

Or, R
v

g

0

2

=
 sin 2

0
θ

(3.42a)

Equation (3.42a) shows that for a given
projection velocity v

o 
, R is maximum when sin

2θ
0
 is maximum, i.e., when θ

0
 = 450.

The maximum horizontal range is, therefore,

R
v

g
m

0

2

=     (3.42b)

Example 3.6 Galileo, in his book Two new
sciences, stated that “for elevations which
exceed or fall short of 45° by equal amounts,
the ranges are equal”. Prove this statement.

Answer  For a projectile launched with velocity
v

o
 at an angle θ

o
 , the range is given by

0
sin2

2
0v

R
g

θ
=

Now, for angles, (45° + α ) and ( 45° – α),  2θ
o 
is

(90° + 2α ) and  ( 90° – 2α ) , respectively. The
values of  sin (90° + 2α ) and  sin (90° – 2α ) are
the same, equal to that of cos 2α. Therefore,
ranges are equal for elevations which exceed or
fall short of 45° by equal amounts α.   ⊳

Example 3.7  A hiker stands on the edge
of a cliff 490 m above the ground and
throws a stone horizontally with an initial
speed of 15 m s-1. Neglecting air resistance,
find the time taken by the stone to reach
the ground, and the speed with which it
hits the ground. (Take g = 9.8 m s-2 ).

Answer   We choose the origin of the x-,and y-

axis at the edge of the cliff and t = 0 s at the

instant the stone is thrown. Choose the positive

direction of x-axis to be along the initial velocity

and the positive direction of y-axis to be the

vertically upward direction. The x-, and y-

components of the motion can be treated

independently. The equations of motion are :

x (t)  = x
o
 + v

ox
 t

y (t)  = y
o
 + v

oy
 
 
t +(1/2) a

y
 t2

Here, x
o
 = y

o
 = 0, v

oy
 = 0, a

y 
=

 
 
–g  = –9.8 m s-2,

v
ox

 = 15 m s-1.

The stone hits the  ground when y(t) = – 490 m.

– 490 m = –(1/2)(9.8) t2.

This gives     t =10 s.

The velocity components are v
x
 = v

ox 
 and

v
y
 = v

oy
 – g t

so that when the stone hits the ground :

v
ox

 = 15 m s–1

v
oy

 = 0 – 9.8 × 10 = – 98 m s–1

Therefore, the  speed of the stone is

2 2
15 98 99 m s

2 2 1

x yv v  
−+ = + =     ⊳

Example 3.8 A cricket ball is thrown at a
speed of 28 m s–1 in a direction 30° above
the horizontal. Calculate (a) the maximum
height, (b) the time taken by the ball to
return to the same level, and (c) the
distance from the thrower to the point
where the ball returns to the same level.

Answer  (a) The maximum height is given by

( ) ( )
( )

2 2

o
 sin 28sin 30

 m
2 2 9.8

0

m

v
h

g

θ °
= =

     
=

×
×

=
14 14

2 9.8
10.0 m

(b) The time taken to return to the same level is
T

f 
= (2 v

o
 sin θ

o 
)/g = (2× 28 × sin 30° )/9.8

    = 28/9.8 s = 2.9 s
(c) The distance from the thrower to the point
where the ball returns to the same level is

R
( )2

o o
sin2 28 28 sin60

69 m
9.8

ov

g

θ × ×= = = ⊳

3.10  UNIFORM CIRCULAR MOTION

When an object follows a circular path at a
constant speed, the motion of the object is called
uniform circular motion.  The word “uniform”
refers to the speed, which is uniform (constant)
throughout the motion.  Suppose an object is
moving with uniform speed v in a circle of radius
R as shown in Fig. 3.18. Since the velocity of the
object is changing continuously in direction, the
object undergoes acceleration. Let us find the
magnitude and the direction of this acceleration.
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Let r and r′ be the position vectors and v and
v′ the velocities of the object when it is at point P
and P ′ as shown in Fig. 3.18(a).  By definition,
velocity at a point is along the tangent at that
point in the direction of motion. The velocity
vectors v and v′ are as shown in Fig. 3.18(a1).
∆v is obtained in Fig. 3.18 (a2) using the triangle
law of vector addition. Since the path is circular,
v is perpendicular to r and so is v′ to r′ .
Therefore, ∆v is perpendicular to ∆r. Since

average acceleration is along ∆v a
v

=










∆

∆t
, the

average acceleration a  is perpendicular to ∆r. If
we place ∆v on the line that bisects the angle
between r and r′, we see that it is directed towards
the centre of the circle. Figure 3.18(b) shows the
same quantities for smaller time interval. ∆v and

hence a  is again directed towards the centre.

In Fig. 3.18(c), ∆t� 0 and the average

acceleration becomes the instantaneous
acceleration. It is directed towards the centre*.
Thus, we find that the acceleration of an object
in uniform circular motion is always directed
towards the centre of the circle. Let us now find
the magnitude of the acceleration.

The magnitude of a is, by definition, given by

a
v

=
→∆

∆
∆t 0 t

Let the angle between position vectors r and

r′ be ∆θ.   Since the velocity vectors v and v′ are

always perpendicular to the position vectors, the

angle between them is also ∆θ . Therefore, the

triangle CPP ′ formed by the position vectors and

the triangle GHI formed by the velocity vectors
v, v′ and ∆v are similar (Fig. 3.18a).  Therefore,
the ratio of the base-length to side-length for
one of the triangles is equal to that of the other
triangle. That is :

∆ ∆v r

v R
=

Or, ∆
∆

v
r

= v
R

Therefore,

  a
v r r

=
→

=
→

=
→∆

∆

∆ ∆

∆

∆ ∆

∆

∆t 0 0 R R 0t t

v

t

v

t t

If ∆t is small, ∆θ will also be small and then arc
PP′ can be approximately taken to be|∆r|:

∆ ∆r ≅ v t

           
∆
∆
r

t
v≅

Or,
∆

∆

∆t 0 t
v

→
=

r

Therefore, the centripetal acceleration a
c
 is :

Fig. 3.18 Velocity and acceleration of an object in uniform circular motion.  The time interval ∆t decreases from

(a) to (c) where it is zero.  The acceleration is directed, at each point of the path, towards the centre of

the circle.

 * In the limit ∆t�0, ∆r becomes perpendicular to r. In this limit ∆v→ 0 and is consequently also perpendicular

    to  V. Therefore, the acceleration is directed towards the centre, at each point of the circular path.

lim

limlim lim

lim
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⊳

a
c
  =   

v

R

 
   v = v2/R (3.43)

Thus, the acceleration of an object moving with

speed v in a circle of radius R has a magnitude

v
2

/R and is always directed towards the centre.

This is why this acceleration is called centripetal
acceleration (a term proposed by Newton). A
thorough analysis of centripetal acceleration was
first published in 1673 by the Dutch scientist
Christiaan Huygens (1629-1695) but it was
probably known to Newton also some years earlier.
“Centripetal” comes from a Greek term which means
‘centre-seeking’.  Since v and R are constant, the
magnitude of the centripetal acceleration is also
constant. However, the direction changes —
pointing always towards the centre.  Therefore, a
centripetal acceleration is not a constant vector.

We have another way of describing the
velocity and the acceleration of an object  in
uniform circular motion.  As the object moves
from P to P′ in time ∆t (= t′ – t), the line CP
(Fig. 3.18) turns through an angle ∆θ  as shown
in the figure. ∆θ  is called angular distance.  We
define the angular speed ω (Greek letter omega)
as the time rate of change of angular
displacement :

ω
θ

=
∆

∆t
     (3.44)

Now, if the distance travelled by the object
during the time ∆t is ∆s, i.e. PP′ is ∆s, then :

v
s

t
=

∆
∆

but ∆s = R ∆θ. Therefore :

v R

t

= =
∆

∆

θ
ωR 

v =  R ω (3.45)

We can express centripetal acceleration a
c
 in

terms of angular speed :

a
v

R

R

R

R
c

= = =
2 2

2ω
ω

2

a R
c

= ω 2 (3.46)

The time taken by an object to make one revolution
is known as its time period T and the number of
revolution made in one second is called its
frequency ν (=1/T ).  However, during this time
the distance moved by the object is s = 2πR.

Therefore, v = 2πR/T =2πRν (3.47)
In terms of frequency ν, we have

ω = 2πν
           v = 2πRν

a
c
 = 4π2 ν2R                                       (3.48)

Example 3.9 An insect trapped in a
circular groove of radius 12 cm moves along
the groove steadily and completes 7
revolutions in 100 s. (a) What is the
angular speed, and the linear speed of the
motion? (b) Is the acceleration vector a
constant vector ? What is its magnitude ?

Answer  This is an example of uniform circular
motion. Here R = 12 cm. The angular speed ω is
given by

ω = 2π/T = 2π × 7/100 = 0.44 rad/s

The linear speed v is :

v =ω R = 0.44 s-1 × 12 cm =  5.3 cm s-1

The direction of velocity v is along the tangent
to the circle at every point. The acceleration is
directed towards the centre of the circle. Since
this direction changes continuously,
acceleration here is not a constant vector.
However, the magnitude of acceleration is
constant:

a = ω2 R = (0.44 s–1)2 (12 cm)

         = 2.3 cm s-2 ⊳
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SUMMARY

1. Scalar quantities are quantities with magnitudes only.  Examples are distance, speed,
mass and  temperature.

2. Vector quantities are quantities with magnitude and direction both.  Examples are
displacement, velocity and  acceleration. They obey special rules of vector algebra.

3. A vector A multiplied by a real number λ  is also a vector, whose magnitude is λ times

the magnitude of the vector A and whose direction is the same or opposite depending

upon whether λ is positive or negative.

4. Two vectors A and B may be added graphically using head-to-tail method or parallelogram

method.
5. Vector addition is commutative :

A + B = B + A
It also obeys the associative law :

(A + B) + C = A + (B + C)
6. A null or zero vector is a vector with zero magnitude.  Since the magnitude is zero, we

don’t have to specify its direction.  It has the properties :
A + 0 = A

     λ0 = 0
   0 A = 0

7. The subtraction of vector B from A is defined as the sum of A and –B :

A – B = A+ (–B)

8. A vector A can be resolved into component along two given vectors a and b lying in the
same plane :

A = λ a + µ b

where λ and µ  are real numbers.

9. A unit vector associated with a vector A has magnitude 1 and is along the vector A:

n̂
A

A
=

The unit vectors  ɵ ɵ ɵi,  j,  k  are vectors of unit magnitude and point in the direction of

the x-, y-, and z-axes, respectively in a right-handed coordinate system.
10. A vector A can be expressed as

A i + j= A Ax y
ɵ ɵ

where A
x
, A

y
 are its components along x-, and y -axes.  If vector A makes an angle θ

with the x-axis, then A
x
 = A cos θ, A

y
=A sin θ and  

2 2 ,  tan = .
y

x y

x

A
A A A

A
θ= = +A

11. Vectors can be conveniently added using analytical method.  If sum of two vectors A
and B, that lie in x-y plane, is R, then :

R i j= +R Rx y
ɵ ɵ , where,  R

x
 = A

x 
+ B

x
, and     R

y
 = A

y
 + B

y

12. The position vector of an object in x-y plane is given by r = i jx yɵ ɵ+  and the

displacement from position r to position r’ is given by

∆r = r′− r

= ′ − + ′ −( ) ( ) x x y yɵ ɵi j

=  ∆ + ∆x y ɵ ɵi j

13. If an object undergoes a displacement ∆r in time ∆t, its average velocity is given by

v = 
∆

∆

r

t
. The velocity of an object at time t is the limiting value of the average velocity

as ∆t tends to zero :
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v = 
∆

∆

∆

=

t → 0

r r

t t

d

d
.  It can be written in unit vector notation as :

v i j k= + +v v vx y z
ɵ ɵ ɵ   where  

t

z
v 

t

y
v

t

x
v zyx

d

d
=,

d

d
= ,

d

d
=

When position of an object is plotted on a coordinate system, v  is  always tangent to
the curve representing the path of the object.

14. If the velocity of an object changes from v to v′in time ∆t, then its average acceleration

is given by:  a
v v' v

=
−

=

∆

∆

∆t t
The acceleration a at any time t is the limiting value of  a  as  ∆t �0 :

a
v v

=

→

=

∆

∆

∆t t t0

d

d

In component form, we have : a i j k= + +a a ax y z
ɵ ɵ ɵ

where,  a
dv

dt
,  a

dv

dt
,  a

dv

dtx
x

y
y

z
z

= = =

15. If an object is moving in a plane with constant acceleration  
2 2

= x ya a a= +a   and

its position vector at time t = 0 is r
o
, then at any other time t, it will be at a point given

by:

21

2
t t= + +o or r v a

and its velocity is given by :
v = v

o 
+ a t

where v
o 
is the velocity at time t = 0

In component form :

21

2
o ox xx x v t a t= + +

21

2
o oy yy y v t a t= + +

v v a tx ox x= +

v v a ty oy y= +

Motion in a plane can be treated as superposition of two separate simultaneous one-
dimensional motions along two perpendicular directions

16. An object that is in flight after being projected is called a projectile.  If an object is
projected with initial velocity v

o
 making an angle θ

o
 with x-axis and if we assume its

initial position to coincide with the origin of the coordinate system, then the position
and velocity of the projectile at time t are given by :

x = (v
o
 cos θ

o
) t

                  y = (v
o 
sin θ

o
) t − (1/2) g t2

v
x
 = v

ox
 = v

o
 cos θ

o

v
y
 = v

o
 sin θ

o
 − g t

       The path of a projectile is parabolic and is given by :

( )
( )

2

0 2
tan

coso o

gx
y x –

2 v
θ

θ
=

       The maximum height that a projectile attains is :

lim

lim
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h
v

2g
m

o o
=

( ) sin
2

q

The time taken to reach this height is :

g

v
t oo
m

θsin =

The horizontal distance travelled by a projectile from its initial position to the position
it passes y = 0 during its fall is called the range, R of the projectile.  It is :

2

sin2o
o

v
R

g
θ=

17. When an object follows a circular path at constant speed, the motion of the object is
called uniform circular motion. The magnitude of its acceleration is   a

c
 = v2 /R. The

direction of a
c
 is always towards the centre of the circle.

The angular speed ω, is the rate of change of angular distance. It is related to velocity
v by   v = ω R.  The acceleration is a

c
 = ω 2R.

If T is the time period of revolution of the object in circular motion and ν is its
frequency, we have ω = 2π ν, v = 2πνR,  a

c
 = 4π2ν2R
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POINTS TO PONDER

1. The path length traversed by an object between two points is, in general, not the same as
the magnitude of displacement. The displacement depends only on the end points; the
path length (as the name implies) depends on the actual path. The two quantities are
equal only if the object does not change its direction during the course of motion. In all
other cases, the path length is greater than the magnitude of displacement.

2. In view of point 1 above, the average speed of an object is greater than or equal to the
magnitude of the average velocity over a given time interval. The two are equal only if the
path length is equal to the magnitude of displacement.

3. The vector equations (3.33a) and (3.34a) do not involve any choice of axes. Of course,
you can always resolve them along any two independent axes.

4. The kinematic equations for uniform acceleration do not apply to the case of uniform
circular motion since in this case the magnitude of acceleration is constant but its
direction is changing.

5. An object subjected to two velocities v
1
 and v

2
 has a resultant velocity v = v

1
 + v

2
. Take

care to distinguish it from velocity of object 1 relative to velocity of object 2 : v
12

= v
1
 − v

2
.

Here v
1
 and v

2
 are velocities with reference to some common reference frame.

6. The resultant acceleration of an object in circular motion is towards the centre only if
the speed is constant.

7. The shape of the trajectory of the motion of an object is not determined by the acceleration
alone but also depends on the initial conditions of motion ( initial position and initial
velocity). For example, the trajectory of an object moving under the same acceleration
due to gravity can be a straight line or a parabola depending on the initial conditions.

EXERCISES

3.1 State, for each of the following physical quantities, if it is a scalar or a vector :
volume, mass, speed, acceleration, density, number of moles, velocity, angular
frequency, displacement, angular velocity.

3.2 Pick out the two scalar quantities in the following list :
force, angular momentum, work, current, linear momentum, electric field, average
velocity, magnetic moment, relative velocity.

3.3 Pick out the only vector quantity in the following list :
Temperature, pressure, impulse, time, power, total path length, energy, gravitational
potential, coefficient of friction, charge.

3.4 State with reasons, whether the following algebraic operations with scalar and vector
physical quantities are meaningful :
(a) adding any two scalars, (b) adding a scalar to a vector of the same dimensions ,
(c) multiplying any vector by any scalar, (d) multiplying any two scalars, (e) adding any
two vectors, (f) adding a component of a vector to the same vector.

3.5 Read each statement below carefully and state with  reasons, if it is true or false :
(a) The magnitude of a vector is always a scalar, (b) each component of a vector is
always a scalar, (c) the total path length is always equal to the magnitude of the
displacement vector of a particle. (d) the average speed of a particle (defined as total
path length divided by the time taken to cover the path) is either greater or equal to
the magnitude of average velocity of the particle over the same interval of time, (e)
Three vectors not lying in a plane can never add up to give a null vector.

3.6 Establish the following vector inequalities geometrically or otherwise :

(a) |a+b| <  |a| + |b|

(b) |a+b| >  ||a| −−−−−|b||
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(c) |a−−−−−b| <   |a| + |b|

(d) |a−−−−−b| >   ||a| −−−−− |b||

When does the equality sign above apply?

3.7 Given a + b + c + d = 0, which of the following
statements are correct :

(a) a, b, c, and d must each be a null vector,

(b) The magnitude of (a + c) equals the magnitude of
( b + d),

(c) The magnitude of a can never be greater than the
sum of the magnitudes of b, c, and d,

(d) b + c must lie in the plane of a and d if a and d are
not collinear, and in the line of a and d,  if they are
collinear ?

3.8 Three girls skating on a circular ice ground of radius
200 m start from a point P on the edge of the ground
and reach a point Q diametrically opposite to P following
different paths as shown in Fig. 3.19. What is the
magnitude of the displacement vector for each ? For
which girl is this equal to the actual length of
path skate ?

3.9 A cyclist starts from the centre O of a circular park of radius 1 km, reaches the edge P
of the park, then cycles along the circumference, and returns to the centre along QO
as shown in Fig. 3.20.  If the round trip takes 10 min, what is the (a) net displacement,
(b) average velocity, and (c) average speed of the cyclist ?

Fig. 3.20

3.10 On an open ground, a motorist follows a track that turns to his left by an angle of  600

after every 500 m. Starting from a given turn, specify the displacement of the motorist
at the third, sixth and eighth turn. Compare the magnitude of the displacement with
the total path length covered by the motorist in each case.

3.11 A passenger arriving in a new town wishes to go from the station to a hotel located
10 km away on a straight road from the station.  A dishonest cabman takes him along
a circuitous path 23 km long and reaches the hotel in 28 min. What is (a) the average
speed of the taxi, (b) the magnitude of average velocity ?  Are the two equal ?

3.12 The ceiling of a long hall is 25 m high.  What is the maximum horizontal distance that
a ball thrown with a speed  of 40 m s-1 can go without hitting the ceiling of the hall ?

3.13 A cricketer can throw a ball to a maximum horizontal distance of 100 m.  How much
high above the ground can the cricketer throw the same ball ?

Q

Fig. 3.19
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3.14 A stone tied to the end of a string 80 cm long is whirled in a horizontal circle with a
constant speed.  If the stone makes 14 revolutions in 25 s, what is the magnitude and
direction of acceleration of the stone ?

3.15 An  aircraft executes  a  horizontal  loop of  radius 1.00 km  with a steady speed of 900
km/h. Compare its centripetal acceleration with the acceleration due to gravity.

3.16 Read each statement below carefully and state, with reasons, if it is true or false :
(a) The net acceleration of a particle in circular motion is always along the radius of

the circle towards the centre
(b) The velocity vector of a particle at a point is always along the tangent to the path

of the particle at that point
(c) The acceleration vector of a particle in uniform circular motion averaged over one
      cycle is a null vector

3.17 The position of a particle is given by

2 ˆ ˆ ˆ3.0 2.0 4.0 mt t= − +r i j k 

where t is in seconds and the coefficients  have the proper units for r to be in  metres.

(a) Find the v and a of the particle? (b) What is the magnitude and direction of
  velocity of the particle at t = 2.0 s ?

3.18 A particle starts from the origin at t = 0 s with a velocity of 10.0  jɵ m/s and moves in

the x-y plane with  a constant acceleration of ( )8.0 2.0ɵ ɵi j+  m s-2. (a) At what time is

the x- coordinate of the particle 16 m?  What is the y-coordinate of the particle at
that time? (b) What is the speed of the particle at the time ?

3.19 ɵi   and ɵj  are unit vectors along x- and y- axis respectively. What is the magnitude

and direction of the vectors  ɵ ɵi j+ , and ɵ ɵi j−  ?  What are the components of a vector

A= 2 ɵ ɵi j+ 3  along the directions of  ɵ ɵi j+  and ɵ ɵi j− ? [You may use graphical method]

3.20 For any arbitrary motion in space, which of the following relations are true :
(a) v

average
 = (1/2) (v (t

1
) + v (t

2
))

(b) v 
average

 = [r(t
2
) - r(t

1
) ] /(t

2
 – t

1
)

(c) v (t) = v (0) + a t
(d) r (t) = r (0) + v (0) t + (1/2) a t2

(e) a 
average

 =[ v (t
2
) - v (t

1
 )] /( t

2
 – t

1
)

(The ‘average’ stands for average of the quantity over the time interval t
1
 to t

2
)

3.21 Read each statement below carefully and state, with reasons and examples, if it is
true or false :

A scalar quantity is one that
(a) is conserved in a process
(b) can never take negative values
(c) must be dimensionless
(d) does not vary from one point to another in space
(e) has the same value for observers with different orientations of axes.

3.22 An aircraft is flying at a height of 3400 m above the ground. If the angle subtended at
a ground observation point by the aircraft positions 10.0 s a part is 30°, wat is the
speed of the aircraft ?
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CHAPTER FOUR

LAWS OF MOTION

4.1  INTRODUCTION

In the preceding Chapter, our concern was to describe the
motion of a particle in space quantitatively. We saw that
uniform motion needs the concept of velocity alone whereas
non-uniform motion requires the concept of acceleration in
addition.  So far, we have not asked the question as to what
governs the motion of bodies. In this chapter, we turn to this
basic question.

Let us first guess the answer based on our common
experience. To move a football at rest, someone must kick it.
To throw a stone upwards, one has to  give it an upward
push.  A breeze causes the branches of a tree to swing; a
strong wind can even move heavy objects. A boat moves in a
flowing river without anyone rowing it. Clearly, some external
agency is needed to provide force to move a body from rest.
Likewise, an external force is needed also to retard or stop
motion.  You can stop a ball rolling down an inclined plane by
applying a force against the direction of its motion.

In these examples, the external agency of force (hands,
wind, stream, etc) is in contact with the object. This is not
always necessary. A stone released from the top of a building
accelerates downward due to the gravitational pull of the
earth.  A bar magnet can attract an iron nail from a distance.
This shows that external agencies (e.g. gravitational and
magnetic forces )  can exert  force on a body even from a
distance.

In short, a force is required to put a stationary body in
motion or stop a moving body, and some external agency is
needed to provide this force. The external agency may or may
not be in contact with the body.

So far so good. But what if a body is moving uniformly (e.g.
a skater moving straight with constant speed on a horizontal
ice slab) ?  Is an external force required to keep a body in
uniform motion?

4.1 Introduction

4.2 Aristotle’s fallacy

4.3 The law of inertia

4.4 Newton’s first law of motion

4.5 Newton’s second law of

motion

4.6 Newton’s third law of motion

4.7 Conservation of momentum

4.8 Equilibrium of a particle

4.9 Common forces in mechanics

4.10 Circular motion

4.11 Solving problems in

mechanics

Summary

Points to ponder

Exercises
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4.2  ARISTOTLE’S  FALLACY

The question posed above appears to be simple.
However, it took ages to answer it. Indeed, the
correct answer to this question given by Galileo
in the seventeenth century was the foundation
of Newtonian mechanics, which signalled the
birth of modern science.

The Greek thinker,  Aristotle (384 B.C– 322
B.C.), held the view that if a body is moving,
something external is required to keep it moving.
According to this view, for example, an arrow
shot from a bow keeps flying since the air behind
the arrow keeps pushing it. The view was part of
an elaborate framework of ideas developed by
Aristotle on the motion of bodies in the universe.
Most of the Aristotelian ideas on motion are now
known to be wrong and need not concern us.
For our purpose here, the Aristotelian law of
motion may be phrased thus: An external force
is required  to keep a body in motion.

Aristotelian law of motion is flawed, as we shall
see.  However, it is a natural view that anyone
would hold from common experience. Even a
small child playing with a simple (non-electric)
toy-car on a floor knows intuitively that it needs
to constantly drag the string attached to the toy-
car with some force to keep it going.  If it releases
the string, it comes to rest. This experience is
common to most terrestrial motion. External
forces seem to be needed to keep bodies in
motion. Left to themselves, all bodies eventually
come to rest.

What is the flaw in Aristotle’s argument? The
answer is: a moving toy car comes to rest because
the external force of friction on the car by the floor
opposes its motion. To counter this force, the child
has to apply an external force on the car in the
direction of motion.  When the car is in uniform
motion, there is no net external force acting on it:
the force by the child cancels the force ( friction)
by the floor.  The corollary is: if there were no friction,
the child would not be required to apply any force
to keep the toy car in uniform motion.

The opposing forces such as friction (solids)
and viscous forces (for fluids) are always present
in the natural world.  This explains why forces
by external agencies are necessary to overcome
the frictional forces to keep bodies in uniform
motion. Now we understand  where Aristotle
went wrong.  He coded this practical experience
in the form of a basic argument.  To get at the

true law of nature for forces and motion, one has
to imagine a world in which uniform motion is
possible with no frictional forces opposing. This
is what Galileo did.

4.3  THE LAW OF INERTIA

Galileo studied motion of objects on an inclined
plane.  Objects (i) moving down an inclined plane
accelerate, while those (ii) moving up retard.
(iii) Motion on a horizontal plane  is an interme-
diate situation.  Galileo concluded that an object
moving on a frictionless horizontal plane must
neither have acceleration nor retardation, i.e. it

should move with constant velocity (Fig. 4.1(a)).

(i) (ii) (iii)
Fig. 4.1(a)

Another experiment by Galileo leading to the
same conclusion involves a double inclined plane.
A ball released from rest on one of the planes rolls
down and climbs up the other. If the planes are
smooth, the final height of the ball is nearly the
same as the initial height (a little less but never
greater). In the ideal situation, when friction is
absent, the final height of the ball is the same
as its initial height.

If the slope of the second plane is decreased
and the experiment repeated, the ball will still
reach the same height, but in doing so, it will
travel a longer distance.  In the limiting case, when
the slope of the second plane is zero (i.e. is a
horizontal) the ball travels an infinite distance.
In other words, its motion never ceases. This is,
of course, an idealised situation (Fig. 4.1(b)).

Fig. 4.1(b) The law of inertia was inferred by Galileo

from observations of motion of a ball on a

double inclined plane.
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In practice, the ball does come to a stop after
moving a finite distance on the horizontal plane,
because of the opposing force of friction which
can never be totally eliminated.  However, if there
were no friction, the ball would continue  to move
with a constant velocity on the horizontal plane.

Galileo thus, arrived at a new insight on
motion that had eluded Aristotle and those who
followed him.  The state of rest and the state of
uniform linear motion (motion with constant
velocity) are equivalent. In both cases, there is

no net force acting on the body.  It is incorrect to
assume that a net force is needed to keep a body
in uniform motion. To maintain a body in
uniform motion, we need to apply an external
force to ecounter the frictional force, so that
the two forces sum up to zero net external
force.

To summarise, if the net external force is zero,
a body at rest continues to remain at rest and a
body in motion continues to move with a uniform
velocity.  This property of the body is called
inertia. Inertia means ‘resistance to  change’.
A body does not change its state of rest or
uniform motion, unless an external force
compels it to change that state.

4.4  NEWTON’S FIRST LAW OF MOTION

Galileo’s simple, but revolutionary ideas
dethroned Aristotelian mechanics. A new
mechanics had to be developed. This task was

Ideas on Motion in Ancient Indian Science

Ancient Indian thinkers had arrived at an elaborate system of ideas on motion. Force, the cause of
motion, was thought to be of different kinds : force due to continuous pressure (nodan), as the force
of wind on a sailing vessel; impact (abhighat), as when a potter’s rod strikes the wheel; persistent
tendency (sanskara) to move in a straight line(vega) or restoration of shape in an elastic body;
transmitted force by a string, rod, etc. The notion of (vega) in the Vaisesika theory of motion perhaps
comes closest to the concept of inertia.  Vega, the tendency to move in a straight line, was thought to
be opposed by contact with objects including atmosphere, a parallel to the ideas of friction and air
resistance.  It was correctly summarised that the different kinds of motion (translational, rotational
and vibrational) of an extended body arise from only the translational motion of its constituent
particles. A falling leaf in the wind may have downward motion as a whole (patan) and also rotational
and vibrational motion (bhraman, spandan), but each particle of the leaf at an instant only has a
definite (small) displacement. There was considerable focus in Indian thought on measurement of
motion and units of length and time.  It was known that the position of a particle in space can be
indicated by distance measured along three axes.  Bhaskara (1150 A.D.) had introduced the concept
of ‘instantaneous motion’ (tatkaliki gati), which anticipated the modern notion of instantaneous
velocity using Differential Calculus. The difference between a wave and a current (of water) was clearly
understood; a current is a motion of particles of water under gravity and fluidity while a wave results
from the transmission of vibrations of water particles.

accomplished almost single-handedly by Isaac
Newton, one of the greatest scientists of all times.

Newton built on Galileo’s ideas and laid the
foundation of mechanics in terms of three laws
of  motion that go by his name.  Galileo’s law of
inertia was his starting point which he formu-
lated as the first law of motion:

Every body continues to be in its state
of rest or of uniform motion in a straight
line unless compelled by some external
force to act otherwise.

The state of rest or uniform linear motion both
imply zero acceleration. The first law of motion  can,
therefore, be simply expressed as:
If the net external force on a body is zero, its
acceleration is zero.  Acceleration can be non
zero only if there is a net external force on
the body.

Two kinds of situations are encountered in the

application of this law in practice. In some

examples, we know that the net external force

on the object is zero. In that case we can

conclude that the acceleration of the object is

zero.  For example, a spaceship out in

interstellar space, far from all other objects and

with all its rockets turned off, has no net

external force acting on it.  Its acceleration,

according to the first law, must be zero.  If it is

in motion, it must continue to move with a

uniform velocity.
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⊳

More often, however, we do not know all the

forces to begin with.  In that case, if we know

that an object is unaccelerated (i.e. it is either

at rest or in uniform linear motion), we can infer

from the first law that the net external force on

the object must be zero. Gravity is everywhere.

For terrestrial phenomena, in particular, every

object experiences gravitational force due to the

earth.  Also objects in motion generally experience

friction, viscous drag, etc. If then, on earth, an

object is at rest or in uniform linear motion, it is

not because there are no forces acting on it, but

because the various external forces cancel out

i.e. add up to zero net external force.

Consider a book at rest on a horizontal surface
Fig. (4.2(a)).  It is subject to two external forces :
the force due to gravity (i.e. its weight W) acting
downward and the upward force on the book by
the table, the normal force R . R is a self-adjusting
force. This is an example of the kind of situation
mentioned above. The forces are not quite known
fully but the state of motion is known. We observe
the book to be at rest.  Therefore, we conclude
from the first law that the magnitude of R equals
that of W. A statement often encountered is :
“Since W = R, forces cancel and, therefore, the book
is at rest”. This is incorrect reasoning. The correct
statement is : “Since the book is observed to be at
rest, the net external force on it must be zero,
according to the first law. This implies that the
normal force R  must be equal and opposite to the
weight W ”.

Fig. 4.2 (a) a book at rest on the table, and (b) a car

moving with uniform velocity. The net force

is zero in each case.

Consider the motion of a car starting from

rest, picking up speed and then moving on a

smooth straight road with uniform speed (Fig.

(4.2(b)).  When the car is stationary, there is no

net force acting on it. During pick-up, it

accelerates. This must happen due to a net

external force. Note, it has to be an external force.

The acceleration of the car cannot be accounted

for by any internal force.  This might sound

surprising, but it is true.  The only conceivable

external force along the road is the force of

friction.  It is the frictional force that accelerates

the car as a whole.  (You will learn about friction

in section 4.9).  When the car moves with

constant velocity, there is no net external force.

The property of inertia contained in the First

law is evident in many situations.  Suppose we
are standing in a stationary  bus and the driver
starts the bus suddenly. We get thrown

backward with a jerk. Why ? Our feet are in touch
with the floor. If there were no friction, we would

remain where we were, while the floor of the bus
would simply slip forward under our feet and the

back of the bus would hit us.  However,
fortunately, there is some friction between the
feet and the floor.  If the start is not too sudden,

i.e. if the acceleration is moderate, the frictional
force would be enough to accelerate our feet

along with the bus.  But our body is not strictly
a rigid body. It is deformable, i.e. it allows some
relative displacement between different parts.

What this means is that while our feet go with
the bus, the rest of the body remains where it is

due to inertia.  Relative to the bus, therefore, we
are thrown backward.  As soon as that happens,

however, the muscular forces on the rest of the
body (by the feet) come into play to move the body
along with the bus. A similar thing happens

when the bus suddenly stops.  Our feet stop due
to the friction which does not allow relative

motion between the feet and the floor of the bus.
But the rest of the body continues to move
forward due to inertia.  We are thrown forward.

The restoring muscular forces again come into
play and bring the body to rest.

Example 4.1  An astronaut accidentally
gets separated out of his small spaceship
accelerating in inter stellar space at a
constant rate of 100 m s–2.  What is the
acceleration of the astronaut the instant after
he is outside the spaceship ? (Assume that
there are no nearby stars to exert
gravitational force on him.)

Answer  Since there are no nearby stars to exert
gravitational force on him and the small
spaceship exerts negligible gravitational
attraction on him, the net force acting on the
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act.  One reason is that the cricketer allows a
longer time for his hands to stop the ball.  As
you may have noticed, he draws in the hands
backward in the act of catching the ball
(Fig. 4.3).  The novice, on the other hand,
keeps his hands fixed and tries to catch the
ball almost instantly. He needs to provide a
much greater force to stop the ball instantly,
and this hurts.  The conclusion is clear: force
not only depends on the change in momentum,
but also on how fast the change is brought
about.  The same change in momentum
brought about in a shorter time needs a
greater applied force. In short, the greater the
rate of change of momentum, the greater is
the force.

Fig. 4.3 Force not only depends on the change in
momentum but also on how fast the change
is brought about. A seasoned cricketer draws
in his hands during a catch, allowing greater
time for the ball to stop and hence requires a
smaller force.

• Observations confirm that the product of

mass and velocity (i.e. momentum) is basic to

the effect of force on motion.  Suppose a fixed

force is applied for a certain interval of time

on two bodies of different masses, initially at

rest,  the lighter body picks up a greater speed

than the heavier body.  However, at the end of

the time interval, observations show that each

body acquires the same momentum.  Thus

the same force for the same time causes

the same change in momentum for

different bodies.  This is a crucial clue to the

second law of motion.

• In the preceding observations, the vector

astronaut, once he is out of the spaceship, is
zero. By the first law of motion the acceleration
of the astronaut is zero.             ⊳

4.5  NEWTON’S SECOND LAW OF MOTION

The first law refers to the simple case when the
net external force on a body is zero.  The second
law of motion refers to the general situation when
there is a net external force acting on the body.
It relates the net external force to the
acceleration of the body.

Momentum
Momentum of a body is defined to be the product
of its mass m and velocity v, and is denoted
by p:

p = m v         (4.1)

Momentum is clearly a vector quantity.  The
following common experiences indicate the
importance of this quantity for considering the
effect of force on motion.

• Suppose a light-weight vehicle (say a small

car) and a heavy weight vehicle (say a loaded
truck) are parked on a horizontal road. We all
know that a much greater force is needed to
push the truck than the car to bring them to
the same speed in same time.  Similarly, a
greater opposing force is needed to stop a
heavy body than a light body in the same time,
if they are moving with the same speed.

• If two stones, one light and the other heavy,

are dropped from the top of a building, a
person on the ground will find it easier to catch
the light stone than the heavy stone.  The
mass of a body is thus an important
parameter that determines the effect of force
on its motion.

• Speed is another important parameter to
consider. A bullet fired by a gun can easily
pierce human tissue before it stops, resulting
in casualty.  The same bullet fired with
moderate speed will not cause much damage.
Thus for a given mass, the greater the speed,
the greater is the opposing force needed to stop
the body in a certain time.  Taken together,
the product of mass and velocity, that is
momentum, is evidently a relevant variable
of motion. The greater the change in the
momentum in a given time, the greater is the
force that needs to be applied.

• A seasoned cricketer catches a cricket ball
coming in with great speed far more easily
than a novice, who can hurt his hands in the
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character of momentum has not been evident.

In the examples so far, momentum and change

in momentum both have the same direction.

But this is not always the case.  Suppose a

stone is rotated with uniform speed in a

horizontal plane by means of a string, the

magnitude of momentum is fixed, but its

direction changes (Fig. 4.4). A force is needed

to cause this change in momentum vector.

This force is provided by our hand through
the string.  Experience suggests that our hand
needs to exert a greater force if the stone is
rotated at greater speed or in a circle of
smaller radius, or both. This corresponds to
greater acceleration or equivalently a greater
rate of change in momentum vector. This
suggests that the greater the rate of change
in momentum vector the greater is the force
applied.

Fig. 4.4 Force is necessary  for changing the direction

of momentum, even if its magnitude is

constant. We can feel this while rotating a

stone in a horizontal circle with uniform speed

by means of a string.

These qualitative observations lead to the
second law of motion expressed by Newton as
follows :

The rate of change of momentum of a body is
directly proportional to the applied force and
takes place in the direction in which the force
acts.

Thus, if under the action of a force F for time
interval ∆t, the velocity of a body of mass m

changes from v to v + ∆v i.e. its initial momentum

p = m v changes by m∆ = ∆p v . According to the

Second Law,

            or     k
t t

∆ ∆∝ =
∆ ∆
p p

F F

where k  is a constant of proportionality.  Taking

the limit ∆t → 0,  the term 
t∆

∆p
 becomes the

derivative or differential co-efficient of p with

respect to t, denoted by 
d

dt

p
.  Thus

    
d

d
k

t
=

p
F (4.2)

For a body of fixed mass m,

  ( )d d d

d d d
m m m 

t t t
= = =

p v
v a      (4.3)

i.e the Second Law can also be written as
             F  =   k m a         (4.4)

which shows that force is proportional to the

product of mass m and acceleration a.

The unit of force has not been defined so far.

In fact, we use Eq. (4.4) to define the unit of force.

We, therefore, have the liberty to choose any

constant value for k.  For simplicity, we choose

k = 1. The second law then is

a
p

F  m
t

    
d

d
  == (4.5)

In SI unit force is one that causes an acceleration

of 1 m s-2 to a mass of 1 kg. This unit is known as

newton : 1 N = 1 kg m s-2.

Let us note at this stage some important points

about the second law :

1. In the second law, F = 0 implies a = 0. The second

law is obviously  consistent with the first law.

2. The second law of motion is a vector law. It is

equivalent to three equations, one for each

component of the vectors :

F
p

t
max

x
x= =

d

d

F
p

t
may

y

y= =
d

d

z
z

z a m
t

p
F ==

d

d
                                  (4.6)

This means that if a force is not parallel to
the velocity of the body, but makes some angle
with it, it changes only the component of
velocity along the direction of force. The
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⊳

⊳

component of velocity normal to the force
remains unchanged. For example, in the
motion of a projectile under the vertical
gravitational force, the horizontal component
of velocity remains unchanged (Fig. 4.5).

3. The second law of motion given by Eq. (4.5) is
applicable to a single point particle. The force
F in the law stands for the net external force

on the particle and a stands for acceleration

of the particle. It turns out, however, that the

law in the same form applies to a rigid body or,

even more generally, to a system of particles.

In that case, F refers to the total external force

on the system and a refers to the acceleration

of the system as a whole.  More precisely, a is

the acceleration of the centre of mass of the

system about which we shall study in detail in

Chapter 6. Any internal forces in the system

are not to be included in F.

Fig. 4.5 Acceleration at an instant is determined by
the force at that instant. The moment after a
stone is dropped out of an accelerated train,
it has no horizontal acceleration or force, if
air resistance is neglected. The stone carries
no memory of its acceleration with the train
a moment ago.

4. The second law of motion is a local relation

which means that force F at a point in space

(location of the particle) at a certain instant

of time is related to a at that point at that

instant. Acceleration here and now is

determined by the force here and now, not by

any history of the motion of the particle

(See Fig. 4.5).

Example 4.2  A bullet of mass 0.04 kg

moving with a speed of 90 m s–1 enters a

heavy wooden block and is stopped after a

distance of 60 cm. What is the average

resistive force exerted by the block on  the

bullet?

Answer  The retardation ‘a’ of the bullet

(assumed constant) is given by

2
–

2

u
a

s
= = 

2 2– 90 90
m s – 6750 m s

2 0.6

− −×
=

×

The retarding force, by the second law of
motion, is

= 0.04 kg × 6750 m s-2 = 270 N

The actual resistive force, and therefore,
retardation of the bullet may not be uniform.  The
answer therefore, only indicates the average
resistive force.                      ⊳

Example 4.3  The motion of a particle of

mass m is described by y = + 21

2
ut gt . Find

the force acting on the particle.

Answer  We know

21

2
y ut gt= +

Now,

d

d

y
v u gt

t
= = +

acceleration, 
d

d

v
a g

t
= =

Then the force is given by Eq.  (4.5)
F = ma = mg

Thus the given equation describes the motion
of a particle under acceleration due to gravity
and y is the position coordinate in the direction
of g. ⊳

Impulse
We sometimes encounter examples where a large
force acts for a very short duration producing a
finite change in momentum of the body. For
example, when a ball hits a wall and bounces
back, the force on the ball by the wall acts for a
very short time when the two are in contact, yet
the force is large enough to reverse the momentum
of the ball. Often, in these situations, the force
and the time duration are difficult to ascertain
separately. However, the product of force and time,
which is the change in momentum of the body
remains a measurable quantity. This product is
called impulse:

Impulse  =  Force × time duration
          =  Change in momentum        (4.7)
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A large force acting for a short time to produce a
finite change in momentum is called an impulsive

force. In the history of science, impulsive forces were
put in a conceptually different category from
ordinary forces.  Newtonian mechanics has no such
distinction.  Impulsive force is like any other force –
except that it is large and acts for a short time.

Example 4.4  A batsman hits back a ball
straight in the direction of the bowler without
changing its initial speed of 12 m s–1.
If the mass of the ball is 0.15 kg, determine
the impulse imparted to the ball.  (Assume
linear motion of the ball)

Answer   Change in momentum
       =  0.15 × 12–(–0.15×12)

      =  3.6 N s,

Impulse  =  3.6 N s,
in the direction from the batsman to the bowler.

This is an example where the force on the ball
by the batsman and the time of contact of the
ball and the bat are difficult to know, but the
impulse is readily calculated.          ⊳

4.6  NEWTON’S THIRD LAW OF MOTION

The second law relates the external force on a

body to its acceleration. What is the origin of the

external force on the body ?  What agency

provides the external force ?  The simple answer

in Newtonian mechanics is that the external

force on a body always arises due to some other

body.  Consider a pair of bodies A and B. B gives

rise to an external force on A.  A natural question

is: Does A in turn give rise to an external force

on B ?  In some examples, the answer seems

clear.  If you press a coiled spring, the spring is

compressed by the force of your hand.  The

compressed spring in turn exerts a force on your

hand and you can feel it.  But what if the bodies

are not in contact ?  The earth pulls a stone

downwards due to gravity.  Does the stone exert

a force on the earth ?  The answer is not obvious

since we hardly see the effect of the stone on the

earth. The answer according to Newton is: Yes,

the stone does exert an equal and opposite force

on the earth. We do not notice it since the earth

is very massive and the effect of a small force on

its motion is negligible.

Thus, according to Newtonian mechanics,

force never occurs singly in nature. Force is the

mutual interaction between two bodies.  Forces

always occur in pairs. Further, the mutual forces
between two bodies are always equal and
opposite.  This idea was expressed by Newton in
the form of the third law of motion.

To every action, there is always an equal and
opposite reaction.

Newton’s wording of the third law is so crisp and
beautiful that it has become a part of common
language. For the same reason perhaps,
misconceptions about the third law abound.  Let
us note some important points about the third
law, particularly in regard to the usage of the
terms : action and reaction.

1. The terms action and reaction in the third law
mean nothing else but ‘force’. Using different
terms for the same physical concept
can sometimes be confusing. A simple
and clear way of stating the third law is as
follows :

Forces always occur in pairs.  Force on a
body A by B is equal and opposite to the
force on the body B by A.

2. The terms action and reaction in the third law
may give a wrong impression that action
comes before reaction i.e action is the cause
and reaction the effect. There is no cause-
effect relation implied in the third law.  The
force on A by B and the force on B by A act
at the same instant.  By the same reasoning,
any one of them may be called action and the
other reaction.

3. Action and reaction forces act on different
bodies, not on the same body. Consider a pair
of bodies A and B.  According to the third law,

F
AB

  =  – F
BA  

(4.8)

(force on A by B)  =  – (force on B by A)

Thus if we are considering the motion of any

one body (A or B), only one of the two forces is

relevant.  It is an error to add up the two forces

and claim that the net force is zero.

However, if you are considering the system

of two bodies as a whole, F
AB

 and F
BA

 are

internal forces of the system (A + B). They add

up to give a null force. Internal forces in a

body or a system of particles thus cancel away
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in pairs.  This is an important fact that

enables the second law to be applicable to a

body or a system of particles (See Chapter 6).

Example 4.5  Two identical billiard balls
strike a rigid wall with the same speed but
at different angles, and get reflected without
any change in speed,  as shown in Fig. 4.6.
What is (i) the direction of the force on the
wall due to each ball? (ii) the ratio of the
magnitudes of impulses imparted to the
balls by the wall ?

       Fig. 4.6

Answer  An instinctive answer to (i) might be
that the force on the wall in case (a) is normal to
the wall, while that in case (b) is inclined at 30°
to the normal. This answer is wrong.  The force
on the wall is normal to the wall in both cases.

How to find the force on the wall? The trick is
to consider the force (or impulse) on  the ball
due to  the wall using the second law, and then
use the third law to answer (i). Let u be the speed
of each ball before and after collision with the
wall, and m the mass of each ball. Choose the x
and y axes as shown in the figure, and consider
the change in momentum of the ball in each
case :

Case (a)

( ) ( )initial initial
0x yp mu          p= =

( ) ( )finalfinal
0x yp mu          p= − =

Impulse is the change in momentum vector.
Therefore,

x-component of impulse  =  – 2 m u
y-component of impulse  =   0

Impulse and force are in the same direction.
Clearly, from above, the force on the ball due to
the wall is normal to the wall, along the negative
x-direction.  Using Newton’s third law of motion,

the force on the wall due to the ball is normal to
the wall along the positive x-direction. The
magnitude of force cannot be ascertained since
the small time taken for the collision has not
been specified in the problem.

Case (b)

( )  cos 30initialxp m u = � , ( )    sin 30
initialyp m u = − �

( )  – cos 30finalxp m u = � , ( )   sin 30
finalyp m u = − �

Note,  while p
x
 changes sign  after collision,  p

y

does not.  Therefore,

x-component of impulse = –2 m u  cos  30°
y-component of impulse = 0

The direction of impulse (and force) is the same
as in (a) and is normal to the wall along the
negative x direction.  As before, using Newton’s
third law, the force on the wall due to the ball is
normal to the wall along the positive x direction.

The ratio of the magnitudes  of the impulses
imparted to the balls in (a) and (b) is

( ) 2
2 / 2 cos30 1.2

3
m u m u = ≈�

         ⊳

4.7  CONSERVATION OF MOMENTUM

The second and third laws of motion lead to
an important consequence: the law of
conservation of momentum.  Take a familiar
example. A bullet is fired  from a gun. If the force
on the bullet by the gun is F, the force on the gun
by the bullet is – F, according to the third law.
The two forces act for a common interval of time
∆t.  According to the second law, F ∆t is the change
in momentum of the bullet and – F ∆t is the
change in momentum of the gun. Since initially,
both are at rest, the change in momentum equals
the final momentum for each. Thus if p

b
 is the

momentum of the bullet after firing and p
g 
is the

recoil momentum of the gun, p
g
 = – p

b
  i.e. p

b
 + p

g

= 0.  That is, the total momentum of the (bullet +
gun) system is conserved.

Thus in an isolated system (i.e. a system with
no external force), mutual forces between pairs
of particles in the system can cause momentum
change in individual particles, but since the
mutual forces for each pair are equal and
opposite, the momentum changes cancel in pairs
and the total momentum remains unchanged.
This fact is known as the law of conservation
of momentum :
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The total momentum of an isolated system of

interacting particles is conserved.

An important example of the application of the

law of conservation of momentum is the collision

of two bodies. Consider two bodies A and B, with

initial momenta p
A
 and p

B
. The bodies collide,

get apart, with final momenta p′
A
 and p′

B

respectively. By the Second Law

F p p
AB A A

t∆ = ′ −
 
and

F p p
BA B B

t∆ = ′ −

(where we have taken a common interval of time

for both forces i.e. the time for which the two

bodies are in contact.)

Since F F
AB BA

= −  by the third law,

( )′ − = − ′ −p p p p
A A B B

i.e. ′ + ′ = +p p p p
A B A B

        (4.9)

which shows that the total final momentum of

the isolated system equals its initial momentum.

Notice that this is true whether the collision is

elastic or inelastic. In elastic collisions, there is

a second condition that the total initial kinetic

energy of the system equals the total final kinetic

energy (See Chapter 5).

4.8  EQUILIBRIUM OF A PARTICLE

Equilibrium of a particle in mechanics refers to

the situation when the net external force on the

particle is zero.*  According to the first law, this

means that, the particle is either at rest or in

uniform motion.

If two forces F
1
 and F

2
, act on a particle,

equilibrium requires

F
1  

= −
 
F

2
      (4.10)

i.e. the two forces on the particle  must be equal

and opposite. Equilibrium under three

concurrent forces F
1
, F

2
  and F

3
 requires that

the vector sum of the three forces is zero.

F
1
  + F

2
  + F

3
  =  0                                  (4.11)

Fig. 4.7  Equilibrium under concurrent forces.

In other words, the resultant of any two forces
say F

1
 and F

2
, obtained by the parallelogram

law of forces must be equal and opposite to the
third force, F

3
.  As seen in Fig. 4.7, the three

forces in equilibrium can be represented by the
sides of a triangle with the vector arrows taken
in the same sense. The result can be
generalised to any number of forces. A particle
is in equilibrium under the action of forces F

1
,

F
2
,... F

n
 if they can be represented by the sides

of a closed n-sided polygon with arrows directed
in the same sense.

Equation (4.11) implies that

F
1x 

+ F
2x 

+ F
3x

 = 0

F
1y

 + F
2y

 + F
3y

 = 0

F
1z

 + F
2z

 + F
3z

 = 0       (4.12)

where F
1x

, F
1y

 and F
1z

 are the components of F
1

along x, y and z directions respectively.

Example 4.6   See Fig. 4.8. A mass of 6 kg
is suspended by a  rope  of  length 2 m
from the ceiling.  A force of 50 N in the
horizontal direction is  applied  at  the mid-
point P of the rope, as shown. What is the
angle the rope makes with the vertical in
equilibrium ?  (Take g = 10 m s-2). Neglect
the mass of the rope.

(a) (b) (c)
Fig. 4.8

* Equilibrium of a body requires not only translational equilibrium (zero net external force) but also rotational

equilibrium (zero net external torque), as we shall see in Chapter 6.
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Answer  Figures 4.8(b) and 4.8(c) are known as
free-body diagrams. Figure 4.8(b) is the free-body
diagram of W and Fig. 4.8(c) is the free-body
diagram of point P.

Consider the equilibrium of the weight W.
Clearly,T

2
 = 6 × 10 = 60 N.

Consider the equilibrium of the point P under
the action of three forces - the tensions T

1
 and

T
2
, and the horizontal force 50 N.  The horizontal

and vertical components of the resultant force
must vanish separately :

T
1
 cos θ  =  T

2
  =  60 N

T
1
  sin  θ   =  50  N

which gives that

Note the answer does not depend on the length
of the rope  (assumed massless) nor on the point
at which the horizontal force is applied. ⊳

4.9  COMMON FORCES IN MECHANICS

In mechanics, we encounter several kinds of
forces. The gravitational force is, of course,
pervasive.  Every object on the earth experiences
the force of gravity due to the earth. Gravity also
governs the motion of celestial bodies.  The
gravitational force can act at a distance without
the need of any intervening medium.

All the other forces common in mechanics are
contact forces.* As the name suggests, a contact
force on an object arises due to contact with some
other object: solid or fluid. When bodies are in
contact (e.g.  a book resting on a table, a system
of rigid bodies connected by rods, hinges and

other types of supports), there are mutual
contact forces (for each pair of bodies) satisfying
the third law.  The component of contact force
normal to the surfaces in contact is called
normal reaction.  The component parallel to the
surfaces in contact is called friction.  Contact
forces arise also when solids are in contact with
fluids.  For example, for a solid immersed in a
fluid, there is an upward bouyant force equal to
the weight of the fluid displaced. The viscous
force, air resistance, etc are also examples of
contact forces (Fig. 4.9).

Two other common forces are tension in a
string and the force due to spring. When a spring
is compressed or extended by an external force,
a restoring force is generated. This force is
usually proportional to the compression or
elongation (for small displacements). The spring
force F is written as F = – k x where x is the
displacement and k is the force constant. The
negative sign denotes that the force is opposite
to the displacement from the unstretched state.
For an inextensible string, the force constant is
very high. The restoring force in a string is called
tension. It is customary to use a constant tension
T throughout the string. This assumption is true
for a string of negligible mass.

We learnt that there are four fundamental
forces in nature.  Of these, the weak and strong
forces appear in domains that do not concern
us here. Only the gravitational and electrical
forces are relevant in the context of mechanics.
The different contact forces of mechanics
mentioned above fundamentally arise from
electrical forces.  This may seem surprising

* We are not considering,  for simplicity, charged and magnetic bodies. For these, besides gravity, there are

electrical and magnetic non-contact forces.

Fig. 4.9  Some examples of contact forces in mechanics.
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since we are talking of uncharged and non-
magnetic bodies in mechanics. At the microscopic
level, all bodies are made of charged constituents
(nuclei and electrons) and the various contact
forces arising due to elasticity of bodies, molecular
collisions and impacts, etc. can ultimately be
traced to the electrical forces between the charged
constituents of different bodies. The detailed
microscopic origin of these forces is, however,
complex and not useful for handling problems in
mechanics at the macroscopic scale.  This is why
they are treated as different types of forces with
their characteristic properties determined
empirically.

4.9.1  Friction

Let us return to the example of a body of mass m
at rest on a horizontal table. The force of gravity
(mg)  is cancelled by the normal reaction force
(N) of the table. Now suppose a force F is applied
horizontally to the body.  We know from
experience that a small  applied force may not
be enough to move the body.  But if the applied
force F were the only external force on the body,
it must move with acceleration F/m, however
small. Clearly, the body remains at rest because
some other force comes into play in the
horizontal direction and opposes the applied
force F, resulting in zero net force on the body.
This force f

s
 parallel to the surface of the body in

contact with the table is known as frictional
force, or simply friction (Fig. 4.10(a)).  The
subscript stands for static friction to distinguish
it from kinetic friction f

k
 that we consider later

(Fig. 4.10(b)).  Note that  static friction does not

Fig. 4.10 Static and sliding friction: (a)  Impending

motion of the body is opposed by static

friction. When external force exceeds the

maximum limit of static friction, the body

begins to move.  (b) Once the body is in

motion, it is subject to sliding or kinetic friction

which opposes relative motion between the

two surfaces in contact. Kinetic friction is

usually less than the maximum value of static

exist by itself.  When there is no applied force,
there is no static friction. It comes into play the
moment there is an applied force. As the applied
force F increases, f

s
 also increases, remaining

equal and opposite to the applied force (up to a
certain limit), keeping the body at rest. Hence, it
is called static friction.  Static friction opposes
impending motion. The term impending motion
means motion that would take place (but does
not actually take place) under the applied force,
if friction were absent.

We know from experience that as the applied
force exceeds a certain limit, the body begins to
move.  It is found experimentally that the limiting

value of static friction ( )
maxsf  is independent of

the area of contact and varies with the normal
force(N)  approximately as :

( )
maxs sf N= µ      (4.13)

where µ
s 

is a constant of proportionality
depending only on the nature of the surfaces in
contact. The constant µ

s 
 is called the coefficient

of static friction.  The law of static friction may
thus be written as

f
s
  ≤  µ

s 
 N     (4.14)

If the applied force F exceeds ( )
maxsf

 the body

begins to slide on the surface. It is found experi-
mentally that when relative motion has started,
the frictional force decreases from the static

maximum value ( )
maxsf . Frictional force that

opposes relative motion between surfaces in
contact is called kinetic or sliding friction and is
denoted by f

k 
.
  
Kinetic friction, like static fric-

tion, is found to be independent of the area of
contact.  Further, it is nearly independent of the
velocity. It satisfies a law similar to that for static
friction:

k k=f Nµ (4.15)

where µ
k′ the coefficient of kinetic friction,

depends only on the surfaces in contact. As
mentioned above, experiments show that µ

k
 is

less than µ
s
. When relative motion has begun,

the acceleration of the body according to the
second law is ( F – f

k
)/m.  For a body moving with

constant velocity, F = f
k
. If the applied force on

the body is removed, its acceleration is – f
k 
/m

and it eventually comes to a stop.
       The laws of friction given above do not have
the status of fundamental laws like those for
gravitational, electric and magnetic forces. They
are empirical relations that are onlyfriction.
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approximately true.  Yet they are very useful in
practical calculations in mechanics.

Thus, when two bodies are in contact, each
experiences a contact force by the other. Friction,
by definition, is the component of the contact force
parallel to the surfaces in contact, which opposes
impending or actual relative motion between the
two surfaces. Note that it is not motion, but
relative motion that the frictional force opposes.
Consider a box lying in the compartment of a train
that is accelerating.  If the box is stationary
relative to the train, it is in fact accelerating along
with the train. What forces cause the acceleration
of the box?  Clearly, the only conceivable force in
the horizontal direction is the force of friction. If
there were no friction, the floor of the train would
slip by and the box would remain at its initial
position due to inertia (and hit the back side of
the train). This impending relative motion is
opposed by the static friction f

s
. Static friction

provides the same acceleration to the box as that
of the train, keeping it stationary relative to the
train.

Example 4.7 Determine the maximum
acceleration of the train in which a box
lying on its floor will remain stationary,
given that the co-efficient of static friction
between the box and the train’s floor is
0.15.

Answer  Since the acceleration of the box is due
to the static friction,

ma  =  f
s
 ≤ µ

s
 N  =  µ

s
  m g

i.e.   a  ≤  µ
s
 g

∴  a
max

 =  µ
s 
g  = 0.15  x 10 m s–2

= 1.5  m s–2  ⊳

Example 4.8  See Fig. 4.11. A mass of 4 kg
rests on a horizontal plane. The plane is
gradually inclined until at an angle θ  =  15°
with the horizontal, the mass just begins to
slide. What is the coefficient of static friction
between the block and the surface ?

Fig. 4.11

Answer  The forces acting on a block of mass m
at rest on an inclined plane are (i) the weight
mg acting vertically downwards (ii) the normal
force N of the plane on the block, and (iii) the
static frictional force f

s
 opposing the impending

motion. In equilibrium, the resultant of these
forces must be zero.  Resolving the weight mg

along the two directions shown, we have
m g sin θ  =  f

s
   ,     m g  cos θ    =  N

As θ  increases, the self-adjusting frictional force
f

s
 increases until at θ = θ

max
,  f

s
 achieves its

maximum value, ( )
maxsf = µ

s
 N.

Therefore,

tan θ
max

  =  µ
s
  or  θ

max
  =  tan–1  µ

s

When  θ  becomes just a little more than  θ
max

 ,
there is a small net force on the block and it
begins to slide.  Note that  θ

max
 depends only on

µ
s
 and is  independent of the mass of the block.

For θ
max

   =  15°,
µ

s
      =  tan 15°

 =  0.27 ⊳

Example 4.9  What is the acceleration of
the block  and  trolley system shown in a
Fig. 4.12(a), if the coefficient of kinetic friction
between the trolley and the surface is 0.04?
What is the tension in the string? (Take g =
10 m s-2).  Neglect the mass of the string.

(a)

(b) (c)

Fig. 4.12

⊳
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is the reason why discovery of the wheel has
been a major milestone in human history.

Rolling friction again has a complex origin,
though somewhat different from that of static
and sliding friction. During rolling, the surfaces
in contact get momentarily deformed a little, and
this results in a finite area (not a point) of the
body being in contact with the surface.  The net
effect is that the component of the contact force
parallel to the surface opposes motion.

We often regard friction as something
undesirable. In many situations, like in a
machine with different moving parts, friction
does have a negative role. It opposes relative
motion and thereby dissipates power in the form
of heat, etc. Lubricants are a way of reducing
kinetic friction in a machine. Another way is to
use ball bearings between two moving parts of a
machine [Fig. 4.13(a)]. Since the rolling friction
between ball bearings and the surfaces in
contact is very small, power dissipation is
reduced. A thin cushion of air maintained
between solid surfaces in relative motion is
another effective way of reducing friction
(Fig. 4.13(a)).

In many practical situations, however, friction
is critically needed. Kinetic friction that
dissipates power is nevertheless important for
quickly stopping relative motion. It is made use
of by brakes in machines and automobiles.
Similarly, static friction is important in daily
life.  We are able to walk because of friction.  It
is impossible for a car to move on a very slippery
road. On an ordinary road, the friction between
the tyres and the road provides the necessary
external force to accelerate the car.

Answer  As the string is inextensible, and the
pully is smooth, the 3 kg block and the 20 kg
trolley both have same magnitude of
acceleration.  Applying second law to motion of
the block (Fig. 4.12(b)),

30 – T  = 3a

Apply the second law to motion of the trolley (Fig.
4.12(c)),

T – f
k
  =  20 a.

Now      f
k

= µ
k
 N,

Here        µ
k

= 0.04,
     N   =  20 x 10

= 200 N.
Thus the equation for the motion of the trolley is

T – 0.04 x 200 = 20 a  Or  T – 8 = 20a.

These equations give a = 
22

23

 m s –2 = 0.96 m s-2

and T  = 27.1 N.                                                 ⊳

Rolling friction

A body like a ring or a sphere rolling without
slipping over a horizontal plane will suffer no
friction, in principle. At every instant, there is
just one point of contact between the body and
the plane and this point has no motion relative
to the plane. In this ideal situation, kinetic or
static friction is zero and the body should
continue to roll with constant velocity.  We know,
in practice, this will not happen and some
resistance to motion (rolling friction) does occur,
i.e. to keep the body rolling, some applied force
is needed. For the same weight, rolling friction
is much smaller (even by 2 or 3 orders of
magnitude) than static or sliding friction.  This

Fig. 4.13 Some ways of reducing friction. (a) Ball bearings placed between moving parts of a machine.

(b) Compressed cushion of air between surfaces in relative motion.
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4.10  CIRCULAR MOTION

We have seen in Chapter 4 that acceleration of
a body moving in a circle of radius R  with uniform
speed v is v2/R directed towards the centre.
According to the second law, the force f

c
 providing

this acceleration is :

              

2

c

mv
f =

R
(4.16)

where m is the mass of the body.  This force
directed forwards the centre is called the
centripetal force. For a stone rotated in a circle
by a string, the centripetal force is provided by
the tension in the string.  The centripetal force
for motion of a planet around the sun is the

is the static friction that provides the centripetal
acceleration. Static friction opposes the
impending motion of the car moving away from
the circle. Using equation (4.14) & (4.16) we get
the result

= ≤
2

s

mv
f N

R
µ

2 s
s

RN
v Rg

m

µ µ≤ = [∵N = mg]

which is independent of the mass of the car.
This shows that for a given value of µ

s
 and R,

there is a maximum speed of circular motion of
the car possible, namely

max sv Rgµ=       (4.18)

(a) (b)

Fig. 4.14  Circular motion of a car on (a) a level road, (b) a banked road.

gravitational force on the planet due to the sun.
For a car taking a circular turn on a horizontal
road, the centripetal force is the force of friction.

The circular motion of a car on a flat and
banked road give interesting application of the
laws of motion.

Motion of a car on a level road

Three forces act on the car (Fig. 4.14(a):
(i) The weight of the car, mg
(ii) Normal reaction, N
(iii) Frictional force, f
As there is no acceleration in the vertical
direction
N – mg = 0
N = mg      (4.17)
The centripetal force required for circular motion
is along the surface of the road, and is provided
by the component of the contact force between
road and the car tyres along the surface. This
by definition is the frictional force. Note that it

Motion of a car on a banked road

We can reduce the contribution of friction to the
circular motion of the car if the road is banked
(Fig. 4.14(b)). Since there is no acceleration along
the vertical direction, the net force along this
direction must be zero. Hence,

N cos θ  = mg + f sin θ                 (4.19a)

The centripetal force is provided by the horizontal
components of N and f.

N sin θ  + f cos θ  = 
2

mv

R
                (4.19b)

But f s
Nµ≤

Thus to obtain v
max 

 we put

s
f Nµ= .

Then Eqs. (4.19a) and (4.19b) become

N cos θ  = mg + sNµ  sin θ     (4.20a)
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N sin θ  + sNµ cos θ  = mv2/R                 (4.20b)

From Eq. (4.20a), we obtain

– s

mg
N

cos sinθ µ θ
=

Substituting value of N in Eq. (4.20b), we get

( ) 2
max

–

s

s

mg sin cos mv

cos sin R

+
=

θ µ θ
θ µ θ

or 

1

2

max
1 –

s

s

tan
v Rg

tan

µ θ
µ θ

 +
=  

 
      (4.21)

Comparing this with Eq. (4.18) we see that
maximum possible speed of a car on a banked
road is greater than that on a flat road.

For µs =  0  in  Eq. (4.21 ),
v

o  
=

  
( R g  tan θ ) ½       (4.22)

At this speed, frictional force is not needed at all
to provide the necessary centripetal force.
Driving at this speed on a banked road will cause
little wear and tear of the tyres. The same
equation also tells you that for v < v

o
, frictional

force will be up the slope and that a car can be
parked only if tan θ  ≤  µ

s
.

Example  4.10  A cyclist speeding at
18 km/h on a level road takes a sharp
circular turn of radius 3 m without reducing
the speed. The co-efficient of static friction
between the tyres and the road is 0.1. Will
the cyclist slip while taking the turn?

Answer   On an unbanked road, frictional force
alone can provide the centripetal force needed
to keep the cyclist moving on a circular turn
without  slipping. If the speed is too large, or if
the turn is too sharp (i.e. of too small a radius)
or both, the frictional force is not sufficient to
provide the necessary centripetal force, and the
cyclist slips. The condition for the cyclist not to
slip is given by Eq. (4.18) :

v2  ≤  µ
s
 R g

Now, R = 3 m,  g = 9.8 m s-2,  µ
s
 = 0.1.  That is,

µ
s
 R g = 2.94 m2 s-2. v = 18  km/h = 5  m s-1; i.e.,

v2 = 25  m2 s-2.  The condition is not obeyed.
The cyclist will slip while taking the
circular  turn. ⊳

Example 4.11 A circular racetrack of
radius 300 m is banked at an angle of 15°.
If the coefficient of friction between the
wheels of a race-car and the road is 0.2,
what is the (a) optimum speed of the race-
car to avoid wear and tear on its tyres, and
(b) maximum permissible speed to avoid
slipping ?

Answer  On a banked road, the horizontal
component of the normal force and the frictional
force contribute to provide centripetal force to
keep the car moving on a circular turn without
slipping.  At the optimum speed, the normal
reaction’s component is enough to provide the
needed centripetal force, and the frictional force
is not needed.  The optimum speed v

o
 is given by

Eq.  (4.22):
v

O
  =  (R g tan θ)1/2

Here R  =  300 m,  θ  =  15°,  g  =  9.8  m s-2;  we
have

v
O
  =  28.1  m s-1.

The maximum permissible speed v
max

 is given by
Eq. (4.21):

⊳

4.11  SOLVING PROBLEMS IN MECHANICS

The three laws of motion that you have learnt in
this chapter are the foundation of mechanics.
You should now be able to handle a large variety
of problems in mechanics.  A typical problem in
mechanics usually does not merely involve a
single body under the action of given forces.
More often, we will need to consider an assembly
of different bodies exerting forces on each other.
Besides, each body in the assembly experiences
the force of gravity.  When trying to solve a
problem of this type, it is useful to remember
the fact that we can choose any part of the
assembly and apply the laws of motion to that
part provided  we include all forces on the chosen
part due to the  remaining parts of the assembly.
We may call the chosen part of the assembly as
the system and the remaining part of the
assembly (plus any other agencies of forces) as
the environment. We have followed the same
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method in solved examples. To handle a typical
problem in mechanics systematically, one
should use the following steps :
(i) Draw a diagram showing schematically the

various parts of the assembly of bodies, the
links, supports, etc.

(ii) Choose a convenient part of the assembly
as one system.

(iii) Draw a separate diagram which shows this
system and all the forces on the system by
the remaining part of the assembly.  Include
also the forces on the system by other
agencies. Do not include the forces on the
environment by the system.  A diagram of
this type is known as ‘a free-body diagram’.
(Note this does not imply that the system
under consideration is without a net force).

(iv) In a free-body diagram, include information
about forces (their magnitudes and
directions) that are either given or you are
sure of (e.g., the direction of tension in a
string along its length).  The rest should be
treated as unknowns to be determined using
laws of motion.

(v) If necessary, follow the same procedure for
another choice of the system.  In doing so,
employ Newton’s third law.  That is, if in the
free-body diagram of A, the force on A due to
B is shown as F, then in the free-body
diagram of B, the force on B due to A should
be shown as –F.

The following example illustrates the above
procedure :

Example 4.12 See Fig. 4.15. A wooden
block of mass 2 kg rests on a soft horizontal
floor.  When an iron cylinder of mass 25 kg
is placed on top of the block, the floor yields
steadily and the block and the cylinder
together go down with an acceleration of
0.1 m s–2.  What is the action of the block
on the floor (a) before and (b) after the floor
yields ? Take g = 10 m s–2. Identify the
action-reaction pairs in the problem.

Answer

(a) The block is at rest on the floor. Its free-body
diagram shows two forces on the block, the
force of gravitational attraction by the earth
equal to 2 × 10 = 20 N; and the normal force
R of the floor on the block. By the First Law,

the net force on the block must be zero i.e.,
R = 20 N.  Using third law the action of the
block (i.e. the force exerted on the floor by
the block) is equal to 20 N and directed
vertically downwards.

(b) The system (block + cylinder) accelerates
downwards with 0.1 m s-2. The free-body
diagram of the system shows two forces on
the system : the force of gravity due to the
earth (270 N); and the normal force R ′ by the
floor.  Note, the free-body diagram of the
system does not show the internal forces
between the block and the cylinder.  Applying
the second law to the system,

270 – R′    =  27 × 0.1N
                 ie. R′    =  267.3 N

Fig. 4.15

By the third law, the  action  of the system on
the floor is equal to 267.3 N vertically downward.

Action-reaction pairs

For (a): (i) the force of gravity (20 N) on the block
by the earth (say, action); the force of
gravity on the earth by the block
(reaction) equal to 20 N directed
upwards (not shown in the figure).
(ii) the force on the floor by the block
(action); the force on the block by the
floor (reaction).

For (b): (i) the force of gravity (270 N) on the
system by the earth (say, action); the
force of gravity on the earth by the
system (reaction), equal to 270 N,
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directed upwards (not shown in the
figure).
(ii) the force on the floor by the system
(action); the force on the system by the
floor (reaction).  In addition, for (b), the
force on the block by the cylinder and
the force on the cylinder by the block
also constitute an action-reaction pair.

The important thing to remember is that an
action-reaction pair consists of mutual forces
which are always equal and opposite between
two bodies.  Two forces on the same body which
happen to be equal and opposite can never
constitute an action-reaction pair. The force of

gravity on the mass in (a) or (b) and the normal
force on the mass by the floor are not action-
reaction pairs. These forces happen to be equal
and opposite for (a) since the mass is at rest.
They are not so for case (b), as seen already.
The weight of the system is 270 N, while the
normal force R′ is 267.3 N. ⊳

The practice of drawing free-body diagrams is
of great help in solving problems in mechanics.
It allows you to clearly define your system and
consider all forces on the system due to objects
that are not part of the system itself.  A number
of exercises in this and subsequent chapters will
help you cultivate this practice.

SUMMARY

1. Aristotle’s view that a force is necessary to keep a body in uniform motion is wrong.  A
force is necessary in practice to counter the opposing force of friction.

2. Galileo extrapolated simple observations on motion of bodies on inclined planes, and
arrived at the law of inertia.  Newton’s first law of motion is the same law rephrased
thus: “Everybody continues to be in its state of rest or of uniform motion in a straight line,

unless compelled by some external force to act otherwise”.  In simple terms, the First Law
is “If external force on a body is zero, its acceleration is zero”.

3. Momentum (p ) of a body is the product of its mass (m) and velocity (v) :
p  =  m v

4. Newton’s second law of motion :
The rate of change of momentum of a body is proportional to the applied force and takes

place in the direction in which the force acts.  Thus

d

d
k k m 

t
= =

p
F a

where F is the net external force on the body and a its acceleration. We set the constant
of proportionality k = 1 in SI units.  Then

d

d
m

t
= =

p
F a

The SI unit of force is newton : 1 N = 1 kg m s-2.

(a) The second law is consistent with the First Law (F = 0 implies a = 0)
(b) It is a vector equation
(c) It is applicable to a particle, and also to a body or a system of particles, provided  F

is the total external force on the system and a  is the acceleration of the system as
a whole.

(d) F at a point at a certain instant determines a at the same point at that instant.
That is the Second Law is a local law; a at an instant does not depend on the
history of motion.

4. Impulse is the product of force and time which equals change in momentum.
The notion of impulse is useful when a large force acts for a short time to produce a
measurable change in momentum. Since the time of action of the force is very short,
one can assume that there is no appreciable change in the position of the body during
the action of the impulsive force.

6. Newton’s third law of motion:
To every action, there is always an equal and opposite reaction
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In simple terms, the law can be stated thus :
Forces in nature always occur between pairs of bodies.  Force on a body A by body

B is equal and opposite to the force on the body B by A.

Action and reaction forces are simultaneous forces.  There is no cause-effect
relation between action and reaction.  Any of the two mutual forces can be
called action and the other reaction.  Action and reaction act on different
bodies and so they cannot be cancelled out.  The internal action and reaction
forces between different parts of a body do, however, sum to zero.

7. Law of Conservation of Momentum

The total momentum of an isolated system of particles is conserved.  The law
follows from the second and third law of motion.

8. Friction

Frictional force opposes (impending or actual) relative motion between two
surfaces in contact.  It is the component of the contact force along the common
tangent to the surface in contact.  Static friction f

s
 opposes impending relative

motion; kinetic friction f
k
 opposes actual relative motion. They are independent

of the area of contact and satisfy the following approximate laws :

( )
max

f f Rs s s≤ = µ

k
f R

k
= µ

µ
s
 (co-efficient of static friction) and µ

k
 (co-efficient of kinetic friction) are

constants characteristic of the pair of surfaces in contact.  It is found
experimentally that µ

k 
is less than µ

s 
.

POINTS TO PONDER

1. Force is not always in the direction of motion.  Depending on the situation, F
may be along v, opposite to v, normal to v or may make some other angle with
v.  In every case, it is parallel to acceleration.

2. If v = 0 at an instant, i.e. if a body is momentarily at rest, it does not mean that
force or acceleration are necessarily zero at that instant.  For example, when a
ball thrown upward reaches its maximum height, v = 0 but the force continues
to be its weight mg and the acceleration is not zero but g.

3. Force on a body at a given time is determined by the situation at the location of
the body at that time.  Force is not ‘carried’ by the body from its earlier history of
motion.  The moment after a stone is released out of an accelerated train, there is
no horizontal force (or acceleration) on the stone, if the effects of the surrounding
air are neglected.  The stone then has only the vertical force of gravity.

4. In the second law of motion F = m a, F stands for the net force due to all
material agencies external to the body.  a is the effect of the force.  ma should
not be regarded as yet another force, besides F.
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5. The centripetal force should not be regarded as yet another kind of force. It is
simply a name given to the force that provides inward radial acceleration to a
body in circular motion. We should always look for some material force like
tension, gravitational force, electrical force, friction, etc as the centripetal force
in any circular motion.

6. Static friction is a self-adjusting force up to its limit µ
s
 N (f

s 
≤ µ

s
 N).  Do not put

f
s
= µ

s 
N

 
 without being sure that the maximum value of static friction is coming

into play.
7. The familiar equation mg = R for a body on a table is true only if the body is in

equilibrium.  The two forces mg and R can be different (e.g. a body in an
accelerated lift). The equality of mg and R has no connection with the third
law.

8. The terms ‘action’ and ‘reaction’ in the third Law of Motion simply stand for
simultaneous mutual forces between a pair of bodies. Unlike their meaning in
ordinary language, action does not precede or cause reaction.  Action and reaction
act on different bodies.

9. The different terms like ‘friction’, ‘normal reaction’ ‘tension’, ‘air resistance’,
‘viscous drag’, ‘thrust’, ‘buoyancy’, ‘weight’, ‘centripetal force’ all stand for ‘force’
in different contexts.  For clarity, every force and its equivalent terms
encountered in mechanics should be reduced to the phrase ‘force on A by B’.

10. For applying the second law of motion, there is no conceptual distinction between
inanimate and animate objects.  An animate object such as a human also
requires an external  force to accelerate.  For example, without the external
force of friction, we cannot walk on the ground.

11. The objective concept of force in physics should not be confused with the
subjective concept of the ‘feeling of force’.  On a merry-go-around, all parts of
our body are subject to an  inward force,  but we have a feeling of being pushed
outward – the direction of impending motion.

EXERCISES

(For simplicity in numerical calculations, take g = 10 m s-2)
4.1 Give the magnitude and direction of the net force acting on

(a) a drop of rain falling down with a constant speed,
(b) a cork of mass 10 g floating  on water,
(c) a kite skillfully held stationary in the sky,
(d) a car moving with a constant velocity of 30 km/h on a rough road,
(e) a high-speed electron in space far from all material objects, and free of

electric and magnetic fields.

4.2 A  pebble of mass 0.05 kg is thrown vertically upwards.  Give the direction
and magnitude of the net force on the pebble,
(a) during its upward motion,

(b) during its downward motion,
(c) at the highest point where it is momentarily at rest.  Do your answers

change if the pebble was thrown at an angle of 45° with the horizontal
direction?

Ignore air resistance.

4.3 Give  the magnitude and direction of the net force acting on a stone of mass
0.1 kg,
(a) just after it is dropped from the window of a stationary train,
(b) just after it is dropped from the window of a train running at a constant

velocity of 36 km/h,
(c ) just after it is dropped from the window of a train accelerating with 1 m s-2,
(d) lying on the floor of a train which is accelerating with 1 m s-2, the stone

being at rest relative to the train.

Neglect air resistance throughout.
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4.4 One end of a string of length l is connected to a particle of mass m and the
other to a small peg on a smooth horizontal table. If the particle moves in a
circle with speed v the net force on the particle (directed towards the centre)
is :

(i)  T,  (ii) 
l

mv
T

2

− , (iii)  
l

mv
+T

2

, (iv)  0

T is the tension in the string. [Choose the correct alternative].

4.5 A constant retarding force of 50 N is applied to a body of mass 20 kg moving
initially with a speed of 15 m s-1. How long does the body take to stop ?

4.6 A constant force acting on a body of mass 3.0 kg changes its speed from 2.0 m s-1

to   3.5 m s-1 in 25 s.  The direction of the motion of the body remains
unchanged.  What is the magnitude and direction of the force ?

4.7 A body of mass 5 kg is acted upon by two perpendicular forces 8 N and 6 N.
Give the magnitude and direction of the acceleration of the body.

4.8 The driver of a three-wheeler moving with a speed of 36 km/h sees a child
standing in the middle of the road and brings his vehicle to rest in 4.0 s just
in time to save the child. What is the average retarding force on the vehicle ?
The mass of the three-wheeler is 400 kg and the mass of the driver is 65 kg.

4.9 A rocket with a lift-off mass 20,000 kg is blasted upwards with an initial
acceleration of 5.0 m s-2. Calculate the initial thrust (force) of the blast.

4.10 A body of mass 0.40 kg moving initially with a constant speed of 10 m s-1 to
the north is subject to a constant force of 8.0 N directed towards the south
for 30 s.  Take the instant the force is applied to be  t = 0, the position of the
body at that time to be x = 0, and predict its position at  t = –5 s, 25 s, 100 s.

4.11 A truck starts from rest and accelerates uniformly at 2.0 m s-2.  At t = 10 s, a
stone is dropped by a person standing on the top of the truck (6 m high from
the ground). What are the (a) velocity, and (b) acceleration of the stone at t =
11s ?  (Neglect air resistance.)

4.12 A bob of mass 0.1 kg hung from the ceiling of a room by a string 2 m long is
set into oscillation.  The speed of the bob at its mean position is 1 m s-1.
What is the trajectory of the bob if the string is cut when the bob is (a) at one
of its extreme positions, (b) at its mean position.

4.13 A man of mass 70 kg  stands on a weighing scale in a lift which is moving
(a) upwards with a uniform speed of 10 m s-1,
(b) downwards with a uniform acceleration of 5 m s-2,
(c) upwards with a uniform acceleration of 5 m s-2.

What would be the readings on the scale in each case?
(d) What would be the reading if the lift mechanism failed and it hurtled

down freely under gravity ?

4.14 Figure 4.16 shows the position-time graph of a particle of mass 4 kg.  What is
the (a) force on the particle for t < 0, t > 4 s, 0 < t < 4 s? (b) impulse at t = 0 and
t = 4 s ? (Consider one-dimensional motion only).

Fig. 4.16

4.15 Two bodies of masses 10 kg and 20 kg respectively kept on a smooth, horizontal
surface are tied to the ends of a light string. A horizontal force F = 600 N is
applied to (i) A, (ii) B along the direction of string. What is the tension in the
string in each case?
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4.16 Two masses 8 kg and 12 kg are connected at the two ends of a light  inextensible
string that goes over a frictionless pulley.  Find the acceleration of the masses, and
the tension in the string when the masses are released.

4.17 A nucleus is at rest in the laboratory frame of reference.  Show that if it disintegrates
into two smaller nuclei the products must move in opposite directions.

4.18 Two billiard balls each of mass 0.05 kg moving in opposite directions with speed 6 m s-1

collide and rebound with the same speed.  What is the impulse imparted to each ball due
to the other ?

4.19 A shell of mass 0.020 kg is fired by a gun of mass 100 kg.  If the muzzle  speed of the
shell is 80 m s-1, what is the recoil speed of the gun ?

4.20 A batsman deflects a ball by an angle of 45° without changing its initial speed which is
equal to 54 km/h.  What is the impulse imparted to the ball ?  (Mass of the ball is 0.15 kg.)

4.21 A stone of mass 0.25 kg tied to the end of a string is whirled round in a circle of radius
1.5 m with a speed of 40 rev./min in a horizontal plane. What is the tension in  the
string ?  What is the maximum speed with which the stone can be whirled around if
the string can withstand a maximum tension of 200 N ?

4.22 If, in Exercise 4.21, the speed of the stone is increased beyond the maximum permissible
value, and the string breaks suddenly, which of the following correctly describes the
trajectory of the stone after the string breaks :
(a) the stone moves radially outwards,
(b) the  stone flies off tangentially from the instant the string breaks,
(c) the stone flies off at an angle with the tangent whose magnitude depends on the

 speed of the particle ?

4.23 Explain why
(a) a horse cannot pull a cart and run in empty space,
(b) passengers are thrown forward from their seats when a speeding bus stops
     suddenly,
(c) it is easier to pull a lawn mower than to push it,
(d) a cricketer moves his hands backwards while holding a catch.
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CHAPTER FIVE

WORK, ENERGY AND POWER

5.1  INTRODUCTION

The terms ‘work’, ‘energy’ and ‘power’ are frequently used
in everyday language. A farmer ploughing the field, a
construction worker carrying bricks, a student studying for
a competitive examination, an artist painting a beautiful
landscape, all are said to be working. In physics, however,
the word ‘Work’ covers a definite and precise meaning.
Somebody who has the capacity to work for 14-16 hours a
day is said to have a large stamina or energy. We admire a
long distance runner for her stamina or energy. Energy is
thus our capacity to do work. In Physics too, the term ‘energy’
is related to work in this sense, but as said above the term
‘work’ itself is defined much more precisely. The word ‘power’
is used in everyday life with different shades of meaning. In
karate or boxing we talk of ‘powerful’ punches. These are
delivered at a great speed. This shade of meaning is close to
the meaning of the word ‘power’ used in physics. We shall
find that there is at best a loose correlation between the
physical definitions and the physiological pictures these
terms generate in our minds. The aim of this chapter is to
develop an understanding of these three physical quantities.
Before we proceed to this task, we need to develop a
mathematical prerequisite, namely the scalar product of two
vectors.

5.1.1 The Scalar Product

We have learnt about vectors and their use in Chapter 3.
Physical quantities like displacement, velocity, acceleration,
force etc. are vectors. We have also learnt how vectors are
added or subtracted. We now need to know how vectors are
multiplied. There are two ways of multiplying vectors which
we shall come across : one way known as the scalar product
gives a scalar from two vectors and the other known as the
vector product produces a new vector from two vectors. We
shall look at the vector product in Chapter 6. Here we take
up the scalar product of two vectors. The scalar product or
dot product of any two vectors A and B, denoted as A.B (read

5.1 Introduction

5.2 Notions of work and kinetic

energy : The work-energy
theorem

5.3 Work

5.4 Kinetic energy

5.5 Work done by a variable force

5.6 The work-energy theorem for

a variable force

5.7 The concept of potential

energy

5.8 The conservation of

mechanical energy

5.9 The potential energy of a

spring

5.10 Power

5.11 Collisions

Summary

Points to ponder

Exercises
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A dot B) is defined as

A.B = A B cos θ (5.1a)

where θ  is the angle between the two vectors as
shown in Fig. 5.1(a). Since A, B and cos θ are
scalars, the dot product of A and B is a scalar
quantity. Each vector, A and B, has a direction
but their scalar product does not have a
direction.

From Eq. (5.1a), we have

A.B  = A (B cos θ )
       = B (A cos θ )

Geometrically, B cos θ is the projection of B onto
A in Fig.5.1 (b) and A cos θ  is the projection of A
onto B in Fig. 5.1 (c). So, A.B is the product of
the magnitude of A and the component of B along
A. Alternatively, it is the product of the
magnitude of B and the component of A along B.

Equation (5.1a) shows that the scalar product
follows the commutative law :

A.B = B.A

Scalar product obeys the distributive

law:

A. (B + C) = A.B + A.C

Further, A. (λ B) = λ (A.B)

where λ is a real number.

The proofs  of the above equations are left to
you as an exercise.

For unit vectors ɵ ɵ ɵi, j,k  we have

ɵ ɵ ɵ ɵ ɵ ɵi i j j k k⋅ = ⋅ = ⋅ =1

ɵ ɵ ɵ ɵ ɵ ɵi j j k k i⋅ = ⋅ = ⋅ = 0

Given two vectors

A i j k= + +A A Ax y z
ɵ ɵ ɵ

B i j k= + +B B Bx y z
ɵ ɵ ɵ

their scalar product is

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ. .
x y z x y zA A A B B B= + + + +A B i j k i j k

 = + +A B A B A Bx x y y z z (5.1b)

From the definition of scalar product and
(Eq. 5.1b) we have :

( i ) x x y y z zA A A A A A= + +A A.

Or, A A A A
2

x

2

y

2

z

2= + + (5.1c)

since A.A = |A ||A| cos 0 = A2.
(ii) A.B = 0, if A and B are perpendicular.

Example 5.1  Find the angle between force

F = (3 +4 -5 )ˆ ˆ ˆi j k unit and displacement

d = (5 + 4 +3 )ˆ ˆ ˆi j k unit. Also find the

projection of F on d.

Answer F.d = x x y y z zF d F d F d+ +
= 3 (5) + 4 (4) + (– 5) (3)
= 16 unit

Hence F.d = cosF d θ  = 16 unit

Now F.F = 2 2 2 2  x y zF F F F= + +
= 9 + 16 + 25
= 50 unit

and d.d = d2 = 2 2 2  x y zd d d+ +
= 25 + 16 + 9
= 50 unit

∴  cos θ = 
16 16

= = 0.32
5050 50

,

θ = cos–1  0.32

Fig. 5.1 (a) The scalar product of two vectors A and B is a scalar : A.B = A B cos θ.  (b) B cos θ is the projection

of B onto A. (c) A cos θ is the projection of A onto B.

u

2024-25



WORK, ENERGY AND POWER 73

⊳

to be proportional to the speed of the drop
but is otherwise undetermined.  Consider
a drop of mass 1.00 g falling from a height
1.00 km.  It hits the ground with a speed of
50.0 m s-1.  (a) What is the work done by the
gravitational force ? What is the work done
by the unknown resistive force?

Answer (a) The change in kinetic energy of the
drop is

21
0

2
K m v∆ = −

=
1

2
10 50 50-3× × ×

= 1.25 J

where we have assumed that the drop is initially
at rest.

Assuming that g is a constant with a value
10 m/s2, the work done by the gravitational force
is,

W
g 
= mgh

      = 10-3 ×10 ×103

      = 10.0 J

(b) From the work-energy theorem

g rK  W W∆ =  +
where W

r
  is the work done by the resistive force

on the raindrop.  Thus
W

r 
 = ∆K − Wg

     = 1.25 −10
      = − 8.75 J

is negative. ⊳

5.3  WORK

As seen earlier, work is related to force and the
displacement over which it acts.  Consider a
constant force F acting on an object of mass m.
The object undergoes a displacement d in the
positive x-direction as shown in Fig. 5.2.

Fig. 5.2 An object undergoes a displacement d

under the influence of the force F.

5.2 NOTIONS OF WORK AND KINETIC
ENERGY: THE WORK-ENERGY THEOREM

The following relation for rectilinear motion under
constant acceleration a has been encountered
in Chapter 3,

      v2 − u2 = 2 as (5.2)

where u and v  are the initial and final speeds
and s the distance traversed.  Multiplying both
sides by m/2, we have

2 21 1

2 2
mv mu mas Fs− = = (5.2a)

where the last step follows from Newton’s Second
Law. We can generalise Eq. (5.2) to three
dimensions by employing vectors

v2 − u2 = 2 a.d

Here a and d are acceleration and displacement
vectors of the object respectively.
Once again multiplying both sides by m/2 , we obtain

2 21 1

2 2
mv mu m − = =a.d F.d (5.2b)

The above equation provides a motivation for
the definitions of work and kinetic energy. The
left side of the equation is the difference in the
quantity ‘half the mass times the square of the
speed’ from its initial value to its final value. We
call each of these quantities the ‘kinetic energy’,
denoted by K. The right side is a product of the
displacement and the component of the force
along the displacement.  This quantity is called
‘work’ and is denoted by W.  Eq. (5.2b) is then

K
f 
−  K

i 
= W (5.3)

where K
i
  and K

f
  are respectively the initial and

final kinetic energies of the object. Work refers
to the force and the displacement over which it
acts. Work is done by a force on the body over
a certain displacement.

Equation (5.2) is also a special case of the
work-energy (WE) theorem : The change in
kinetic energy of a particle is equal to the
work done on it by the net force. We shall
generalise the above derivation to a varying force
in a later section.

Example 5.2  It is well known that a
raindrop falls under the influence of the
downward gravitational force and the
opposing resistive force.  The latter is known
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⊳

Table 5.1   Alternative Units of Work/Energy in J

Example 5.3  A cyclist comes to a skidding
stop in 10 m.  During this process, the force
on the cycle due to the road is 200 N and
is directly opposed to the motion.  (a) How
much work does the road do on the cycle ?
(b) How much work does the cycle do on
the road ?

Answer  Work done on the cycle by the road is

the work done by the stopping (frictional) force

on the cycle due to the road.

(a) The stopping force and the displacement make

an angle of 180o  (π rad) with each other.

Thus, work done by the road,

W
r
 =  Fd cosθ

     =  200 × 10 × cos π
      = – 2000 J

It is this negative work that brings the cycle

to a halt in accordance with WE theorem.

(b) From Newton’s Third Law an equal and

opposite force acts on the road due to the

cycle. Its magnitude is 200 N. However, the

road undergoes no displacement.  Thus,

work done by cycle on the road is zero.            ⊳

The lesson of Example 5.3 is that though the

force on a body A exerted by the body B is always

equal and opposite to that on B by A (Newton’s

Third Law); the work done on A by B is not

necessarily equal and opposite to the work done

on B by A.

5.4  KINETIC ENERGY

As noted earlier, if an object of mass m has

velocity v, its kinetic energy K  is

2K m mv
1 1= =
2 2

v v.                        (5.5)

Kinetic energy is a scalar quantity. The kinetic

energy of an object is a measure of the work an

The work done by the force is defined to be

the product of component of the force in the

direction of the displacement and the

magnitude of this displacement.  Thus

W = (F cos θ )d = F.d (5.4)

We see that if there is no displacement, there

is no work done even if the force is large.  Thus,

when you push hard against a rigid brick wall,

the force you exert on the wall does no work.  Yet

your muscles are alternatively contracting and

relaxing and internal energy is being used up

and you do get tired.  Thus, the meaning of work

in physics is different from its usage in everyday

language.

No work is done if :

(i) the displacement is zero as seen in the

example above. A weightlifter holding a 150

kg mass steadily on his shoulder for 30 s

does no work on the load during this time.

(ii) the force is zero.  A block moving on a smooth

horizontal table is not acted upon by a

horizontal force (since there is no friction), but

may undergo a large displacement.

(iii) the force and displacement are mutually

perpendicular. This is so since, for θ = π/2 rad

(= 90o), cos (π/2) = 0.  For the block moving on

a smooth horizontal table, the gravitational

force mg  does no work since it acts at right

angles to the displacement. If we assume that

the moon’s orbits around the earth is

perfectly circular then the earth’s

gravitational force does no work.  The moon’s

instantaneous displacement is tangential

while the earth’s force is radially inwards and

θ  = π/2.

Work can be both positive and negative.  If θ  is

between 0o and 90o, cos θ  in Eq. (5.4) is positive.

If  θ  is  between 90o and 180o,   cos θ  is negative.

In many examples the frictional force opposes

displacement and θ  = 180o. Then the work done

by friction is negative (cos 180o = –1).

From Eq. (5.4) it is clear that  work and energy

have the same dimensions,  [ML2T–2]. The SI unit

of these is joule (J), named after the famous British

physicist James Prescott Joule  (1811-1869). Since

work and energy are so widely used as physical

concepts, alternative units abound and some of

these are listed in Table 5.1.
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⊳

object can do by the virtue of its motion. This

notion has been intuitively known for a long time.

The kinetic energy of a fast flowing stream

has been used to grind corn. Sailing

ships employ the kinetic energy of the wind. Table

5.2 lists the kinetic energies for various

objects.

Example 5.4  In a ballistics demonstration
a police officer fires a bullet of mass 50.0 g
with speed 200 m s-1 (see Table 5.2) on soft
plywood of thickness 2.00 cm.  The bullet
emerges with only 10% of its initial kinetic
energy.  What is the emergent speed of the
bullet ?

Answer  The initial kinetic energy of the bullet
is mv2/2 = 1000 J.  It has a final kinetic energy
of 0.1×1000 = 100 J.  If v

f
  is the emergent speed

of the bullet,

1

2
=mv f

2
100 J

kg 05.0

 J 1002 ×=fv

                =  63.2 m s–1

The speed is reduced by approximately 68%
(not 90%).                                                                      ⊳

5.5  WORK DONE BY A VARIABLE FORCE

A constant force is rare.  It is the variable force,
which is more commonly encountered.  Fig. 5.3
is a plot of a varying force in one dimension.

If the displacement ∆x is small, we can take
the force F (x)  as approximately constant and
the work done is then

∆W =F (x) ∆x

Table 5.2  Typical kinetic energies (K)

This is illustrated in Fig. 5.3(a).  Adding
successive rectangular areas in Fig. 5.3(a) we
get the total work done as

( )∑ ∆≅
f

i

x

x

xxFW (5.6)

where the summation is from the initial position
x

i
 
 
to the final position x

f
.

If the displacements are allowed to approach
zero, then the number of terms in the sum
increases without limit, but the sum approaches
a definite value equal to the area under the curve
in Fig. 5.3(b). Then the work done is

          = ( )∫ F x x
x

x

i

f

d (5.7)

where ‘lim’ stands for the limit of the sum when
∆x  tends to zero.  Thus, for a varying force
the work done can be expressed as a definite
integral of force over displacement (see also
Appendix 3.1).

limW =
lim

x∆ →
( )∑ ∆

f

i

x

x

xxF
0

Fig. 5.3(a)
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Fig. 5.3 (a) The shaded rectangle represents the

work done by the varying force F(x), over

the small displacement ∆x,  ∆W = F(x) ∆x.

(b) adding the areas of all the rectangles we

find that for ∆x → 0, the area under the curve

is exactly equal to the work done by F(x).

Example 5.5  A woman pushes a trunk on
a railway platform which has a rough
surface.  She applies a force of 100 N over a
distance of 10 m.  Thereafter, she gets
progressively tired and her applied force
reduces linearly with distance to 50 N.  The
total distance through which the trunk has
been moved is 20 m.  Plot the force applied
by the woman and the frictional force, which
is 50 N versus displacement.  Calculate the
work done by the two forces over 20 m.

Answer

Fig. 5.4 Plot of the force F applied by the woman and

the opposing frictional force f versus

displacement.

The plot of the applied force is shown in Fig.
5.4.  At x  = 20 m, F  = 50 N (≠ 0).  We are given
that the frictional force f is |f|= 50 N. It opposes
motion and acts in a direction opposite to F.  It
is therefore, shown on the negative side of the
force axis.

The work done by the woman is

W
F 
→ area of the rectangle ABCD + area of

the trapezium CEID

( )WF = × + + ×100 10
1

2
100 50 10

       = 1000 + 750
      = 1750 J

The work done by the frictional force is

W
f 
→ area of the rectangle AGHI
W

f
  = (−50) × 20

      = − 1000 J
The area on the negative side of the force axis
has a negative sign. ⊳

5.6 THE WORK-ENERGY THEOREM FOR A
VARIABLE FORCE

We are now familiar with the concepts of work
and kinetic energy to prove the work-energy
theorem for a variable force.  We confine
ourselves to one dimension. The time rate of
change of kinetic energy is

d

d

d

d

K

t t
m v= 





1

2
2

      
d

d

v
m v

t
=

      v F=  (from Newton’s Second Law)

      
d

d

x
F

t
=

Thus
             dK = Fdx

Integrating from the initial position  (x 
i
 ) to final

position ( x 
f
 ), we have

d dK F x
K

K

x

x

i

f

i

f

∫ ∫=

where,  K
i
  and K 

f
  are the initial and final kinetic

energies corresponding to x
 i 
 and

 
 x 

f
.

or K K F xf i

x

x

i

f

− = ∫ d  (5.8a)

From Eq. (5.7), it follows that

           K
f
 −  K

i  
= W (5.8b)

Thus, the WE theorem is proved for a variable

force.

While the WE theorem is useful in a variety of

problems, it does not, in general, incorporate the

complete dynamical information of Newton’s

second law. It is an integral form of Newton’s

second law. Newton’s second law is a relation

between acceleration and force at any instant of

time. Work-energy theorem involves an integral

over an interval of time. In this sense, the temporal

(time) information contained in the statement of

Newton’s second law is ‘integrated over’ and is
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not available explicitly. Another observation is that
Newton’s second law for two or three dimensions
is in vector form whereas the work-energy
theorem is in scalar form. In the scalar form,
information with respect to directions contained
in Newton’s second law is not present.

Example 5.6  A block of mass m  = 1 kg,
moving on a horizontal surface with speed
v

i
 = 2 m s–1 enters a rough patch ranging

from x = 0.10 m to x = 2.01 m. The retarding
force F

r
 on the block in this range is inversely

proportional  to x  over this range,

F
k

x
r = −

 for 0.1 < x < 2.01 m

= 0 for x < 0.1m and x > 2.01 m
where k = 0.5 J.  What is the final kinetic
energy and speed v

f
  of the block as it

crosses this patch ?

Answer  From Eq. (5.8a)

K K
k

x
xf i

0.1

2.01

= +
−( )

∫ d

( ) 2.01

0.1

1
ln

2

2
imv k x= −

( )1
ln 2.01/0.1

2

2
imv k  = −

= 2 − 0.5 ln (20.1)

= 2 − 1.5  = 0.5 J

1
sm  1/2

−== mKv ff

Here, note that ln is a symbol for the natural
logarithm to the base e and not the logarithm to
the base 10 [ln X = log

e
 X = 2.303 log

10
 X]. ⊳

5.7  THE CONCEPT OF POTENTIAL ENERGY

The word potential suggests possibility or
capacity for action. The term potential energy
brings to one’s mind ‘stored’ energy. A stretched
bow-string possesses potential energy. When it
is released, the arrow flies off at a great speed.
The earth’s crust is not uniform, but has
discontinuities and dislocations that are called
fault lines. These fault lines in the earth’s crust

are like ‘compressed springs’. They possess a
large amount of potential energy. An earthquake
results when these fault lines readjust. Thus,
potential energy is the ‘stored energy’ by virtue
of the position or configuration of a body. The
body left to itself releases this stored energy in
the form of kinetic energy. Let us make our notion
of potential energy more concrete.

The gravitational force on a ball of mass m is
mg . g may be treated as a constant near the earth
surface. By ‘near’ we imply that the height h  of
the ball above the earth’s surface is very small
compared to the earth’s radius R

E 
(h <<R

E
) so that

we can ignore the variation of g near the earth’s

surface*. In what follows we have taken the

upward direction to be positive. Let us raise the
ball up to a height h. The work done by the external
agency against the gravitational force is mgh. This
work gets stored as potential energy.
Gravitational potential energy of an object, as a
function of the height h, is denoted by V(h) and it
is the negative of work done by the gravitational
force in raising the object to that height.

V (h) = mgh
If h is taken as a variable, it is easily seen that
the gravitational force F equals the negative of
the derivative of V(h) with respect to h. Thus,

d

d
F V(h) m g

h
= − = −

The negative sign indicates that the
gravitational force is downward. When released,
the ball comes down with an increasing speed.
Just before it hits the ground, its speed is given
by the kinematic relation,

v2 = 2gh
This equation can be written as

2

1
m v2 = m g h

which shows that the gravitational potential
energy of the object at height h, when the object
is released, manifests itself as kinetic energy of
the object on reaching the ground.

Physically, the notion of potential energy is
applicable only to the class of forces where work
done against the force gets ‘stored up’ as energy.
When external constraints are removed, it
manifests itself as kinetic energy. Mathematically,
(for simplicity, in one dimension) the potential

* The variation of g with height is discussed in Chapter 7 on Gravitation.
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energy V(x) is defined if the force F(x) can be
written as

( ) d

d

V
F x

x
= −

This implies that

F(x) x V V V
x

x

i f

V

V

i

f

i

f

d d∫ ∫= − = −

The work done by a conservative force such as

gravity depends on the initial and final positions

only. In the previous chapter we have worked

on examples dealing with inclined planes. If an

object of mass m is released from rest, from the

top of a smooth (frictionless) inclined plane of

height h, its speed at the bottom

is gh2 irrespective of the angle of inclination.

Thus, at the bottom of the inclined plane it

acquires a kinetic energy, mgh. If the work done

or the kinetic energy did depend on other factors

such as the velocity or the particular path taken

by the object, the force would be called non-

conservative.
The  dimensions  of  potential  energy are

[ML2T –2] and the unit is joule (J), the same as
kinetic energy or work. To reiterate, the change
in potential energy, for a conservative force,
∆V  is equal to the negative of the work done by
the force

∆V = − F(x) ∆x (5.9)

In the example of the falling ball considered in

this section we saw how potential energy was

converted to kinetic energy. This hints at an

important principle of conservation in mechanics,

which we now proceed to examine.

5.8 THE CONSERVATION OF MECHANICAL
ENERGY

For simplicity we demonstrate this important

principle for one-dimensional motion. Suppose

that a body undergoes displacement ∆x under

the action of a conservative force F. Then from

the WE theorem we have,
∆K =  F(x) ∆x

If the force is conservative, the potential energy
function V(x) can be defined such that

− ∆V  =  F(x) ∆x

The above equations imply that
∆K + ∆V = 0
∆(K + V ) = 0 (5.10)

which means that K + V, the sum of the kinetic

and potential energies of the body is a constant.

Over the whole path, x
i 
to x

f
, this means that

K
i
 + V(x

i
) = K

f
  + V(x

f
) (5.11)

The quantity K +V(x), is called the total

mechanical energy of the system.  Individually

the kinetic energy K  and the potential energy

V(x) may vary from point to point,  but the sum

is a constant. The aptness of the term

‘conservative force’ is now clear.

Let us consider some of  the definitions of a

conservative force.

l A force F(x) is conservative if it can be derived

from a scalar quantity V(x) by the relation
given by Eq. (5.9). The three-dimensional
generalisation requires the use of a vector
derivative, which is outside the scope of this
book.

l The work done by the conservative force
depends only on the end points. This can be
seen from the relation,

W = K
f
 – K

i
 = V (x

i
) – V(x

f
)

which depends on the end points.
l A third definition states that the work done

by this force in a closed path is zero.  This is
once  again apparent from Eq. (5.11) since
x

i
  = x

f .

Thus, the principle of conservation of total
mechanical energy can be stated as

The total mechanical energy of a system is
conserved if the forces, doing work on it, are
conservative.

The above discussion can be made more
concrete by considering the example of the
gravitational force once again and that of the
spring force in the next section. Fig. 5.5 depicts
a ball of mass m being dropped from a cliff of
height H.

Fig. 5.5 The conversion of potential energy to kinetic

energy for a ball of mass m dropped from a

height H.
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⊳

The total mechanical energies E
0
, E

h
, and E

H

of the ball at the indicated heights zero (ground
level), h and H, are

E
H
   = mgH                             (5.11 a)

1

2

2
h hE mgh mv= + (5.11 b)

E
0     

= (1/2) mv
f
2 (5.11 c)

The constant force is a special case of a spatially
dependent force F(x). Hence, the mechanical
energy is conserved.  Thus

E
H
 = E

0

or,
1

2

2
fmgH mv=

2fv gH=
a result that was obtained in section 5.7 for a
freely falling body.
Further,

E
H
 = E

h

which implies,

v g(H h)h
2

2= −               (5.11 d)

and is a familiar result from kinematics.
At the height H, the energy is purely potential.

It is partially converted to kinetic at height h  and
is fully kinetic at ground level. This illustrates
the conservation of mechanical energy.

Example 5.7  A bob of mass m is suspended
by a light string of length L .  It is imparted a
horizontal velocity v

o
 at the lowest point A

such that it completes a semi-circular
trajectory in the vertical plane with the string
becoming slack only on reaching the topmost
point, C.  This is shown in Fig. 5.6. Obtain an
expression for (i) v

o
; (ii)  the speeds at points

B and C; (iii) the ratio  of  the kinetic energies
(K

B
/K

C
) at B and C. Comment on the nature

of the trajectory of the bob after it reaches
the point C.

Fig. 5.6

Answer  (i)  There are two external forces on
the bob : gravity and the tension (T ) in the

string. The latter does no work since the
displacement of the bob is always normal to the
string. The potential energy of the bob is thus
associated with the gravitational force only. The

total mechanical energy E  of the system is
conserved.  We take the potential energy of the
system to be zero at the lowest point A. Thus,
at A :

E mv0

2=
1

2
(5.12)

       [Newton’s Second Law]

where T
A
 is the tension  in the string at A. At the

highest point C, the string slackens, as the
tension in the string (T

C
) becomes zero.

Thus, at C

2mgLmvE c += 2

2

1
(5.13)

L

mv
mg

2

c=     [Newton’s Second Law] (5.14)

where v
C
 is the speed at C. From Eqs. (5.13)

and (5.14)

5
E mgL

2
=

Equating this to the energy at A

5

2 2

2
0

m
mgL v=

or, 50v gL=

(ii) It is clear from Eq. (5.14)

gLvC =

At B, the energy is

1

2

2
BE mv mgL= +

Equating this to the energy at A and employing

the result from (i), namely gLv2

0 5= ,

1 1

2 2

2 2
B 0mv mgL mv+ =

5

2
m g L=
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gLvB 3=∴

(iii) The ratio of the kinetic energies at B and C
  is :

 
1

3
  

2

1
2

1

  ==
2
C

2
B

C

B

mv

mv

K

K

At point C, the string becomes slack and the
velocity of the bob is horizontal and to the left.  If
the connecting string is cut at this instant, the
bob will execute a projectile motion with
horizontal projection akin to a rock kicked
horizontally from the edge of a cliff.  Otherwise
the bob will continue on its circular path and
complete the revolution.             ⊳

5.9  THE POTENTIAL ENERGY OF A SPRING

The spring force is an example of a variable force
which is conservative. Fig. 5.7 shows a block
attached to a spring and resting on a smooth
horizontal surface.  The other end of the spring
is attached to a rigid wall. The spring is light
and may be treated as massless.  In an ideal
spring, the spring force F

s
  is proportional to

x where x  is the displacement of the block from
the equilibrium position. The displacement could
be either positive [Fig. 5.7(b)] or negative
[Fig. 5.7(c)].  This force law for the spring is called
Hooke’s law and is mathematically stated as

F
s
 =  − kx

The constant k is called the spring constant.  Its
unit is N m-1.  The spring is said to be stiff if k is
large and soft if k is small.

Suppose that we pull the block outwards as in
Fig. 5.7(b). If the extension is x

m
, the work done by

the spring force is

W F  xs s

0

xm

= ∫ d     = − ∫ kx x
0

xm

d

2

2
mx k−=     (5.15)

This expression may also be obtained by
considering the area of the triangle as in
Fig. 5.7(d).  Note that the work done by the
external pulling force F is positive since it
overcomes the spring force.

2

2
mx k

W += (5.16)

Fig. 5.7 Illustration of the spring force with a block

attached to the free end of the spring.

(a) The spring force F
s
 is zero when the

displacement x  from the equilibrium position

is zero. (b) For the stretched spring x > 0

and F
s  

< 0 (c) For the compressed spring

x < 0 and  F
s
 > 0.(d) The plot of F

s
  versus x.

The area of the shaded triangle represents

the work done by the spring force. Due to the

opposing signs of Fs and x, this work done is

negative, W kx /s m

2= − 2 .

The same is true when the spring is
compressed with a displacement x

c
 (< 0).  The

spring force does work 2/ 2
cs kxW −=  while the
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Fig. 5.8 Parabolic plots of the potential energy V and

kinetic energy K of a block attached to a

spring obeying Hooke’s law. The two plots

are complementary, one decreasing as the

other increases. The total mechanical

energy E = K + V remains constant.

⊳

external force F does work + kxc

2
/ 2 . If the block

is moved from an initial displacement x
i
  to a

final displacement x
f
 , the work done by the

spring force W
s
 is

  W k x x 
k x k x

s

x

x

i f

i

f

= − = −∫ d     
2 2

2 2            
(5.17)

Thus the work done by the spring force depends
only on the end points.  Specifically, if the block
is pulled from x

i
  and allowed to return to x

i
 ;

      W k x x       
k x k x

 s
i i

x

x

i

i

= − = −∫ d     
2 2

2 2

       = 0 (5.18)
The work done by the spring force in a cyclic
process is zero.  We have explicitly demonstrated
that the spring force (i) is position dependent
only as first stated by Hooke, (F

s
 = − kx); (ii)

does work which only depends on the initial and
final positions, e.g. Eq. (5.17).  Thus, the spring
force is a conservative force.

We define the potential energy V(x) of the spring
to be zero when block and spring system is in the
equilibrium position.  For an extension (or
compression) x  the above analysis suggests that

V(x)
kx 2

=
2

(5.19)

You may easily verify that − dV/dx = − k x, the
spring force.  If the block of mass m in Fig. 5.7 is
extended to x

m
 and released from rest, then its

total mechanical energy at any arbitrary point x,
where x lies between – x

m 
 and + x

m,
 will be given by

222
m v mx kx k

2

1

2

1

2

1 +=

where we have invoked the conservation of
mechanical energy.  This suggests that the speed
and the kinetic energy will be maximum at the
equilibrium position, x = 0, i.e.,

2
m

2
m x k  v m

2

1

2

1 =

where v
m
 is the maximum speed.

or mm x 
m

k
v =

Note that k/m has the dimensions of [T-2] and
our equation is dimensionally correct. The
kinetic energy gets converted to potential energy

and vice versa, however, the total mechanical
energy remains constant. This is graphically
depicted in Fig. 5.8.

Example 5.8  To simulate car accidents, auto
manufacturers study the collisions of moving
cars with mounted springs of different spring
constants.  Consider a typical simulation with
a car of mass 1000 kg moving with a speed
18.0 km/h on a smooth road and colliding
with a horizontally mounted spring of spring
constant 5.25 × 103 N m–1. What is the
maximum compression of the spring ?

Answer   At maximum compression the kinetic
energy of the car is converted entirely into the
potential energy of the spring.

The kinetic energy of the moving car is

K mv2=
1

2

    
5510

2

1 3 ×××=

            K  = 1.25 × 104 J

where we have converted 18 km h–1 to 5 m s–1  [It is
useful to remember that 36 km h–1 = 10 m s–1].
At maximum compression x

m
, the potential

energy V of the spring is equal to the kinetic
energy K of the moving car from the principle of
conservation of mechanical energy.

2
mx k  V

2

1=
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⊳

                = 1.25 × 104 J
We obtain

x
m
 = 2.00 m

We note that we have idealised the situation.
The spring is considered to be massless. The
surface has been considered to possess
negligible friction. ⊳

We conclude this section by making a few
remarks on conservative forces.

(i) Information on time is absent from the above

discussions. In the example considered

above, we can calculate the compression, but
not the time over which the compression

occurs.  A solution of Newton’s Second Law

for this system is required for temporal
information.

(ii) Not all forces are conservative. Friction, for

example, is a non-conservative force. The
principle of conservation of energy will have

to be modified in this case. This is illustrated

in Example 5.9.
(iii) The zero of the potential energy is arbitrary.

It is set according to convenience.  For the

spring force we took V(x) = 0, at x = 0, i.e. the
unstretched spring had zero potential

energy.  For the constant gravitational force
mg, we took V = 0  on the earth’s surface.  In

a later chapter we shall see that for the force

due to the universal law of gravitation, the
zero is best defined at an infinite distance

from the gravitational source. However, once

the zero of the potential energy is fixed in a
given discussion, it must be consistently

adhered to throughout the discussion. You

cannot change horses in midstream !

Example 5.9   Consider Example 5.8 taking
the coefficient of friction, µ, to be 0.5 and
calculate the  maximum compression of the
spring.

Answer  In presence of friction, both the spring

force and the frictional force act so as to oppose

the compression of the spring as shown in

Fig. 5.9.

We invoke the work-energy theorem, rather

than the conservation of mechanical energy.

The change in kinetic energy is

Fig. 5.9  The forces acting on the car.

∆K  = K
f
 − K

i 

2v m   
2

1
0 −=

The work done by the net force is

1

2
2
m mW   kx   m g x= − − µ

Equating we have

1 1

2 2
2 2

m mm v   k x  m g x= + µ

Now  µmg  = 0.5 × 103 × 10 = 5 × 103 N (taking
g =10.0 m s-2). After rearranging the above
equation we obtain the following quadratic
equation in the unknown x

m
.

22 2
m mk x m g x m v 0+ − =µ

where we take the positive square root since
x

m
 is positive. Putting in numerical values we

obtain

x
m
  = 1.35 m

which, as expected, is less than the result in
Example 5.8.

If the two forces on the body consist of a
conservative force F

c
 and a non-conservative

force  F
nc
 , the conservation of mechanical energy

formula will have to be modified. By the WE
theorem

(F
c
+ F

nc
) ∆x = ∆K

But     F
c
 ∆x = − ∆V

Hence,             ∆(K + V) = F
nc 

∆x

                       ∆E    = F
nc 

∆x

where E  is the total mechanical energy. Over
the path this assumes the form

E
f
 −−−−− E

i
  = W

nc

where W
nc

  is the total work done by the
non-conservative forces over the path. Note that
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Our electricity bills carry the energy
consumption in units of kWh.  Note that kWh is
a unit of energy and not of power.

Example 5.10  An elevator can carry a
maximum load of 1800 kg (elevator +
passengers) is moving up with a constant
speed of 2 m s–1. The frictional force opposing
the motion is 4000 N. Determine the
minimum power delivered by the motor to
the elevator in watts as well as in horse
power.

Answer  The downward force on the elevator is

F = m g + F
f
 = (1800 × 10) + 4000 = 22000 N

The motor must supply enough power to balance
this force.  Hence,

P = F. v = 22000 × 2 = 44000 W = 59 hp         ⊳

5.11  COLLISIONS

In physics we study motion (change in position).
At the same time, we try to discover physical
quantities, which do not change in a physical
process. The laws of momentum and energy
conservation are typical examples. In this
section we shall apply these laws to a commonly
encountered phenomena, namely collisions.
Several games such as billiards, marbles or
carrom involve collisions.We shall study the
collision of two masses in an idealised form.

Consider two masses m
1
 and m

2
.  The particle

m
1
 is moving with speed v

1i 
, the subscript ‘i’

implying initial. We can cosider m
2
  to be at rest.

No loss of generality is involved in making such
a selection. In this situation the  mass m

1

collides  with  the stationary  mass m
2
  and  this

is depicted in  Fig. 5.10.

Fig. 5.10 Collision of mass m
1
, with a stationary mass m

2
.

The masses m
1
 and m

2
 fly-off in different

directions.  We shall see that there are
relationships, which connect the masses, the
velocities and the angles.

u

unlike the conservative force, W
nc  

depends on
the particular path i  to  f. ⊳

5.10  POWER

Often it is interesting to know not only the work
done on an object, but also the rate at which
this work is done. We say a person is physically
fit if he not only climbs four floors of a building
but climbs them fast. Power is defined as the
time rate at which work is done or energy is
transferred.

The average power of a force is defined as the
ratio of the work, W, to the total time t taken

P
W

t
av =

The instantaneous power is defined as the
limiting value of the average power as time
interval approaches zero,

d

d

W
P

t
= (5.20)

The work dW done by a force F for a displacement
dr is dW = F.dr.  The instantaneous power can
also be expressed as

d

d
P

t
= F.

r

= F.v (5.21)

where v is the instantaneous velocity when the
force is F.

Power, like work and energy, is a scalar
quantity.  Its dimensions are [ML2T–3]. In the SI,
its unit is called a watt (W).  The watt is 1 J s–1.
The unit of power is named after James Watt,
one of the innovators of the steam engine in the
eighteenth century.

There is another unit of power, namely the
horse-power (hp)

1 hp = 746 W
This unit is still used to describe the output of
automobiles, motorbikes, etc.

We encounter the unit watt when we buy
electrical goods such as bulbs, heaters and
refrigerators.  A 100 watt bulb which is on for 10
hours uses 1 kilowatt hour (kWh) of energy.

100 (watt) × 10 (hour)
= 1000 watt hour
=1 kilowatt hour (kWh)
= 103 (W) × 3600 (s)
= 3.6 × 106 J
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5.11.1  Elastic and  Inelastic Collisions

In all collisions the total linear momentum is
conserved; the initial momentum of the system
is equal to the final momentum of the system.
One can argue this as follows.  When two objects
collide, the mutual impulsive forces acting over
the collision time ∆t cause a change in their
respective momenta :

∆p
1 
= F

12  
∆t

∆p
2 
= F

21  
∆t

where F
12

 is  the force exerted on the first particle
by the second particle. F

21 
is likewise the force

exerted on the second particle by the first particle.
Now from Newton’s third law, F

12
 = − F

21
.  This

implies

∆p
1 
+ ∆p

2 
=  0

The above conclusion is true even though the
forces vary in a complex fashion during the
collision time ∆t. Since the third law is true at
every instant, the total impulse on the first object
is equal and opposite to that on the second.

On the other hand, the total kinetic energy of
the system is not necessarily conserved. The
impact and deformation during collision may
generate heat and sound. Part of the initial kinetic
energy is transformed into other forms of energy.
A useful way to visualise the deformation during
collision is in terms of a ‘compressed spring’. If
the ‘spring’ connecting the two masses regains
its original shape without loss in energy, then
the initial kinetic energy is equal to the final
kinetic energy but the kinetic energy during the
collision time ∆t is not constant. Such a collision
is called an elastic collision. On the other hand
the deformation may not be relieved and the two
bodies could move together after the collision. A
collision in which the two particles move together
after the collision is called a completely inelastic
collision. The intermediate case where the
deformation is partly relieved and some of the
initial kinetic energy is lost is more common and
is appropriately called an inelastic collision.

5.11.2  Collisions in One Dimension

Consider first a completely inelastic collision
in one dimension. Then,  in Fig. 5.10,

 θ 
1
 = θ 

2
 = 0

 m
1
v

1i
 = (m

1
+m

2
)v

f  
  (momentum conservation)

 
1

1

1 2

f i

m
v v

m m
=

+                             (5.22)

The loss in kinetic energy on collision is

2 2

1 1 2

1 1

2 2
1i fK m v m m v∆ = − +( )

    

2

2 21

1 1 1

1 2

1 1

2 2
i i

m
m v v

 m m
= −

+
    [using Eq. (5.22)]

= −
+











1

2
11 1

2 1

1 2

m v
m

m m
i

21 2
1

1 2

1

2
i

m m
v

m m
=

+

which is a positive quantity as expected.

Consider next an elastic collision.  Using the
above nomenclature with θ

1
 = θ

2
 = 0, the

momentum and kinetic energy conservation
equations are

m
1
v

1i
 = m

1
v

1f
 + m

2
v

2f
(5.23)

2 2 2

1 1 1 1 2 2i f fm v m v m v= + (5.24)

From  Eqs. (5.23)  and (5.24) it follows that,

1 1 2 1 1 1 2 1
( ) ( )i f i f f fm v v v m v v v− = −

or, 2 2

2 1 1 1 1( )f i f i fv v v v v− = −

1 1 1 1( )( )i f i fv v v v= − +

Hence,  2 1 1f i fv v v∴ = + (5.25)

Substituting this in Eq. (5.23), we obtain

1 2
1 1

1 2

( )
f i

m m
v v

m m

−
=

+ (5.26)

and
1 1

2

1 2

2 i
f

m v
v

m m
=

+ (5.27)

Thus, the ‘unknowns’ {v
1f
, v

2f
} are obtained in

terms of the ‘knowns’ {m
1
, m

2
, v

1i
}. Special cases

of our analysis are interesting.

Case I : If the two masses are equal

v
1f
 = 0

v
2f
 =  v

1i

The first mass comes to rest and pushes off the
second mass with its initial speed on collision.

Case II : If one mass dominates, e.g. m
2
 > > m

1

v
1f
  ~ − v

1i
      v

2f
 ~ 0

The heavier mass is undisturbed while the
lighter mass reverses its velocity.
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⊳

⊳

Example 5.11  Slowing down of neutrons:
In a nuclear reactor a neutron of high
speed (typically 107 m s–1) must be slowed
to 103 m s–1 so that it can have a high

probability of interacting with isotope 
92

235
U

and causing it to fission. Show that a
neutron can lose most of its kinetic energy
in an elastic collision with a light nuclei
like deuterium or carbon which has a mass
of only a few times the neutron mass.  The
material making up the light nuclei, usually
heavy water (D

2
O) or graphite, is called a

moderator.

Answer  The initial kinetic energy of the neutron
is

2

1 1 1

1

2
i iK m v=

while its final kinetic energy from Eq. (5.26)

K m v m
m m

m m
vf f i1 1 1

2

1
1 2

1 2

2

1

21

2

1

2
= =

−
+







    

The fractional kinetic energy lost is

f
K

K

m m

m m

f

i

1

1

1

1 2

1 2

2

= =
−
+







while the fractional kinetic energy gained by the
moderating nuclei K

2f 
/K

1i 
 is

f
2
 = 1 − f

1 
(elastic collision)

( )
1 2

2

1 2

4m m

m m
=

+

One can also verify this result by substituting
from Eq. (5.27).

For deuterium m
2
 = 2m

1 
and we obtain

f
1
 = 1/9  while f

2
 = 8/9.  Almost 90% of the

neutron’s energy is transferred to deuterium. For
carbon f

1
 = 71.6% and f

2
 = 28.4%.  In practice,

however, this number is smaller since head-on
collisions are rare. ⊳

If the initial velocities and final velocities of
both the bodies are along the same straight line,
then it is called a one-dimensional collision, or
head-on collision. In the case of small spherical
bodies, this is possible if the direction of travel
of body 1 passes through the centre of body 2
which is at rest. In general, the collision is two-

dimensional, where the initial velocities and the
final velocities lie in a plane.

5.11.3  Collisions in Two Dimensions

Fig. 5.10 also depicts the collision of a moving

mass m
1
 with the stationary mass m

2
. Linear

momentum is conserved in such a collision.

Since momentum is a vector this implies three

equations for the three directions {x, y, z}.

Consider the plane determined by the final

velocity directions of m
1 
and m

2 
and choose it to

be the x-y plane. The conservation of the

z-component of the linear momentum implies

that the entire collision is in the x-y plane. The

x- and y-component equations are

m
1
v

1i
 = m

1
v

1f
 cos θ 

1
 + m

2
v

2f
 cos θ 

2
     (5.28)

0  = m
1
v

1f
  sin θ

1
 −  m

2
v

2f
 sin θ

2
        (5.29)

One knows {m
1
, m

2
, v

1i
} in most situations.  There

are thus four unknowns {v
1f

, v
2f

, θ
1 
and θ

2
}, and

only two equations. If θ 
1 

=
 
θ 

2 
= 0, we regain

Eq. (5.23) for one dimensional collision.

If, further the collision is elastic,

2 2 2

1 1 1 1 2 2

1 1 1

2 2 2
i f fm v m v m v= + (5.30)

We obtain an additional equation. That still
leaves us one equation short.  At least one of
the four unknowns, say θ 

1
, must be made known

for the problem to be solvable. For example, θ
1

can be determined by moving a detector in an
angular fashion from the x  to the y  axis. Given
{m

1
, m

2
, v

1i
, θ

1
} we can determine {v

1f
, v

2f
, θ

2
}

from Eqs. (5.28)-(5.30).

Example 5.12  Consider the collision
depicted in Fig. 5.10 to be between two
billiard balls with equal masses m

1
 = m

2
.

The first  ball  is  called the cue while the
second ball is called the target. The
billiard player wants to ‘sink’ the target
ball in a corner pocket, which is at an
angle θ

2
 = 37°. Assume that the collision is

elastic and that friction and rotational
motion are not important.  Obtain θ 

1
.

Answer   From momentum conservation, since
the masses are equal

2f1f1i vvv +=

or ( ) ( )2

1 2 1 21iv = + ⋅ +v v v vf f f f

          
2 2

1 2 1 22 .f f f fv v= + + v v

2024-25



PHYSICS86

( ){ }2 2
1 2 1 2 1 2 cos  37  f f f fv v v v θ= + + + ° (5.31)

Since the collision is elastic and m
1
 = m

2
 it follows

from conservation of kinetic energy that

2 2 2
1 1 2  i f fv v v= + (5.32)

Comparing Eqs. (5.31) and (5.32), we get

cos (θ
1
 + 37°) = 0

or θ
1
 + 37° = 90°

Thus,    θ
1
 = 53°

This proves the following result :  when two equal
masses undergo a glancing elastic collision with
one of them at rest, after the collision, they will
move at right angles to each other.                ⊳

The matter simplifies greatly if we consider

spherical masses with smooth surfaces, and

assume that collision takes place only when the
bodies touch each other. This is what happens

in the games of marbles, carrom and billiards.

In our everyday world, collisions take place only
when two bodies touch each other. But consider

a comet coming from far distances to the sun, or

alpha particle coming towards a nucleus and
going away in some direction. Here we have to

deal with forces involving action at a distance.

Such an event is called scattering. The velocities
and directions in which the two particles go away

depend on their initial velocities as well as the

type of interaction between them, their masses,
shapes and sizes.

SUMMARY

1. The work-energy theorem states  that  the change in kinetic energy of a body is the work
done by the net force on the body.

K
f
 - K

i
 = W

net

2. A  force is conservative if (i) work done by it on an object is path  independent and
depends only on the end points {x

i
, x

j
}, or (ii) the work done by the force is zero for an

arbitrary closed path taken by the object such that it returns to its initial position.
3. For a conservative force in one dimension, we may define a potential energy function V(x)

such that

F x
V x

x
( ) = −

( )d

d

or V V = F x  xi f

x

x

i

f

− ( )∫ d

4. The principle of conservation of mechanical energy states that the total mechanical
energy of a body remains constant if the only forces that act on the body are conservative.

5. The gravitational potential energy of a particle of mass m at a height x  about the earth’s
surface is

V(x) = m g x

where the variation of g with height is ignored.

5. The elastic potential energy of a spring of force constant k  and extension x is

V x    k x( ) =
1

2

2

7. The scalar or dot product of two vectors A and B is written as A.B  and is a scalar
quantity given by :A.B = AB cos θ,  where θ  is the angle between A and B.  It can be
positive, negative or zero depending upon the value of θ. The scalar product of two
vectors can be interpreted as the product of magnitude of one vector and component
of the other vector along the first vector. For unit vectors :

ˆ ˆ ˆ ˆ ˆ ˆi i j j k k⋅ = ⋅ = ⋅ =1  and ˆ ˆ ˆ ˆ ˆ ˆi j j k k i⋅ = ⋅ = ⋅ = 0

Scalar products obey the commutative and  the distributive laws.
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POINTS TO PONDER

1. The phrase ‘calculate the work done’ is incomplete. We should refer (or imply
clearly by context) to the work done by a specific force or a group of forces on a
given  body over a certain displacement.

2. Work done is a scalar quantity. It can be positive or negative unlike mass and
kinetic energy which are positive scalar quantities. The work done by the friction
or viscous force on a moving body is negative.

3. For two bodies, the sum of the mutual forces exerted between them is zero from
Newton’s Third Law,

F
12  

+  F
21 

 =  0

But the sum of the work done by the two forces need not always cancel, i.e.

W
12  

+ W
21  

≠  0

However, it may sometimes be true.

4. The work done by a force can be calculated sometimes even if the exact nature of
the force is not known. This is clear from Example 5.2 where the WE theorem is
used in such a situation.

5. The WE theorem is not independent of Newton’s Second Law. The WE theorem
may be viewed as a scalar form of the Second Law. The principle of conservation
of mechanical energy may be viewed as a consequence of the  WE theorem for
conservative forces.

5. The WE theorem holds in all inertial frames. It can also be extended to non-
inertial frames provided we include the pseudoforces in the calculation of the
net force acting on the body under consideration.

7. The potential energy of a body subjected to a conservative force is always
undetermined upto a constant. For example, the point where the potential
energy is zero is a matter of choice. For the gravitational  potential energy mgh,
the zero of the potential energy is chosen to be the ground. For the spring
potential energy kx2/2 , the zero of the potential energy is the equilibrium position
of the oscillating mass.

8. Every force encountered in mechanics does not have an associated potential
energy. For example, work done by friction over a closed path is not zero and no
potential energy can be associated with friction.

9. During a collision : (a) the total linear momentum is conserved at each instant of
the collision ; (b) the kinetic energy conservation (even if the collision is  elastic)
applies after the collision is over and does not hold at every instant of the collision.
In fact the two colliding objects are deformed and may be momentarily at rest
with respect to each other.
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EXERCISES

5.1 The sign of work done by a force on a body is important to understand.  State carefully
if the following quantities are positive or negative:
(a) work done by a man in lifting a bucket out of a well by means of a rope tied to the

bucket.
(b) work done by gravitational force in the above case,
(c) work done by friction on a body

sliding down an inclined plane,
(d) work done by an applied force on

a body moving on a rough
horizontal plane with uniform
velocity,

(e) work done by the resistive force of
air on a vibrating pendulum in
bringing it to rest.

5.2 A body of mass 2 kg initially at rest
moves under the action of an applied
horizontal force of 7 N on a table with
coefficient of kinetic friction = 0.1.
Compute the
(a) work done by the applied force in

10 s,
(b) work done by friction in 10 s,
(c) work done by the net force on the

body in 10 s,
(d) change in kinetic energy of the

body in 10 s,

and interpret your results.

5.3 Given in Fig. 5.11 are examples of some
potential energy functions in one
dimension. The total energy of the
particle is indicated by a cross on the
ordinate axis. In each case, specify the
regions, if any, in which the particle
cannot be found for the given energy.
Also, indicate the minimum total
energy the particle must have in each
case. Think of simple physical contexts
for which these potential energy shapes
are relevant.

Fig. 5.11
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5.4 The potential energy function for a
particle executing linear simple
harmonic motion is given by V(x) =

kx2/2, where k  is the force constant
of the oscillator.  For k  = 0.5 N m-1,
the graph of V(x)  versus  x  is shown
in Fig. 5.12.  Show that a particle of
total energy 1 J moving under this
potential must ‘turn back’ when it
reaches x  = ± 2 m.

5.5 Answer the following :
(a) The casing of a rocket in flight

burns up due to friction.  At
whose expense is the heat
energy required for burning
obtained?  The rocket or the
atmosphere?

(b) Comets move around the sun
in highly elliptical orbits.  The
gravitational force on the
comet due to the sun is not
normal to the comet’s velocity
in general.  Yet the work done by the gravitational force over every complete orbit
of the comet is zero.  Why ?

(c) An artificial satellite orbiting the earth in very thin atmosphere loses its energy
gradually due to dissipation against atmospheric resistance, however small. Why
then does its speed increase progressively as it comes closer and closer to the earth ?

(d) In Fig. 5.13(i) the man walks  2 m carrying a mass of 15 kg on his hands. In Fig.
5.13(ii), he walks the same distance pulling the rope behind him. The rope goes
over a pulley, and a mass of 15 kg hangs at its other end. In which case is the work
done greater ?

5.6 Underline the correct alternative :
(a) When a conservative force does positive work on a body, the potential energy of

the body increases/decreases/remains unaltered.
(b) Work done by a body against friction always results in a loss of its kinetic/potential

energy.
(c) The rate of change of total momentum of a many-particle system is proportional

to the external force/sum of the internal forces on the system.
(d) In an inelastic collision of two bodies, the quantities which do not change after

the collision are the total kinetic energy/total linear momentum/total energy of
the system of two bodies.

5.7 State if each of the following statements is true or false.  Give reasons for your answer.
(a) In an elastic collision of two bodies, the momentum and energy of each body is

conserved.
(b) Total energy of a system is always conserved, no matter what internal and external

forces on the body are present.
(c) Work done in the motion of a body over a closed loop is zero for every force in

nature.
(d) In an inelastic collision, the final kinetic energy is always less than the initial

kinetic energy of the system.

5.8 Answer carefully, with reasons :
(a) In an elastic collision of two billiard balls, is the total kinetic energy conserved

during the short time of collision of the balls (i.e. when they are in contact) ?
(b) Is the total linear momentum conserved during the short time of an elastic collision

of two balls ?

Fig. 5.13

Fig. 5.12
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(c) What are the answers to (a) and (b) for an inelastic collision ?
(d) If the potential energy of two billiard balls depends only on the separation distance

between their centres, is the collision elastic or inelastic ?  (Note, we are talking
here of potential energy corresponding to the force during collision, not gravitational
potential energy).

5.9 A body is initially at rest. It undergoes one-dimensional motion with constant
acceleration.  The power delivered to it at time t is proportional to

(i) t1/2  (ii) t (iii) t3/2 (iv)   t2

5.10 A body is moving unidirectionally under the influence of a source of constant power.
Its displacement in time t

 
is proportional to

(i) t1/2  (ii) t (iii) t3/2 (iv)   t2

5.11 A body constrained to move along the z-axis of a coordinate system is subject to a
constant force F given by

Nˆ 3ˆ 2ˆ  kjiF ++−=

where k ,j ,i ˆˆˆ  are unit vectors along the x-, y- and z-axis of the system respectively.

What is the work done by this force in moving the body a distance of 4 m along the
z-axis ?

5.12 An electron and a proton are detected in a cosmic ray experiment, the first with kinetic
energy 10 keV, and the second with 100 keV.  Which is faster, the electron or the
proton ? Obtain the ratio of their speeds. (electron mass = 9.11×10-31 kg, proton mass
= 1.67×10–27 kg, 1 eV = 1.60 ×10–19 J).

5.13 A rain drop of radius 2 mm falls from a height of 500 m above the ground.  It falls with
decreasing acceleration (due to viscous resistance of the air) until at half its original
height, it attains its maximum (terminal) speed, and moves with uniform speed
thereafter.  What is the work done by the gravitational force on the drop in the first
and second half of its journey ? What is the work done by the resistive force in the
entire journey if its speed on reaching the ground is 10 m s–1  ?

5.14 A molecule in a gas container hits a horizontal wall with speed 200 m s–1 and angle 30°
with the normal, and rebounds with the same speed.  Is momentum conserved in the
collision ?  Is the collision elastic or inelastic ?

5.15 A pump on the ground floor of a building can pump up water to fill a tank of volume 30 m3

in 15 min.  If the tank is 40 m above the ground, and the efficiency of the pump is 30%,
how much electric power is consumed by the pump ?

5.16 Two identical ball bearings in contact with each other and resting on a frictionless
table are hit head-on by another ball bearing of the same mass moving initially with a
speed V.  If the collision is elastic, which of the following  (Fig. 5.14) is a possible result
after collision ?

Fig. 5.14
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5.17 The bob A of a pendulum released from 30o to the
vertical hits another bob B of the same mass at rest
on a table as shown in Fig. 5.15.  How high does
the bob A rise after the collision ? Neglect the size of
the bobs and assume the collision to be elastic.

5.18 The bob of a pendulum is released from a horizontal
position. If the length of the pendulum is 1.5 m,
what is the speed with which the bob arrives at the
lowermost point, given that it dissipated 5% of its
initial energy against air resistance ?

5.19 A trolley of mass 300 kg carrying a sandbag of 25 kg
is moving uniformly with a speed of 27 km/h on a
frictionless track.  After a while, sand starts leaking
out of a hole on the floor of the trolley at the rate of
0.05 kg s–1.  What is the speed of the trolley after the entire sand bag is empty ?

5.20 A body of mass 0.5 kg travels in a straight line with velocity  v =a x3/2  where a = 5 m–1/2  s–1.
What is the work done by the net force during its displacement from x = 0 to
x = 2 m ?

5.21 The blades of a windmill sweep out a circle of area A.  (a) If the wind flows at a
velocity v  perpendicular to the circle, what is the mass of the air passing through it
in time t ?  (b) What is the kinetic energy of the air ?  (c) Assume that the windmill
converts 25% of the wind’s energy into electrical energy, and that A = 30 m2, v = 36
km/h and the density of air is 1.2 kg m–3.  What is the electrical power produced ?

5.22 A person trying to lose weight (dieter) lifts a 10 kg mass, one thousand times, to a
height of  0.5 m each time. Assume that the potential energy lost each time she
lowers the mass is dissipated. (a) How much work does she do against the gravitational
force ?  (b) Fat supplies 3.8 × 107J of energy per kilogram which is converted to
mechanical energy with a 20% efficiency rate.  How much fat will the dieter use up?

5.23 A family uses 8 kW of power. (a) Direct solar energy is incident on the horizontal
surface at an average rate of 200 W per square meter.  If 20% of this energy can be
converted  to  useful  electrical  energy, how large an area is needed to supply 8 kW?
(b) Compare this area to that of the roof of a typical house.

Fig. 5.15
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CHAPTER SIX

SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

6.1 INTRODUCTION

In the earlier chapters we primarily considered the motion
of a single particle. (A particle is ideally represented as a
point mass having no size.)  We applied the results of our
study even to the motion of bodies of finite size, assuming
that motion of such bodies can be described in terms of the
motion of a particle.

Any real body which we encounter in daily life has a
finite size.  In dealing with the motion of extended bodies
(bodies of finite size) often the idealised model of a particle is
inadequate.  In this chapter we shall try to go beyond this
inadequacy.  We shall attempt to build an understanding of
the motion of extended bodies.  An extended body, in the
first place, is a system of particles.  We shall begin with the
consideration of motion of the system as a whole.  The centre
of mass of a system of particles will be a key concept here.
We shall discuss the motion of the centre of mass of a system
of particles and usefulness of this concept in understanding
the motion of extended bodies.

A large class of problems with extended bodies can be
solved by considering them to be rigid bodies.  Ideally a
rigid body is a body with a perfectly definite and
unchanging shape.  The distances between all pairs of
particles of such a body do not change. It is evident from
this definition of a rigid body that no real body is truly rigid,
since real bodies deform under the influence of forces. But in
many situations the deformations are negligible.  In a number
of situations involving bodies such as wheels, tops, steel
beams, molecules and planets on the other hand, we can ignore
that they warp (twist out of shape), bend or vibrate and treat
them as rigid.

6.1.1 What kind of motion can a rigid body have?

Let us try to explore this question by taking some examples
of the motion of rigid bodies.  Let us begin with a rectangular

6.1 Introduction

6.2 Centre of mass

6.3 Motion of centre of mass

6.4 Linear momentum of a

system of particles

6.5 Vector product of two vectors

6.6 Angular velocity and its

relation with linear velocity

6.7 Torque and angular

momentum

6.8 Equilibrium of a rigid body

6.9 Moment of inertia

6.10 Kinematics of rotational

motion about a fixed axis

6.11 Dynamics of rotational

motion about a fixed axis

6.12 Angular momentum in case

of rotation about a fixed
axis

Summary

Points to Ponder

Exercises
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block sliding down an inclined plane without any
sidewise movement.  The block is taken as a rigid
body.  Its motion down the plane is such that all
the particles of the body are moving together,
i.e. they have the same velocity at any instant
of time. The rigid body here is in pure
translational motion (Fig. 6.1).

In pure translational motion at any
instant of time, all particles of the body have
the same velocity.

Consider now the rolling motion of a solid
metallic or wooden cylinder down the same
inclined plane (Fig. 6.2). The rigid body in this
problem, namely the cylinder, shifts from the
top to the bottom of the inclined plane, and thus,
seems to have translational motion.  But as Fig.
6.2 shows, all its particles are not moving with
the same velocity at any instant. The body,
therefore, is not in pure translational motion.
Its motion is translational plus ‘something else.’

In order to understand what this ‘something
else’ is, let us take a rigid body so constrained
that it cannot have translational motion.  The

most common way to constrain a rigid body so
that it does not have translational motion is to
fix it along a straight line. The only possible
motion of such a rigid body is rotation. The line
or fixed axis about which the body is rotating is
its axis of rotation. If you look around, you will
come across many examples of rotation about
an axis, a ceiling fan, a potter’s wheel, a giant
wheel in a fair, a merry-go-round and so on (Fig
6.3(a) and (b)).

(a)

(b)
Fig. 6.3 Rotation about a fixed axis

(a) A ceiling fan

(b) A potter’s wheel.

Let us try to understand what rotation is,
what characterises rotation.  You may notice that
in rotation of a rigid body about a fixed axis,

Fig 6.1 Translational (sliding) motion of a block down

an inclined plane.

(Any point like P
1
 or P

2 
of the block moves

with the same velocity at any instant of time.)

Fig. 6.2 Rolling motion of a cylinder. It is not pure

translational motion. Points P
1
, P

2
,
 
P

3
 and P

4

have different velocities (shown by arrows)

at any instant of time. In fact, the velocity of

the point of contact P
3 
is zero at any instant,

if the cylinder rolls without slipping.
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every particle of the body moves in a circle,
which lies in a plane perpendicular to the axis

and has its centre on the axis.  Fig. 6.4 shows

the rotational motion of a rigid body about a fixed

axis (the z-axis of the frame of reference).  Let P
1

be a particle of the rigid body, arbitrarily chosen

and at a distance r
1
 from fixed axis.  The particle

P
1
 describes a circle of radius  r

1 
with its centre

C
1
 on the fixed axis.  The circle lies in a plane

perpendicular to the axis. The figure also shows

another particle P
2
 of the rigid body, P

2 
is at a

distance r
2 
from the fixed axis. The particle P

2

moves in a circle of radius r
2 
and with centre C

2

on the axis. This circle, too, lies in a plane

perpendicular to the axis.  Note that the circles

described by P
1
 and P

2
 may lie in different planes;

both these planes, however, are perpendicular

to the fixed axis.  For any particle on the axis

like P
3
, r = 0. Any such particle remains

stationary while the body rotates.  This is

expected since the axis of rotation is fixed.

Fig. 6.5 (a) A spinning top

(The point of contact of the top with the

ground, its tip O, is fixed.)

Fig. 6.5 (b) An oscillating table fan with rotating

blades. The pivot of the fan, point O, is

fixed. The blades of the fan are under

rotational motion, whereas, the axis of

rotation of  the fan blades is oscillating.

Fig. 6.4 A rigid body rotation about the z-axis (Each

point of the body such as P
1
 or

P
2
 describes a circle with its centre (C

1

or C
2
) on the axis of rotation.  The radius of

the circle (r
1
or r

2
) is the perpendicular

distance of the point (P
1
 or P

2
) from the

axis. A point on the axis like P
3 

remains

stationary).

Axis of oscillation

Axis of
rotation

from blades

In some examples of rotation, however, the
axis may not be fixed.  A prominent example of
this kind of rotation is a top spinning in place
[Fig. 6.5(a)].  (We assume that the top does not
slip from place to place and so does not have
translational motion.)  We know from experience
that the axis of such a spinning top moves
around the vertical through its point of contact
with the ground, sweeping out a cone as shown
in Fig. 6.5(a).  (This movement of the axis of the
top around the vertical is termed precession.)
Note, the point of contact of the top with
ground is fixed. The axis of rotation of the top
at any instant passes through the point of
contact. Another simple example of this kind of
rotation is the oscillating table fan or a pedestal
fan [Fig.6.5(b)]. You may have observed that the
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axis of rotation of such a fan has an oscillating
(sidewise) movement in a horizontal plane about
the vertical through the point at which the axis
is pivoted (point O in Fig. 6.5(b)).

While the fan rotates and its axis moves
sidewise, this point is fixed.  Thus, in more
general cases of rotation, such as the rotation
of a top or a pedestal fan, one point and not
one line, of the rigid body is fixed. In this case
the axis is not fixed, though it always passes
through the fixed point. In our study, however,
we mostly deal with the simpler and special case
of rotation in which one line (i.e. the axis) is fixed.

Thus, for us rotation will be about a fixed axis
only unless stated otherwise.

The rolling motion of a cylinder down an
inclined plane is a combination of rotation about
a fixed axis and translation.  Thus, the
‘something else’ in the case of rolling motion
which we referred to earlier is rotational motion.
You will find Fig. 6.6(a) and (b) instructive from
this point of view. Both these figures show
motion of the same body along identical
translational trajectory. In one case, Fig. 6.6(a),
the motion is a pure translation; in the other
case [Fig. 6.6(b)] it is a combination of translation
and rotation. (You may try to reproduce the two
types of motion shown, using a rigid object like
a heavy book.)

We now recapitulate the most important
observations of the present section: The motion
of a rigid body which is not pivoted or fixed in
some way is either a pure translation or a
combination of translation and rotation. The
motion of a rigid body which is pivoted or fixed
in some way is rotation.  The rotation may be
about an axis that is fixed (e.g. a ceiling fan) or
moving (e.g. an oscillating table fan [Fig.6.5(b)]).
We shall, in the present chapter, consider
rotational motion about a fixed axis only.

6.2  CENTRE OF MASS

We shall first see what the centre of mass of a
system of particles is and then discuss its
significance. For simplicity we shall start with
a two particle system. We shall take the line
joining the two particles to be the x- axis.

Fig. 6.7

Let the distances of the two particles be x
1

and x
2
 respectively from some origin O. Let m

1

and m
2
 be respectively the masses of the two

Fig. 6.6(a) Motion of a rigid body which is pure

translation.

Fig. 6.6(b) Motion of a rigid body which is a

combination of translation and

rotation.

Fig 6.6 (a) and 6.6 (b) illustrate different motions of

the same body. Note P is an arbitrary point of the

body; O is the centre of mass of the body, which is

defined in the next section. Suffice to say here that

the trajectories of O are the translational trajectories

Tr
1
 and Tr

2 
of the body. The positions O and P at

three different instants of time are shown by O
1
, O

2
,

and O
3
, and P

1
, P

2
 and P

3
, respectively, in both

Figs. 6.6 (a) and (b) . As seen from Fig. 6.6(a), at any

instant the velocities of any particles like O and P of

the body are the same in pure translation. Notice, in

this case the orientation of OP, i.e. the angle OP makes

with a fixed direction, say the horizontal, remains

the same, i.e. α
1 
= α

2
 = α

3
. Fig. 6.6 (b) illustrates a case

of combination of translation and rotation. In this case,

at any instants the velocities of O and P differ. Also,

α
1
, α

2
 and α

3
 may all be different.
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particles. The centre of mass of the system is
that   point C which is at a distance X from O,
where X is given by

1 1 2 2

1 2

m x m x
X

m m

+=
+ (6.1)

In Eq. (6.1), X can be regarded as the mass-
weighted mean of  x

1 
and x

2
. If the two particles

have the same mass m
1
 = m

2
 = m

, 
then

1 2 1 2

2 2

mx mx x x
X

m

+ += =

Thus, for two particles of equal mass the
centre of mass lies exactly midway between
them.

       If we have n particles of masses m
1
, m

2
,

...m
n
 respectively, along a straight line taken as

the x- axis, then by definition the position of the
centre of the mass of the system of particles is
given by.

X
m x m x m x

m m m

m x

m

m x

m
n n

n

i i

i

n

i

i

n

i i

i

= = =
=

=

∑

∑

∑

∑
1 1 2 2

1 2

1

1

+ + ... +

+ +... +
  (6.2)

where  x
1
, x

2
,...x

n
 are the distances of the

particles from the origin; X is also measured from

the same origin. The symbol ∑ (the Greek letter

sigma) denotes summation, in this case over n
particles. The sum

im M=∑
is the total mass of the system.

Suppose that we have three particles, not
lying in a straight line. We may define x– and y–
axes in the plane in which the particles lie and
represent the positions of the three particles by
coordinates (x

1
,y

1
), (x

2
,y

2
) and (x

3
,y

3
) respectively.

Let the masses of the three particles be m
1
, m

2

and m
3 
respectively. The centre of mass C of

the system of the three particles is defined and
located by the coordinates (X, Y) given by

1 1 2 2 3 3

1 2 3

m x m x m x
X

m m m

+ +
=

+ + (6.3a)

1 1 2 2 3 3

1 2 3

m y m y m y
Y

m m m

+ +
=

+ + (6.3b)

For the particles of equal mass m = m
1
 = m

2

= m
3
,

1 2 3 1 2 3( )

3 3

m x x x x x x
X

m

+ + + +
= =

1 2 3 1 2 3( )

3 3

m y y y y y y
Y

m

+ + + +
= =

Thus, for three particles of equal mass, the
centre of mass coincides with the centroid of the
triangle formed by the particles.

Results of Eqs. (6.3a) and (6.3b) are
generalised easily to a system of n particles, not
necessarily lying in a plane, but distributed in
space. The centre of mass of such a system is
at (X, Y, Z ), where

i im x
X

M
= ∑

(6.4a)

i im y
Y

M
= ∑

(6.4b)

and  
i im z

Z
M

= ∑
(6.4c)

Here M = im∑ is the total mass of the

system. The index i runs from 1 to n; m
i
 is the

mass of the ith particle and the position of the
ith particle is given by (x

i
, y

i
, z

i
).

Eqs. (6.4a), (6.4b) and (6.4c) can be
combined into one equation using the notation

of position vectors. Let  ir  be the position vector

of the ith particle and R be the position vector of
the centre of mass:

 �
i i i ix y z= + +r i j kɵ ɵ

and �X Y Z= + +R i j kɵ ɵ

Then  

i im

M
= ∑ r

R
(6.4d)

The sum on the right hand side is a vector
sum.

Note the economy of expressions we achieve
by use of vectors. If the origin of the frame of
reference (the coordinate system) is chosen to

be the centre of mass then  0i im =∑ r for the

given system of particles.
A rigid body, such as a metre stick or a

flywheel, is a system of closely packed particles;
Eqs. (6.4a), (6.4b), (6.4c) and (6.4d) are therefore,
applicable to a rigid body. The number of
particles (atoms or molecules) in such a body is
so large that it is impossible to carry out the
summations over individual particles in these
equations. Since the spacing of the particles is
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small, we can treat the body as a continuous
distribution of mass. We subdivide the body into
n small elements of mass;  ∆m

1
, ∆m

2
... ∆m

n
; the

ith element  ∆m
i 
is taken to be located about the

point  (x
i
, y

i
, z

i
). The coordinates of the centre of

mass are then approximately given by

( ) ( ) ( )
, ,

i i i i i i

i i i

m x m y m z
X Y Z

m m m

∆ ∆ ∆
= = =

∆ ∆ ∆
∑ ∑ ∑
∑ ∑ ∑

As we make n bigger and bigger and each
∆m

i
 smaller and smaller, these expressions

become exact. In that case, we denote the sums
over i by integrals. Thus,

∆m m Mi → =∫∑ d ,

( ) ,∆m x x mi i → ∫∑ d

( ) ,∆m y y mi i → ∫∑ d

 and (∆m z z mi i) → ∫∑ d

Here M is the total mass of the body. The
coordinates of the centre of mass now are

X
M

x m Y
M

y m Z
M

z m= = =∫∫ ∫
1 1 1

d d d, and     (6.5a)

The vector expression equivalent to these
three scalar expressions is

R r= ∫
1

M
md (6.5b)

If we choose, the centre of mass as the origin
of our coordinate system,

=R 0

i.e., r 0dm =∫
or x m y m z md d d= = =∫ ∫∫ 0 (6.6)

Often we have to calculate the centre of mass of
homogeneous bodies of regular shapes like rings,
discs, spheres, rods etc. (By a homogeneous body
we mean a body with uniformly distributed
mass.) By using symmetry consideration, we can
easily show that the centres of mass of these
bodies lie at their geometric centres.

Let us consider a thin rod, whose width and
breath (in case the cross section of the rod is
rectangular) or radius (in case the cross section
of the rod is cylindrical) is much smaller than
its length. Taking the origin to be at the
geometric centre of the rod and x-axis to be
along the length of the rod, we can say that on
account of reflection symmetry, for every
element dm of the rod at x, there is an element
of the same mass dm located at –x (Fig. 6.8).

The net contribution of every such pair to

the integral and hence the integral  itself

is zero.  From Eq. (6.6), the point for which the
integral  itself is zero, is the centre of mass.
Thus, the centre of mass of a homogenous thin
rod coincides with its geometric centre. This can
be understood on the basis of reflection symmetry.

The same symmetry argument will apply to
homogeneous rings, discs, spheres, or even
thick rods of circular or rectangular cross
section. For all such bodies you will realise that
for every element dm at a point (x, y, z ) one can
always take an element of the same mass at
the point (–x, –y, –z ). (In other words, the origin
is a point of reflection symmetry for these
bodies.) As a result, the integrals in Eq. (6.5 a)
all are zero. This means that for all the above
bodies, their centre of mass coincides with their
geometric centre.

Example 6.1 Find the centre of mass of
three particles at the vertices of an
equilateral triangle. The masses of the
particles are 100g, 150g, and 200g
respectively. Each side of the equilateral
triangle is 0.5m long.

Answer

Fig. 6.9Fig. 6.8 Determining the CM of a thin rod.

u
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u

u

With the x–and y–axes chosen as shown in Fig.
6.9, the coordinates of points O, A and B forming
the equilateral triangle are respectively (0,0),

(0.5,0), (0.25,0.25 3 ). Let the masses 100 g,

150g and 200g be located at O, A and B be
respectively. Then,

1 1 2 2 3 3

1 2 3

m x m x m x
X

m m m

+ +
=

+ +

( )100 0 150(0.5) 200(0.25) g m

(100 150 200) g

+ +  
  =

+ +

75 50 125 5
m m m

450 450 18

+= = =

100(0) 150(0) 200(0.25 3) g m

450 g
Y

  + +
  

=

50 3 3 1
m m m

450 9 3 3
= = =

The centre of mass C is shown in the figure.
Note that it is not the geometric centre of the
triangle OAB. Why? ⊳

Example 6.2  Find the centre of mass of a
triangular lamina.

Answer  The lamina (∆LMN ) may be subdivided
into narrow strips each parallel to the base (MN)

as shown in Fig. 6.10

Fig. 6.10

By symmetry each strip has its centre of
mass at its midpoint. If we join the midpoint of
all the strips we get the median LP. The centre
of mass of the triangle as a whole therefore, has
to lie on the median LP. Similarly, we can argue
that it lies on the median MQ and NR. This
means the centre of mass lies on the point of

concurrence of the medians, i.e. on the centroid
G of the triangle.       ⊳

Example 6.3 Find the centre of mass of a
uniform L-shaped lamina (a thin flat plate)
with dimensions as shown. The mass of
the lamina is 3 kg.

Answer  Choosing the X and Y axes as shown
in Fig. 6.11 we have the coordinates of the
vertices of the L-shaped lamina as given in the
figure. We can think of the
L-shape to consist of 3 squares each of length
1m. The mass of each square is 1kg, since the
lamina is uniform. The centres of mass C

1
, C

2

and C
3
 of the squares are, by symmetry, their

geometric centres and have coordinates (1/2,1/2),
(3/2,1/2), (1/2,3/2) respectively. We take the
masses of the squares to be concentrated at
these points. The centre of mass of the whole
L shape (X, Y) is the centre of mass of these
mass points.

Fig. 6.11

Hence

[ ]
( )

1(1/2) 1(3/2) 1(1/2) kg m

1 1 1 kg
X

+ +
=

+ +  
5

m
6

=

[ ]
( )

1(1/2) 1(1/2) 1(3/2) kg m 5
m

1 1 1 kg 6
Y

  + +
  = =

+ +

The centre of mass of the L-shape lies on
the line OD. We could have guessed this without
calculations. Can you tell why? Suppose, the
three squares that make up the L shaped lamina
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of Fig. 6.11 had different masses. How will you
then determine the centre of mass of the lamina?
⊳

6.3  MOTION OF CENTRE OF MASS

Equipped with the definition of the centre of

mass, we are now in a position to discuss its

physical importance for a system of n particles.

We may rewrite Eq.(6.4d) as

1 1 2 2 ...i i n nM m m m m= = + + +∑R r r r r (6.7)

Differentiating the two sides of the equation
with respect to time we get

1 2
1 2

dd dd
...

d d d
n

nM m m m
t t t dt

= + + +
rr rR

or

1 1 2 2 ... n nM m m m= + + +V v v v (6.8)

where  ( )1 1d /dt=v r  is the velocity of the first

particle ( )2 2d dt=v r is the velocity of the

second particle etc. and d /dt=V R  is the

velocity of the centre of mass. Note that we

assumed the masses m
1
, m

2
, ... etc. do not

change in time. We have therefore, treated them

as constants in differentiating the equations

with respect to time.

Differentiating Eq.(6.8) with respect to time,
we obtain

1 2
1 2

dd dd
...

d d d d
n

nM m m m
t t t t

= + + +
vv vV

or

1 1 2 2 ... n nM m m m= + + +A a a a (6.9)

where ( )1 1d /dt=a v  is the acceleration of the

first particle,  ( )2 2d /dt=a v  is the acceleration

of the second particle etc. and  ( )d /dt=A V  is

the acceleration of the centre of mass of the
system of particles.

Now, from Newton’s second law, the force

acting on the first particle is given by 1 1 1m=F a .

The force acting on the second particle is given

by 2 2 2m=F a and so on. Eq. (6.9) may be written

as

1 2 ... nM = + + +A F F F (6.10)

Thus, the total mass of a system of particles
times the acceleration of its centre of mass is
the vector sum of all the forces acting on the
system of particles.

Note when we talk of the force 1F on the first

particle, it is not a single force, but the vector
sum of all the forces on the first particle; likewise
for the second particle etc. Among these forces
on each particle there will be external forces
exerted by bodies outside the system and also
internal forces exerted by the particles on one
another. We know from Newton’s third law that
these internal forces occur in equal and opposite
pairs and in the sum of forces of Eq. (6.10), their
contribution is zero. Only the external forces
contribute to the equation. We can then rewrite
Eq. (6.10) as

extM =A F (6.11)

where extF  represents the sum of all external

forces acting on the particles of the system.
Eq. (6.11) states that the centre of mass of

a system of particles moves as if all the mass
of the system was concentrated at the centre
of mass and all the external forces were
applied at that point.

Notice, to determine the motion of the centre
of mass no knowledge of internal forces of the
system of particles is required; for this purpose
we need to know only the external forces.

To obtain Eq. (6.11) we did not need to specify
the nature of the system of particles. The system
may be a collection of particles in which there
may be all kinds of internal motions, or it may
be a rigid body which has either pure
translational motion or a combination of
translational and rotational motion. Whatever
is the system and the motion of its individual
particles, the centre of mass moves according
to Eq. (6.11).

Instead of treating extended bodies as single
particles as we have done in earlier chapters,
we can now treat them as systems of particles.
We can obtain the translational component of
their motion, i.e. the motion of the centre of mass
of the system, by taking the mass of the whole
system to be concentrated at the centre of mass
and all the external forces on the system to be
acting at the centre of mass.

This is the procedure that we followed earlier
in analysing forces on bodies and solving
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problems without explicitly outlining and
justifying the procedure. We now realise that in
earlier studies we assumed, without saying so,
that rotational motion and/or internal motion
of the particles were either absent or negligible.
We no longer need to do this. We have not only
found the justification of the procedure we
followed earlier; but we also have found how to
describe and separate the translational motion
of (1) a rigid body which may be rotating as
well,  or (2) a system of particles with all kinds
of internal motion.

Fig. 6.12 The centre of mass of the fragments

of the projectile continues along the

same parabolic path which it would

have followed if there were no

explosion.

Figure 6.12 is a good illustration of Eq. (6.11).
A projectile, following the usual parabolic
trajectory, explodes into fragments midway in
air. The forces leading to the explosion are
internal forces. They contribute nothing to the
motion of the centre of mass. The total external
force, namely, the force of gravity acting on the
body, is the same before and after the explosion.
The centre of mass under the influence of the
external force continues, therefore, along the
same parabolic trajectory as it would have
followed if there were no explosion.

6.4 LINEAR MOMENTUM OF A SYSTEM OF
PARTICLES

Let us recall that the linear momentum of a
particle is defined as

m=p v (6.12)

Let us also recall that Newton’s second law
written in symbolic form for a single particle is

d

dt
= p

F (6.13)

where F is the force on the particle. Let us
consider a system of n particles with masses m

1
,

m
2
,...m

n 
respectively and velocities 1 2, ,....... nv v v

respectively. The particles may be interacting
and have external forces acting on them. The

linear momentum of the first particle is 1 1m v ,

of the second particle is 2 2m v  and so on.

For the system of n particles, the linear
momentum of the system is defined to be the
vector sum of all individual particles of the
system,

1 2 ... n= + + +P p p p

1 1 2 2 ... n nm m m= + + +v v v (6.14)

Comparing this with Eq. (6.8)

M=P V (6.15)

Thus, the total momentum of a system of
particles is equal to the product of the total
mass of the system and the velocity of its
centre of mass. Differentiating Eq. (6.15) with
respect to time,

d d

d d
M M

t t
= =P V

A (6.16)

Comparing Eq.(6.16) and Eq. (6.11),

d

d
ext

t
=P

F (6.17)

This is the statement of Newton’s second law
of motion extended to a system of particles.

Suppose now, that the sum of external
forces acting on a system of particles is zero.
Then from Eq.(6.17)

or
d

0
dt

=P
P  = Constant (6.18a)

Thus, when the total external force acting
on a system of particles is zero, the total linear
momentum of the system is constant. This is
the law of conservation of the total linear
momentum of a system of particles. Because of
Eq. (6.15), this also means that when the
total external force on the system is zero
the velocity of the centre of mass remains
constant. (We assume throughout the
discussion on systems of particles in this
chapter that the total mass of the system
remains constant.)

Note that on account of the internal forces,
i.e. the forces exerted by the particles on one
another, the individual particles may have
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complicated trajectories. Yet, if the total external
force acting on the system is zero, the centre of
mass moves with a constant velocity, i.e., moves
uniformly in a straight line like a free particle.

The vector Eq. (6.18a) is equivalent to three
scalar equations,

P
x
 = c

1
, P

y
 = c

2
 and P

z
 = c

3
(6.18 b)

Here P
x
, P

y
 and P

z
 are the components of the

total linear momentum vector P along the x–, y–
and z–axes respectively; c

1
, c

2
 and c

3
 are

constants.

(a) (b)

Fig. 6.13 (a) A heavy nucleus radium (Ra) splits into
a lighter nucleus radon (Rn) and an alpha
particle (nucleus of helium atom). The CM

of the system is in uniform motion.

(b) The same spliting of the heavy nucleus
radium (Ra) with the centre of mass at
rest. The two product particles fly back

to back.

As an example, let us consider the
radioactive decay of a moving unstable particle,
like the nucleus of radium. A radium nucleus
disintegrates into a nucleus of radon and an
alpha particle. The forces leading to the decay
are internal to the system and the external
forces on the system are negligible. So the total
linear momentum of the system is the same
before and after decay. The two particles
produced in the decay, the radon nucleus and
the alpha particle, move in different directions
in such a way that their centre of mass moves
along the same path along which the original
decaying radium nucleus was moving
[Fig. 6.13(a)].

If we observe the decay from the frame of
reference in which the centre of mass is at rest,
the motion of the particles involved in the decay
looks particularly simple; the product particles

move back to back with their centre of mass
remaining at rest as shown in Fig.6.13 (b).

In many problems on the system of
particles, as in the above radioactive decay
problem, it is convenient to work in the centre
of mass frame rather than in the laboratory
frame of reference.

In astronomy, binary (double) stars is a
common occurrence. If there are no external
forces, the centre of mass of a double star
moves like a free particle, as shown in Fig.6.14
(a). The trajectories of the two stars of equal
mass are also shown in the figure; they look
complicated. If we go to the centre of mass
frame, then we find that there the two stars
are moving in a circle, about the centre of
mass, which is at rest. Note that the position
of the stars have to be diametrically opposite
to each other [Fig. 6.14(b)]. Thus in our frame
of reference, the trajectories of the stars are a
combination of (i) uniform motion in a straight
line of the centre of mass and (ii) circular
orbits of the stars about the centre of mass.

As can be seen from the two examples,
separating the motion of different parts of a
system into motion of the centre of mass and
motion about the centre of mass is a very
useful technique that helps in understanding
the motion of the system.

6.5  VECTOR PRODUCT OF TWO VECTORS

We are already familiar with vectors and their
use in physics. In chapter 5 (Work, Energy, Power)
we defined the scalar product of two vectors. An
important physical quantity, work, is defined as
a scalar product of two vector quantities, force
and displacement.

(a) (b)

Fig. 6.14 (a) Trajectories of two stars, S
1
 (dotted line)

and S
2
 (solid line) forming a binary

system with their centre of mass C in
uniform motion.

(b) The same binary system, with the
centre of mass C at rest.
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We shall now define another product of two
vectors. This product is a vector. Two important
quantities in the study of rotational motion,
namely, moment of a force and angular
momentum, are defined as vector products.

Definition of Vector Product

A vector product of two vectors a and b is a
vector c such that

(i) magnitude of c = c sinab θ=  where a and b

are magnitudes of  a and b and θ is the
angle between the two vectors.

(ii) c is perpendicular to the plane containing
a and b.

(iii) if we take a right handed screw with its head
lying in the plane of  a and b and the screw
perpendicular to this plane, and if we turn
the head in the direction from  a to b, then
the tip of the screw advances in the direction
of c. This right handed screw rule is
illustrated in Fig. 6.15a.
Alternately, if one curls up the fingers of

right hand around a line perpendicular to the
plane of the vectors  a and b and if the fingers
are curled up in the direction from a to b, then
the stretched thumb points in the direction of
c, as shown in Fig. 6.15b.

(a) (b)

Fig. 6.15 (a) Rule of the right handed screw for

defining the direction of the vector

product of two vectors.

                (b) Rule of the right hand for defining the

direction of the vector product.

A simpler version of the right hand rule is
the following : Open up your right hand palm
and curl the fingers pointing from  a to b. Your
stretched thumb points in the direction of c.

It should be remembered that there are two
angles between any two vectors  a and b . In
Fig. 6.15 (a) or (b) they correspond to θ (as shown)

and (3600– θ). While applying either of the above

rules, the rotation should be taken through the
smaller angle (<1800) between  a and b. It is θ
here.

Because of the cross (×) used to denote the
vector product, it is also referred to as cross product.

• Note that scalar product of two vectors is

commutative as said earlier, a.b = b.a
The vector product, however, is not

commutative, i.e. a × b ≠ b × a
The magnitude of both a × b and b × a is the

same ( sinab θ ); also, both of them are
perpendicular to the plane of  a and b. But the
rotation of the right-handed screw in case of
a × b  is from  a to b, whereas in case of  b × a it
is from b to a. This means the two vectors are
in opposite directions. We have

× = − ×a b b a

• Another interesting property of a vector

product is its behaviour under reflection.
Under reflection (i.e. on taking the plane
mirror image) we have

and ,x x y y z z→ − → − → − . As a result all

the components of a vector change sign and

thus ,a a→ − b b→ − . What happens to

a × b under reflection?

a × b ( ) ( )→ − × − = ×a b a b

Thus, a × b does not change sign under
reflection.

• Both scalar and vector products are

distributive with respect to vector addition.
Thus,

.( ) . .+ = +a b c a b a c

( )× + = × + ×a b c a b a c

• We may write c = a × b in the component

form. For this we first need to obtain some
elementary cross products:

(i) a × a = 0 (0 is a null vector, i.e. a vector
with zero magnitude)

This follows since magnitude of a × a  is

2 sin0 0a ° = .
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u

From this follow the results

 (i) ˆ ˆ ˆ ˆ ˆ ˆ, ,× = × = × =i i 0 j j 0 k k 0

(ii) ˆ ˆ ˆ× =i j k

Note that the magnitude of ˆ ˆ×i j  is sin900

or 1, since î  and ĵ  both have unit

magnitude and the angle between them is 900.

Thus, ˆ ˆ×i j  is a unit vector. A unit vector

perpendicular to the plane of î  and ĵ  and

related to them by the right hand screw rule is

k̂ . Hence, the above result. You may verify

similarly,

ˆ ˆ ˆ ˆ ˆ ˆand× = × =j k i k i j

From the rule for commutation of the cross
product, it follows:

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,× = − × = − × = −j i k k j i i k j

Note if ˆ ˆ ˆ, ,i j k occur cyclically in the above

vector product relation, the vector product is

positive. If ˆ ˆ ˆ, ,i j k  do not occur in cyclic order,

the vector product is negative.
Now,

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )x y z x y za a a b b b× = + + × + +a b i j k i j k

ˆ ˆ ˆ ˆ ˆ ˆ
x y x z y x y z z x z ya b a b a b a b a b a b= − − + + −k j k i j i

= + +( ) ( ) ( )a b a b a b a b a b a by z z y z x x z x y y x− − −i j k

We have used the elementary cross products
in obtaining the above relation. The expression

for a × b  can be put in a determinant form which

is easy to remember.

ˆ ˆ ˆ

x y z

x y z

a a a

b b b

× =
i j k

a b

Example 6.4  Find the scalar and vector

products of two vectors. a = 

and b = 

Answer

ˆ ˆ ˆ ˆ ˆ ˆ(3 4 5 ) ( 2 3 )

6 4 15

25

= − + − + −
= − − −
= −

a b i j k i j ki i

ˆ ˆ ˆ

ˆ ˆ ˆ3 4 5 7 5

2 1 3

× = − = − −
− −

i j k

a b i j k

Note  ˆ ˆ ˆ7 5× = − + +b a i j k   ⊳

6.6 ANGULAR VELOCITY AND ITS RELATION
WITH LINEAR VELOCITY

In this section we shall study what is angular
velocity and its role in rotational motion. We
have seen that every particle of a rotating body
moves in a circle. The linear velocity of the
particle is related to the angular velocity. The
relation between these two quantities involves
a vector product which we learnt about in the
last section.

Let us go back to Fig. 6.4. As said above, in
rotational motion of a rigid body about a fixed
axis, every particle of the body moves in a circle,

Fig. 6.16 Rotation about a fixed axis. (A particle (P)
of the rigid body rotating about the fixed
(z-) axis moves in a circle with centre (C)
on the axis.)

which lies in a plane perpendicular to the axis
and has its centre on the axis. In Fig. 6.16 we
redraw Fig. 6.4, showing a typical particle (at a
point P) of the rigid body rotating about a fixed
axis (taken as the z-axis). The particle describes
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a circle with a centre C on the axis. The radius
of the circle is r, the perpendicular distance of
the point P from the axis. We also show the
linear velocity vector v of the particle at P. It is
along the tangent at P to the circle.

Let P′ be the position of the particle after an
interval of time ∆t (Fig. 6.16). The angle PCP′

describes the angular displacement ∆θ of the
particle in time ∆t. The average angular velocity
of the particle over the interval  ∆t is ∆θ/∆t. As
∆t tends to zero (i.e. takes smaller and smaller
values), the ratio ∆θ/∆t approaches a limit which
is the instantaneous angular velocity dθ/dt of
the particle at the position P. We denote the
instantaneous angular velocity by  ω (the
Greek letter omega). We know from our study
of circular motion that the magnitude of linear
velocity  v of a particle moving in a circle is
related to the angular velocity of the particle ω
by the simple relation rυ ω= , where r is the
radius of the circle.

We observe that at any given instant the
relation  v rω=  applies to  all particles of the
rigid body. Thus for a particle at a perpendicular
distance r

i
  from the fixed axis, the linear velocity

at a given instant v
i
 is given by

i iv rω= (6.19)

The index i runs from 1 to n, where n is the
total number of particles of the body.

For particles on the axis, 0=r , and hence

v = ω r = 0. Thus, particles on the axis are
stationary. This verifies that the axis is fixed.

Note that we use the same angular velocity
ω for all the particles. We therefore, refer to  ωωωωω
as the angular velocity of the whole body.

We have characterised pure translation of
a body by all parts of the body having the same
velocity at any instant of time. Similarly, we
may characterise pure rotation by all parts of
the body having the same angular velocity at
any instant of time. Note that this

characterisation of the rotation of a rigid body

about a fixed axis is just another way of saying
as in Sec. 6.1 that each particle of the body moves

in a circle, which lies in a plane perpendicular

to the axis and has the centre on the axis.
In our discussion so far the angular velocity

appears to be a scalar. In fact, it is a vector. We
shall not justify this fact, but we shall accept
it. For rotation about a fixed axis, the angular
velocity vector lies along the axis of rotation,

and points out in the direction in which a right
handed screw would advance, if the head of the
screw is rotated with the body. (See Fig. 6.17a).

The magnitude of this vector is d dtω θ=

referred as above.

Fig. 6.17 (a) If the head of a right handed screw
rotates with the body, the screw
advances in the direction of the angular
velocity ωωωωω. If the sense (clockwise or
anticlockwise) of rotation of the body

changes, so does the direction of ωωωωω.

Fig. 6.17 (b) The angular velocity vector ωωωωω is directed
along the fixed axis as shown. The linear
velocity of the particle at P is v = ωωωωω × r.
It is  perpendicular to both ω ω ω ω ω and r and
is  directed along the tangent to the circle

described by the particle.

We shall now look at what the vector
product ωωωωω × r corresponds to. Refer to Fig.
6.17(b) which is a part of Fig. 6.16 reproduced
to show the path of the particle P. The figure
shows the vector ωωωωω directed along the fixed (z–)

axis and also the position vector  r = OP  of the

particle at P of the rigid body with respect to
the origin O. Note that the origin is chosen to
be on the axis of rotation.
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Now ωωωωω × r = ωωωωω × OP = ωωωωω × (OC + CP)

But ωωωωω × OC = 0 0 0 0 0 as ω ω ω ω ω is along OC

Hence ωωωωω × r = ωωωωω × CP

The vector ωωωωω × CP is perpendicular to ωωωωω, i.e.

to the z-axis and also to CP, the radius of the

circle described by the particle at P. It is

therefore, along the tangent to the circle at P.

Also, the magnitude of  ωωωωω × CP is ω (CP) since

ωωωωω and CP are perpendicular to each other. We

shall denote CP by ⊥r  and not by r, as we did

earlier.

Thus, ωωωωω × r is a vector of magnitude ωr
⊥

and is along the tangent to the circle described
by the particle at P. The linear velocity vector v
at P has the same magnitude and direction.
Thus,

v = ω ω ω ω ω × r (6.20)

In fact, the relation, Eq. (6.20), holds good
even for rotation of a rigid body with one point
fixed, such as the rotation of the top [Fig. 6.6(a)].
In this case r represents the position vector of
the particle with respect to the fixed point taken
as the origin.

We note that for rotation about a fixed
axis, the direction of the vector ωωωωω does not
change with time. Its magnitude may,
however, change from instant to instant. For
the more general rotation, both the
magnitude and the direction of ω ω ω ω ω may change
from instant to instant.

6.6.1 Angular acceleration

You may have noticed that we are developing

the study of rotational motion along the lines

of the study of translational motion with which

we are already familiar. Analogous to the kinetic

variables of linear displacement (s) and velocity

(v) in translational motion, we have angular

displacement (θθθθθ) and angular velocity (ωωωωω) in

rotational motion. It is then natural to define

in rotational motion the concept of angular

acceleration in analogy with linear acceleration

defined as the time rate of change of velocity in

translational motion. We define angular

acceleration ααααα as the time rate of change of

angular velocity. Thus,

d

dt
=

ω
α (6.21)

If the axis of rotation is fixed, the direction
of ω ω ω ω ω and hence, that of ααααα is fixed. In this case
the vector equation reduces to a scalar equation

d

dt

ωα = (6.22)

6.7  TORQUE AND ANGULAR MOMENTUM

In this section, we shall acquaint ourselves with
two physical quantities (torque and angular
momentum) which are defined as vector products
of two vectors. These as we shall see, are
especially important in the discussion of motion
of systems of particles, particularly rigid bodies.

6.7.1 Moment of force (Torque)

We have learnt that the motion of a rigid body,

in general, is a combination of rotation and

translation. If the body is fixed at a point or along

a line, it has only rotational motion. We know

that force is needed to change the translational

state of a body, i.e. to produce linear

acceleration. We may then ask, what is the

analogue of force in the case of rotational

motion? To look into the question in a concrete

situation let us take the example of opening or

closing of a door. A door is a rigid body which

can rotate about a fixed vertical axis passing

through the hinges. What makes the door

rotate? It is clear that unless a force is applied

the door does not rotate. But any force does not

do the job. A force applied to the hinge line

cannot produce any rotation at all, whereas a

force of given magnitude applied at right angles

to the door at its outer edge is most effective in

producing rotation. It is not the force alone, but

how and where the force is applied is important

in rotational motion.

The rotational analogue of force in linear

motion is moment of force. It is also referred to

as torque or couple. (We shall use the words

moment of force and torque interchangeably.)

We shall first define the moment of force for the

special case of a single particle. Later on we

shall extend the concept to systems of particles

including rigid bodies. We shall also relate it to

a change in the state of rotational motion, i.e. is

angular acceleration of a rigid body.

2024-25



106 PHYSICS

Fig. 6.18 τ = τ = τ = τ = τ = r × F, τ τ τ τ τ is perpendicular to the plane

containing r and F, and its direction is

given by the right handed screw rule.

If a force acts on a single particle at a point
P whose position with respect to the origin O is
given by the position vector r (Fig. 6.18), the
moment of the force acting on the particle with
respect to the origin O is defined as the vector
product

τττττ = r × F (6.23)
The moment of force (or torque) is a vector

quantity. The symbol τ τ τ τ τ stands for the Greek
letter tau. The magnitude of τ τ τ τ τ is

τ = r F sinθ (6.24a)
where r is the magnitude of the position vector
r, i.e. the length OP, F is the magnitude of force
F and θ     is the angle between r and F as
shown.

Moment of force has dimensions M L2 T -2.
Its dimensions are the same as those of work
or energy. It is, however, a very different physical
quantity than work. Moment of a force is a
vector, while work is a scalar. The SI unit of
moment of force is newton metre (N m). The
magnitude of the moment of force may be
written

( sin )r F r Fτ θ
⊥

= = (6.24b)

or sinr F rFτ θ ⊥= = (6.24c)

where r
⊥
 = r sinθ is the perpendicular distance

of the line of action of F from the origin and
( sin )F F θ

⊥
= is the component of F in the

direction perpendicular to r. Note that τ = 0 if
r = 0, F = 0 or θ = 00 or 1800 . Thus, the moment
of a force vanishes if either the magnitude of
the force is zero, or if the line of action of the
force passes through the origin.

One may note that since  r × F is a vector
product, properties of a vector product of two
vectors apply to it. If the direction of F is
reversed, the direction of the moment of force
is reversed. If directions of both r and F are
reversed, the direction of the moment of force
remains the same.

6.7.2 Angular momentum of a particle

Just as the moment of a force is the rotational
analogue of force in linear motion, the quantity
angular momentum is the rotational analogue
of linear momentum. We shall first define
angular momentum for the special case of a
single particle and look at its usefulness in the
context of single particle motion. We shall then
extend the definition of angular momentum to
systems of particles including rigid bodies.

Like moment of a force, angular momentum
is also a vector product. It could also be referred
to as moment of (linear) momentum. From this
term one could guess how angular momentum
is defined.

Consider a particle of mass m and linear
momentum p at a position r relative to the origin
O. The angular momentum l of the particle with
respect to the origin O is defined to be

l = r × p (6.25a)
The magnitude of the angular momentum

vector is

sinl r p= θ (6.26a)

where p is the magnitude of p and θ is the angle
between r and p. We may write

l r p
⊥

=  or r p
⊥

                                  (6.26b)

where r
⊥
 (= r sinθ) is the perpendicular distance

of the directional line of  p from the origin and

( sin )p p θ
⊥

=  is the component of p in a direction

perpendicular to r. We expect the angular
momentum to be zero (l = 0), if the linear
momentum vanishes (p = 0), if the particle is at
the origin (r = 0), or if the directional line of  p
passes through the origin θ = 00 or 1800.
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The physical quantities, moment of a force
and angular momentum, have an important
relation between them. It is the rotational
analogue of the relation between force and linear
momentum. For deriving the relation in the
context of a single particle, we differentiate

l  = r × p with respect to time,

r p
d d

( )
d dt t

= ×
l

Applying the product rule for differentiation
to the right hand side,

r p
r p p r

d d d
( )

d d dt t t
× = × + ×

Now, the velocity of the particle is v = dr/dt
and p = m v

Because of this 
d

0,
d

m
t

× = × =
r

p v v

as the vector product of two parallel vectors
vanishes. Further, since dp / dt = F,

r
p

r F× = × =
d

dt
tt

Hence  
d

dt
( )r p× = τ

or  (6.27)

Thus, the time rate of change of the angular
momentum of a particle is equal to the torque
acting on it. This is the rotational analogue of
the equation F = dp/dt, which expresses
Newton’s second law for the translational motion
of a single particle.

Torque and angular momentum for a system
of particles

To get the total angular momentum of a system
of particles about a given point we need to add
vectorially the angular momenta of individual
particles. Thus, for a system of n particles,

The angular momentum of the ith   particle
is given by

l
i
 = r

i
 × p

i

where r
i
 is the position vector of the ith particle

with respect to a given origin and p = (m
i
v

i
) is

the linear momentum of the particle. (The

particle has mass m
i
 and velocity v

i
) We may

write the total angular momentum of a system
of particles as

(6.25b)

This is a generalisation of the definition of
angular momentum (Eq. 6.25a) for a single
particle to a system of particles.

Using Eqs. (6.23) and (6.25b), we get

An experiment with the bicycle rim

Take a
bicycle rim
and extend
its axle on
both sides.
T ie two
s t r i n g s
at both ends
A and B,
as shown
in the
a d j o i n i n g
figure.  Hold
both the
s t r i n g s
together in

one hand such that the rim is vertical. If you
leave one string, the rim will tilt. Now keeping
the rim in vertical position with both the strings
in one hand, put the wheel in fast rotation
around the axle with the other hand. Then leave
one string, say B, from your hand, and observe
what happens.

The rim keeps rotating in a vertical plane
and the plane of rotation turns around the string
A which you are holding. We say that the axis
of rotation of the rim or equivalently
its angular momentum precesses about the
string A.

The rotating rim gives rise to an angular
momentum. Determine the direction of this
angular momentum. When you are holding the
rotating rim with string A, a torque is generated.
(We leave it to you to find out how the torque is
generated and what its direction is.) The effect
of the torque on the angular momentum is to
make it precess around an axis perpendicular
to both the angular momentum and the torque.
Verify all these statements.

Initially After
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u

u

d

d

d

d

d

d

L

t t t
ii

= ( ) = = ∑∑l
l

τ (6.28a)

where τττττ
i 
is the torque acting on the ith particle;

i i i
= ×r Fτ

The force F
i 
on the ith particle is the vector

sum of external forces 
F

i

ext

 acting on the particle

and the internal forces int

i
F  exerted on it by the

other particles of the system. We may therefore
separate the contribution of the external and
the internal forces to the total torque

= = ×∑ ∑i

i

i

i

i
r Fτ        τ  as

= +ext intτ    τ       τ ,

where    ext i i

ext

i

= ×∑ r Fτ

and int

int= ×∑ r F
i i

i

τ

We shall assume not only Newton’s third law

of motion, i.e. the forces between any two particles

of the system are equal and opposite, but also that

these forces are directed along the line joining the

two particles. In this case the contribution of the

internal forces to the total torque on the system is

zero, since the torque resulting from each action-

reaction pair of forces is zero. We thus have, τττττ
int

 =

0 and therefore τττττ
 
 = τ τ τ τ τ

ext
.

Since = ∑ i
τ        τ , it follows from Eq. (6.28a)

that

d

d

L

t
ext

= τ (6.28 b)

Thus, the time rate of the total angular
momentum of a system of particles about a
point (taken as the origin of our frame of

reference) is equal to the sum of the external
torques (i.e. the torques due to external forces)
acting on the system taken about the same
point. Eq. (6.28 b) is the generalisation of the

single particle case of Eq. (6.23) to a system of
particles. Note that when we have only one
particle, there are no internal forces or torques.
Eq.(6.28 b) is the rotational analogue of

d

d

P
F

t
ext

= (6.17)

Note that like Eq.(6.17), Eq.(6.28b) holds

good for any system of particles, whether it is a

rigid body or its individual particles have all

kinds of internal motion.

Conservation of angular momentum

If τττττ
ext 

= 0, Eq. (6.28b) reduces to

Ld
0

dt
=

or         L = constant. (6.29a)
Thus, if the total external torque on a system

of particles is zero, then the total angular
momentum of the system is conserved, i.e.
remains constant. Eq. (6.29a) is equivalent to
three scalar equations,

L
x
 = K

1
, L

y
 = K

2
 and L

z
 = K

3
(6.29 b)

Here K
1
, K

2
 and K

3
 are constants; L

x
, L

y
 and

L
z
 are the components of the total angular

momentum vector L along the x,y and z axes
respectively. The statement that the total
angular momentum is conserved means that
each of these three components is conserved.

Eq. (6.29a) is the rotational analogue of
Eq. (6.18a), i.e. the conservation law of the total
linear momentum for a system of  particles.
Like Eq. (6.18a), it has applications in many
practical situations. We shall look at a few of
the interesting applications later on in
this chapter.

Example 6.5  Find the torque of a force  

+  –  about the origin. The force acts on

a particle whose position vector is  .

Answer  Here  r i j kˆ ˆ ˆ= − +

    and F i j kˆ ˆ ˆ7 3 5= + − .

We shall use the determinant rule to find the

torque τ = r × F

or ⊳

Example 6.6  Show that the angular
momentum about any point of a single
particle moving with constant velocity
remains constant throughout the motion.
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Answer Let the particle with velocity v  be at
point P  at some instant t. We want to calculate
the angular momentum of the particle about an
arbitrary point O.

Fig 6.19

The angular momentum is l = r × mv. Its
magnitude is mvr sinθ, where θ is the angle
between r and v as shown in Fig. 6.19. Although
the particle changes position with time, the line
of direction of v remains the same and hence
OM = r sin θ. is a constant.

Further, the direction of l is perpendicular
to the plane of r and v. It is into the page of the
figure.This direction does not change with time.

Thus, l remains the same in magnitude and
direction and is therefore conserved. Is there
any external torque on the particle? ⊳

6.8  EQUILIBRIUM OF A RIGID BODY

We are now going to concentrate on the motion
of rigid bodies rather than on the motion of
general systems of particles.

We shall recapitulate what effect the
external forces have on a rigid body. (Henceforth
we shall omit the adjective ‘external’ because
unless stated otherwise, we shall deal with only
external forces and torques.) The forces change
the translational state of the motion of the rigid
body, i.e. they change its total l inear
momentum in accordance with Eq. (6.17). But
this is not the only effect the forces have. The
total torque on the body may not vanish. Such
a torque changes the rotational state of motion
of the rigid body, i.e. it changes the total angular
momentum of the body in accordance with
Eq. (6.28 b).

A rigid body is said to be in mechanical
equilibrium, if both its linear momentum and
angular momentum are not changing with time,
or equivalently, the body has neither linear

acceleration nor angular acceleration. This means
(1) the total force, i.e. the vector sum of the

forces, on the rigid body is zero;

F F F F
1 2

1

+ + + = =
=
∑...

n i

i

n

0 (6.30a)

If the total force on the body is zero, then
the total linear momentum of the body does
not change with time. Eq. (6.30a) gives the
condition for the translational equilibrium
of the body.

(2) The total torque, i.e. the vector sum of the
torques on the rigid body is zero,

1 2
1

+ + + = =
=
∑...

n i

i

n

0τ     τ           τ          τ (6.30b)

If the total torque on the rigid body is zero,
the total angular momentum of the body does
not change with time. Eq. (6.30 b) gives the
condition for the rotational equilibrium of the

body.

One may raise a question, whether the

rotational equilibrium condition [Eq. 6.30(b)]

remains valid, if the origin with respect to which

the torques are taken is shifted. One can show

that if the translational equilibrium condition

[Eq. 6.30(a)] holds for a rigid body, then such a

shift of origin does not matter, i.e. the rotational

equilibrium condition is independent of the

location of the origin about which the torques

are taken. Example 6.7 gives a proof of this result

in a special case of a couple, i.e. two forces

acting on a rigid body in translational

equilibrium. The generalisation of this result to

n forces is left as an exercise.

Eq. (6.30a) and Eq. (6.30b), both, are vector

equations. They are equivalent to three scalar
equations each. Eq. (6.30a) corresponds to

F
ix

i

n

=
=
∑ 0

1

, F
iy

i

n

=
=
∑ 0

1

 and F
iz

i

n

=
=
∑ 0

1

  (6.31a)

where F
ix
, F

iy
 and F

iz
 are respectively the x, y and

z components of the forces F
i
. Similarly, Eq.

(6.30b) is equivalent to three scalar equations

ix

i

n

=
=
∑ 0

1

τ , iy

i

n

=
=
∑ 0

1

τ  and       (6.31b)

where τ
ix
, τ

iy
  and  τ

iz 
are respectively the x, y and

z components of the torque τττττ
i
 .

Eq. (6.31a) and (6.31b) give six independent
conditions to be satisfied for mechanical
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equilibrium of a rigid body. In a number of
problems all the forces acting on the body are
coplanar. Then we need only three conditions
to be satisfied for mechanical equilibrium. Two
of these conditions correspond to translational
equilibrium; the sum of the components of the
forces along any two perpendicular axes in the
plane must be zero. The third condition
corresponds to rotational equilibrium. The sum
of the components of the torques along any axis
perpendicular to the plane of the forces must
be zero.

The conditions of equilibrium of a rigid body
may be compared with those for a particle, which
we considered in earlier chapters. Since
consideration of rotational motion does not apply
to a particle, only the conditions for translational
equilibrium (Eq. 6.30 a) apply to a particle. Thus,
for equilibrium of a particle the vector sum of
all the forces on it must be zero. Since all these
forces act on the single particle, they must be
concurrent. Equilibrium under concurrent
forces was discussed in the earlier chapters.

A body may be in partial equilibrium, i.e., it
may be in translational equilibrium and not in
rotational equilibrium, or it may be in rotational
equilibrium and not in translational
equilibrium.

Consider a light (i.e. of negligible mass) rod
(AB) as shown in Fig. 6.20(a). At the two ends (A
and B) of which two parallel forces, both  equal
in magnitude and acting along same direction
are applied perpendicular to the rod.

Fig. 6.20 (a)

Let C be the midpoint of AB, CA = CB = a.
the moment of the forces at A and B will both
be equal in magnitude (aF ), but opposite in
sense as shown. The net moment on the rod will
be zero. The system will be in rotational
equilibrium, but it will not be in translational

equilibrium; F 0≠∑

Fig. 6.20 (b)

The force at B in Fig. 6.20(a) is reversed in
Fig. 6.20(b). Thus, we have the same rod with
two forces of equal magnitude but acting in
opposite diretions applied perpendicular to the
rod, one at end A and the other at end B. Here
the moments of both the forces are equal, but
they are not opposite; they act in the same sense
and cause anticlockwise rotation of the rod.  The
total force on the body is zero; so the body is in
translational equilibrium; but it is not in
rotational equilibrium. Although the rod is not
fixed in any way, it undergoes pure rotation (i.e.
rotation without translation).

A pair of forces of equal magnitude but acting
in opposite directions with different lines of
action is known as a couple or torque. A couple
produces rotation without translation.

When we open the lid of a bottle by turning
it, our fingers are applying a couple to the lid
[Fig. 6.21(a)]. Another known example is a
compass needle in the earth’s magnetic field as
shown in the Fig. 6.21(b). The earth’s magnetic
field exerts equal forces on the north and south
poles. The force on the North Pole is towards
the north, and the force on the South Pole is
toward the south. Except when the needle points
in the north-south direction; the two forces do
not have the same line of action. Thus there is
a couple acting on the needle due to the earth’s
magnetic field.

Fig. 6.21(a) Our fingers apply a couple to turn
the lid.
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u

Fig. 6.21(b) The Earth’s magnetic field exerts equal
and opposite forces on the poles of a
compass needle. These two  forces form
a couple.

Example 6.7  Show that moment of a
couple does not depend on the point about
which you take the moments.

Answer

Fig. 6.22

Consider a couple as shown in Fig. 6.22
acting on a rigid body. The forces F and -F act
respectively at points B and A. These points have
position vectors r1 and r2 with respect to origin
O. Let us take the moments of the forces about
the origin.

The moment of the couple = sum of the
moments of the two forces making the couple

= r1 
× (–F) + r2 

× F
= r2 

× F – r1 
× F

= (r2–r1) 
× F

But r1 + AB = r2, and hence AB = r2 – r1.
The moment of the couple, therefore, is

AB
 
× F.
Clearly this is independent of the origin, the

point about which we took the moments of the
forces. ⊳

6.8.1 Principle of moments

An ideal lever is essentially a light (i.e. of
negligible mass) rod pivoted at a point along its

length. This point is called the fulcrum. A see-
saw on the children’s playground is a typical
example of a lever. Two forces F1 and F2, parallel
to each other and usually perpendicular to the
lever, as shown here, act on the lever at
distances d1 and d2 respectively from the fulcrum
as shown in Fig. 6.23.

Fig. 6.23

The lever is a system in mechanical
equilibrium. Let R be the reaction of the support
at the fulcrum; R is directed opposite to the
forces  F1 and F2. For translational equilibrium,

R – F1 – F2 = 0 (i)

For considering rotational equilibrium we
take the moments about the fulcrum; the sum
of moments must be zero,

d1F1 – d2F2 = 0 (ii)
Normally the anticlockwise (clockwise)

moments are taken to be positive (negative). Note
R acts at the fulcrum itself and has zero moment
about the fulcrum.

In the case of the lever force F1 is usually
some weight to be lifted. It is called the load and
its distance from the fulcrum d1 is called the
load arm. Force F2 is the effort applied to lift the
load; distance d2 of the effort from the fulcrum
is the effort arm.

Eq. (ii) can be written as
d

1
F1 = d2 F2 (6.32a)

or load arm
 
× load = effort arm

 
× effort

The above equation expresses the principle
of moments for a lever. Incidentally the ratio
F1/F2 is called the Mechanical Advantage (M.A.);

M.A. =
1 2

2 1

F d

F d
= (6.32b)

If the effort arm d2 is larger than the load
arm, the mechanical advantage is greater than
one. Mechanical advantage greater than one
means that a small effort can be used to lift a
large load. There are several examples of a lever
around you besides the see-saw. The beam of a
balance is a lever. Try to find more such
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examples and identify the fulcrum, the effort and
effort arm, and the load and the load arm of the
lever in each case.

You may easily show that the principle of
moment holds even when the parallel forces  F

1

and F
2 
are not perpendicular, but act at some

angle, to the lever.

6.8.2 Centre of gravity

Many of you may have the experience of
balancing your notebook on the tip of a finger.
Figure 6.24 illustrates a similar experiment that
you can easily perform. Take an irregular-
shaped cardboard having mass M and a narrow
tipped object like a pencil. You can locate by trial
and error a point G on the cardboard where it
can be balanced on the tip of the pencil. (The
cardboard remains horizontal in this position.)
This point of balance is the centre of gravity (CG)
of the cardboard. The tip of the pencil provides
a vertically upward force due to which the
cardboard is in mechanical equilibrium. As
shown in the Fig. 6.24, the reaction of the tip is
equal and opposite to Mg and hence the
cardboard is in translational equilibrium. It is
also in rotational equilibrium; if it were not so,
due to the unbalanced torque it would tilt and
fall. There are torques on the card board due to
the forces of gravity like m

1
g, m

2
g ….  etc, acting

on the individual particles that make up the
cardboard.

Fig. 6.24 Balancing a cardboard on the tip of a
pencil. The point of support, G, is the

centre of gravity.

The CG of the cardboard is so located that
the total torque on it due to the forces m

1
g, m

2
g

….  etc. is zero.
If  r

i
 is the position vector of the ith particle

of an extended body with respect to its CG, then
the torque about the CG, due to the force of
gravity on the particle  is τττττ

i 
= r

i
 × m

i 
g. The total

gravitational torque about the CG is zero, i.e.

ττ ττ
g

i
i i

m= = × =∑ ∑ r g 0 (6.33)

We may therefore, define the CG of a body
as that point where the total gravitational torque
on the body is zero.

We notice that in Eq. (6.33), g is the same
for all particles, and hence it comes out of the
summation. This gives, since g is non-zero,

∑m
i i
r  = 0. Remember that the position vectors

(r
i
) are taken with respect to the CG. Now, in

accordance with the reasoning given below
Eq. (6.4a) in Sec. 6.2, if the sum is zero, the origin
must be the centre of mass of the body. Thus,
the centre of gravity of the body coincides with
the centre of mass in uniform gravity or gravity-

Fig. 6.25 Determining the centre of gravity of a body
of irregular shape. The centre of gravity G
lies on the vertical AA

1
 through the point

of suspension of the body A.
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free space. We note that this is true because
the body being small,  g does not
vary from one point of the body to the other. If
the body is so extended that g varies from part
to part of the body, then the centre of gravity
and centre of mass will not coincide. Basically,
the two are different concepts. The centre of
mass has nothing to do with gravity. It depends
only on the distribution of mass of the body.

In Sec. 6.2 we found out the position of the
centre of mass of several regular, homogeneous
objects. Obviously the method used there gives
us also the centre of gravity of these bodies, if
they are small enough.

Figure 6.25 illustrates another way of
determining the CG of an irregular shaped body
like a cardboard. If you suspend the body from
some point like A, the vertical line through A
passes through the CG. We mark the vertical
AA1. We then suspend the body through other
points like B and C. The intersection of the
verticals gives the CG. Explain why the method
works. Since the body is small enough, the
method allows us to determine also its centre
of mass.

Example 6.8   A metal bar 70 cm long and
4.00 kg in mass supported on two knife-
edges placed 10 cm from each end. A 6.00
kg load is suspended at 30 cm from one
end. Find the reactions at the knife-edges.
(Assume the bar to be of uniform cross
section and homogeneous.)

Answer

Fig. 6.26

Figure 6.26 shows the rod AB, the positions
of the knife edges K1 and K2 , the centre of
gravity of the rod at G and the suspended load
at P.

Note the weight of the rod W acts at its
centre of gravity G. The rod is uniform in cross
section and homogeneous; hence G is at the
centre of the rod; AB = 70 cm. AG = 35 cm, AP

= 30 cm, PG = 5 cm, AK1= BK2 = 10 cm and K1G =
K2G = 25 cm. Also, W= weight of the rod = 4.00
kg and W1= suspended load = 6.00 kg;
R1 and R2 are the normal reactions of the
support at the knife edges.

For translational equilibrium of the rod,
R1+R2 

–W1 
–W = 0 (i)

Note W1 and W act vertically down and R1

and R2 act vertically up.
For considering rotational equilibrium, we

take moments of the forces. A convenient point
to take moments about is G. The moments of
R2 and W1 are anticlockwise (+ve), whereas the
moment of R1 is clockwise (-ve).

For rotational equilibrium,
–R1 (K1G) + W1 (PG) + R2 (K2G) = 0 (ii)
It is given that W = 4.00g N and W1 = 6.00g

N, where g = acceleration due to gravity. We
take g = 9.8 m/s2.

With numerical values inserted, from (i)
R1 + R2 – 4.00g – 6.00g = 0
or R1 + R2 = 10.00g  N (iii)
               = 98.00 N
From (ii), – 0.25 R1 + 0.05 W1 + 0.25 R2 = 0
or R1 – R2 = 1.2g  N = 11.76 N (iv)
From (iii) and (iv), R1 = 54.88 N,

R2 = 43.12 N
Thus the reactions of the support are about

55 N at K1 and 43 N at K2.   ⊳

Example 6.9  A 3m long ladder weighing
20 kg leans on a frictionless wall. Its feet
rest on the floor 1 m from the wall as shown
in Fig.6.27. Find the reaction forces of the
wall and the floor.

Answer

Fig. 6.27
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The ladder AB is 3 m long, its foot A is at
distance AC = 1 m from the wall. From

Pythagoras theorem, BC = 2 2  m. The forces
on the ladder are its weight W acting at its centre
of gravity D, reaction forces F1 and F2 of the wall
and the floor respectively. Force F1 is
perpendicular to the wall, since the wall is
frictionless. Force F2  is resolved into two
components, the normal reaction N and the
force of friction F. Note that F prevents the ladder
from sliding away from the wall and is therefore
directed toward the wall.

For translational equilibrium, taking the
forces in the vertical direction,

N – W = 0 (i)
Taking the forces in the horizontal direction,
F – F1 = 0 (ii)
For rotational equilibrium, taking the

moments of the forces about A,

12 2 F − (1/2) W = 0 (iii)

Now W = 20 g = 20 × 9.8 N = 196.0 N
From (i) N = 196.0 N

From (iii)
1 4 2 196.0/4 2 34.6 NF W= = =

From (ii) 1 34.6 NF F= =

               2 2
2 199.0F F N= + = N

The force F2 makes an angle α with the
horizontal,

1tan 4 2 , tan (4 2) 80N Fα α −= = = ≈ �    ⊳

6.9  MOMENT OF INERTIA

We have already mentioned that we are
developing the study of rotational motion parallel
to the study of translational motion with which
we are familiar. We have yet to answer one major
question in this connection. What is the

analogue of mass in rotational motion? We shall
attempt to answer this question in the present
section. To keep the discussion simple, we shall
consider rotation about a fixed axis only. Let us
try to get an expression for the kinetic energy of

a rotating body. We know that for a body rotating
about a fixed axis, each particle of the body moves
in a circle with linear velocity given by Eq. (6.19).
(Refer to Fig. 6.16). For a particle at a distance

from the axis, the linear velocity is i irυ ω= . The
kinetic energy of motion of this particle is

2 2 21 1

2 2
i i i i ik m m rυ ω= =

where m
i is the mass of the particle. The total

kinetic energy K of the body is then given by
the sum of the kinetic energies of individual
particles,

2 2

1 1

1
( )

2

n n

i i i

i i

K k m r ω
= =

= =∑ ∑

Here n is the number of particles in the body.
Note ω is the same for all particles. Hence, taking
ω out of the sum,

2 2

1

1
( )

2

n

i i

i

K m rω
=

= ∑

We define a new parameter characterising
the rigid body, called the moment of inertia I ,
given by

2

1

n

i i

i

I m r
=

= ∑ (6.34)

With this definition,

21

2
K Iω= (6.35)

Note that the parameter I is independent of
the magnitude of the angular velocity. It is a
characteristic of the rigid body and the axis
about which it rotates.

Compare Eq. (6.35) for the kinetic energy of
a rotating body with the expression for the
kinetic energy of a body in linear (translational)
motion,

21

2
K m υ=

Here, m is the mass of the body and v is its
velocity. We have already noted the analogy
between angular velocity ω (in respect of
rotational motion about a fixed axis) and linear
velocity v (in respect of linear motion). It is then
evident that the parameter, moment of inertia
I, is the desired rotational analogue of mass in
linear motion. In rotation (about a fixed axis),
the moment of inertia plays a similar role as
mass does in linear motion.

We now apply the definition Eq. (6.34), to
calculate the moment of inertia in two simple cases.
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(a) Consider a thin ring of radius R and mass
M, rotating in its own plane around its centre
with angular velocity ω. Each mass element
of the ring is at a distance R from the axis,
and moves with a speed Rω.  The kinetic
energy is therefore,

2 2 21 1

2 2
K M MRυ ω= =

Comparing with Eq. (6.35) we get I = MR 2

for the ring.

Fig. 6.28 A light rod of length l with a pair of
masses rotating about an axis through
the centre of mass of the system and
perpendicular to the rod. The total mass
of the system is M.

(b) Next, take a rigid rod of negligible mass of
length of length l with a pair of small masses,
rotating about an axis through the centre of
mass perpendicular to the rod (Fig. 6.28).
Each mass M/2 is at a distance l/2 from
the axis. The moment of inertia of the masses
is therefore given by

(M/2) (l/2)2 + (M/2)(l/2)2

Thus, for the pair of masses, rotating about
the axis through the centre of mass
perpendicular to the rod

I = Ml 2 / 4
Table 6.1 simply gives the moment of inertia of
various familiar regular shaped bodies about
specific axes. (The derivations of these
expressions are beyond the scope of this
textbook and you will study them in higher
classes.)

As the mass of a body resists a change in its
state of linear motion, it is a measure of its inertia
in linear motion. Similarly, as the moment of
inertia about a given axis of rotation resists a

change in its rotational motion, it can be
regarded as a measure of rotational inertia of
the body; it is a measure of the way in which
different parts of the body are distributed at
different distances from the axis. Unlike the
mass of a body, the moment of inertia is not a
fixed quantity but depends on distribution of
mass about the axis of rotation, and the
orientation and position of the axis of rotation
with respect to the body as a whole. As a
measure of the way in which the mass of a
rotating rigid body is distributed with respect to
the axis of rotation, we can define a new
parameter, the radius of gyration. It is related
to the moment of inertia and the total mass of
the body.

Notice from the Table 6.1 that in all
cases, we can write I = Mk2, where k has
the dimension of length. For a rod, about
the perpendicular axis at its midpoint,

i.e.2 2 12,k L=  = 12k L . Similarly, k = R/2
for the circular disc about its diameter. The
length k is a geometric property of the body and
axis of rotation. It is called the radius of
gyration. The radius of gyration of a body
about an axis may be defined as the distance
from the axis of a mass point whose mass is
equal to the mass of the whole body and whose
moment of inertia is equal to the moment of
inertia of the body about the axis.

Thus, the moment of inertia of a rigid body
depends on the mass of the body, its shape and
size; distribution of mass about the axis of
rotation, and the position and orientation of the
axis of rotation.

From the definition, Eq. (6.34), we can infer
that the dimensions of moments of inertia are
ML2 and its SI units are kg m2.

The property of this extremely important
quantity I, as a measure of rotational inertia of
the body, has been put to a great practical use.
The machines, such as steam engine and the
automobile engine, etc., that produce rotational
motion have a disc with a large moment of
inertia, called a flywheel. Because of its large
moment of inertia, the flywheel resists the
sudden increase or decrease of the speed of the
vehicle. It allows a gradual change in the speed
and prevents jerky motions, thereby ensuring
a smooth ride for the passengers on the vehicle.
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6.10 KINEMATICS OF ROTATIONAL MOTION
ABOUT A FIXED AXIS

We have already indicated the analogy between

rotational motion and translational motion. For

example, the angular velocity ωωωωω plays the same

role in rotation as the linear velocity v in

translation. We wish to take this analogy further.

In doing so we shall restrict the discussion only

to rotation about fixed axis. This case of motion

involves only one degree of freedom, i.e., needs

only one independent variable to describe the

motion. This in translation corresponds to linear

Table 6.1 Moments of inertia of some regular shaped bodies about specific axes

Z Body Axis Figure I

(1) Thin circular Perpendicular to M R 2

ring, radius R plane, at centre

(2) Thin circular Diameter M R2/2

ring, radius R

(3) Thin rod, Perpendicular to M L2/12

length  L rod, at mid point

(4) Circular disc, Perpendicular to M R2/2

radius R disc at centre

(5) Circular disc, Diameter M R2/4

radius R

(6) Hollow cylinder, Axis of cylinder M R2

radius R

(7) Solid cylinder, Axis of cylinder M R2/2

radius R

(8) Solid sphere, Diameter 2 M R2/5

radius R
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motion. This section is limited only to kinematics.
We shall turn to dynamics in later sections.

We recall that for specifying the angular
displacement of the rotating body we take any
particle like P (Fig.6.29) of the body. Its angular
displacement θ in the plane it moves is the
angular displacement of the whole body; θ is
measured from a fixed direction in the plane of
motion of P, which we take to be the x′-axis,
chosen parallel to the x-axis. Note, as shown,
the axis of rotation is the z – axis and the plane
of the motion of the particle is the x - y plane.
Fig. 6.29 also shows θ0, the angular
displacement at t = 0.

We also recall that the angular velocity is
the time rate of change of angular displacement,
ω = dθ/dt. Note since the axis of rotation is fixed,
there is no need to treat angular velocity as a
vector. Further, the angular acceleration, α =
dω/dt.

The kinematical quantities in rotational
motion, angular displacement (θ), angular
velocity (ω) and angular acceleration (α)
respectively are analogous to kinematic
quantities in linear motion, displacement (x ),
velocity (v) and acceleration (a). We know the
kinematical equations of linear motion with
uniform (i.e. constant) acceleration:

v = v0 + at (a)

2
0 0

1

2
x x t atυ= + + (b)

2 2
0 2axυ υ= + (c)

where x0 = initial displacement and v0= initial
velocity. The word ‘initial’ refers to values of the
quantities at t = 0

The corresponding kinematic equations for
rotational motion with uniform angular
acceleration are:

0 t= +ω ω α (6.36)

2
0 0

1

2
t t= + +θ θ ω α (6.37)

and 2 2
0 02 ( – )= +ω ω α θ θ (6.38)

where θ0= initial angular displacement of the
rotating body, and ω0 = initial angular velocity
of the body.

Fig.6.29 Specifying the angular position of a rigid

body.

Example 6.10 Obtain Eq. (6.36) from first
principles.

Answer   The angular acceleration is uniform,
hence

d

d
constant

t

ω α= = (i)

Integrating this equation,

ω α= +∫ dt c

   (as is constant)t cα α= +
At t = 0,  ω = ω0 (given)
From (i) we get at t = 0, ω = c = ω0

Thus, ω = αt + ω0  as required.
With the definition of ω = dθ/dt we may

integrate Eq. (6.36) to get Eq. (6.37). This
derivation and the derivation of Eq. (6.38) is left
as an exercise.

Example 6.11  The angular speed of a
motor wheel is increased from 1200 rpm to
3120 rpm in 16 seconds. (i) What is its
angular acceleration, assuming the
acceleration to be uniform? (ii) How many
revolutions does the engine make during
this time?

Answer
(i) We shall use ω = ω0 + αt

ω0 =  initial angular speed in rad/s
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=  2π × angular speed in rev/s

=  
2 angular speed in rev/min 

60 s/min

π ×

=  
2 1200 

rad/s
60

π ×

= 40π  rad/s

Similarly ω = final angular speed in rad/s

= 
2 3120 

rad/s
60

π ×

= 2π × 52 rad/s

= 104 π rad/s

∴ Angular acceleration

0

t

ω ω
α

−
= = 4 π  rad/s2

The angular acceleration of the engine

= 4π rad/s2

(ii) The angular displacement in time t is
given by

2
0

1

2
t tθ ω α= +

21
(40 16 4 16 )

2
π π= × + × ×  rad

(640 512 )π π= +  rad

= 1152π rad

Number of revolutions = 
1152

576
2

π

π
=      ⊳

6.11 DYNAMICS OF ROTATIONAL MOTION
ABOUT A FIXED AXIS

Table 6.2 lists quantities associated with linear
motion and their analogues in rotational
motion. We have already compared kinematics
of the two motions. Also, we know that in
rotational motion moment of inertia and torque
play the same role as mass and force
respectively in linear motion. Given this we
should be able to guess what the other
analogues indicated in the table are. For
example, we know that in linear motion, work
done is given by F dx, in rotational motion about

a fixed axis it should be dτ θ , since we already

know the correspondence d dx θ→  and F τ→ .

It is, however, necessary that these
correspondences are established on sound
dynamical considerations. This is what we now
turn to.

Before we begin, we note a simplification
that arises in the case of rotational motion
about a fixed axis. Since the axis is fixed, only

those components of torques, which are along

the direction of the fixed axis need to be

considered in our discussion. Only these

components can cause the body to rotate about

the axis. A component of the torque
perpendicular to the axis of rotation will tend to

turn the axis from its position. We specifically

assume that there will arise necessary forces of

constraint to cancel the effect of the

perpendicular components of the (external)

torques, so that the fixed position of the axis
will be maintained. The perpendicular

components of the torques, therefore need not

be taken into account. This means that for our

calculation of torques on a rigid body:
(1) We need to consider only those forces that

lie in planes perpendicular to the axis.
Forces which are parallel to the axis will give
torques perpendicular to the axis and need
not be taken into account.

(2) We need to consider only those components

of the position vectors which are
perpendicular to the axis. Components of

position vectors along the axis will result in

torques perpendicular to the axis and need

not be taken into account.

Work done by a torque

Fig. 6.30 Work done by a force F
1 

acting on a
particle of a body rotating about a fixed
axis; the particle describes a circular path
with centre C on the axis;  arc P

1
P′

1
(ds

1
)

gives the displacement of the particle.
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Figure 6.30 shows a cross-section of a rigid

body rotating about a fixed axis, which is taken

as the z-axis (perpendicular to the plane of the

page; see Fig. 6.29). As said above we need to

consider only those forces which lie in planes

perpendicular to the axis. Let F
1
 be one such

typical force acting as shown on a particle of

the body at point P
1
 with its line of action in a

plane perpendicular to the axis. For convenience

we call  this to be the x′–y′ plane (coincident

with the plane of the page). The particle at P
1

describes a circular path of radius r
1
 with centre

C on the axis; CP
1
 = r

1
.

In time ∆t, the point moves to the position
P

1
′. The displacement of the particle ds

1
,

therefore, has magnitude ds
1
 = r

1
dθ and

direction tangential at P
1
 to the circular path

as shown. Here dθ is the angular displacement

of the particle, dθ = 1 1P CP∠ ′ .The work done by

the force on the particle is

dW
1
 = F

1
. ds

1
= F

1
ds

1
 cosφ

1
= F

1
(r

1 
dθ)sinα

1

where φ
1
 is the angle between F

1
 and the tangent

at P
1,
 and α

1
 is the angle between  F

1 
and the

radius vector OP
1
; φ

1
 + α

1
 = 90°.

The torque due to F
1 

about the origin is
OP

1 
× F

1
. Now OP

1
 = OC + OP

1
. [Refer to

Fig. 6.17(b).] Since OC is along the axis, the torque
resulting from it is excluded from our
consideration. The effective torque due to F

1
 is

τττττ
1
= CP × F

1
; it is directed along the axis of rotation

and has a magnitude τ
1
= r

1
F

1 
sinα , Therefore,

dW
1
 = τ

1
dθ

If there are more than one forces acting on
the body, the work done by all of them can be
added to give the total work done on the body.
Denoting the magnitudes of the torques due to
the different forces as τ

1
, τ

2
, …  etc,

1 2d ( ...)dW τ τ θ= + +

Remember, the forces giving rise to the
torques act on different particles, but the
angular displacement dθ is the same for all
particles. Since all the torques considered are
parallel to the fixed axis, the magnitude τ of the
total torque is just the algebraic sum of the
magnitudes of the torques, i.e., τ = τ

1 
+ τ

2
 + .....

We, therefore, have

d dW τ θ= (6.39)

This expression gives the work done by the
total (external) torque τ which acts on the body
rotating about a fixed axis. Its similarity with
the corresponding expression

dW= F ds

for linear (translational) motion is obvious.
Dividing both sides of Eq. (6.39) by dt gives

d d

d d

W
P

t t

θτ τω= = =

or P τω= (6.40)

This is the instantaneous power. Compare
this expression for power in the case of rotational
motion about a fixed axis with that of power in
the case of linear motion,

P = Fv

In a perfectly rigid body there is no internal
motion. The work done by external torques is

Table 6.2 Comparison of Translational and Rotational Motion

Linear Motion Rotational Motion about a Fixed Axis

1 Displacement x Angular displacement θ

2 Velocity v = dx/dt Angular velocity ω = dθ/dt

3 Acceleration a = dv/dt Angular acceleration α = dω/dt

4 Mass M Moment of inertia I

5 Force F = Ma Torque τ = I α

6 Work dW = F ds Work W = τ dθ

7 Kinetic energy K = Mv2/2 Kinetic energy K = Iω2/2

8 Power P = F v Power P = τω

9 Linear momentum p = Mv Angular momentum L = Iω
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therefore, not dissipated and goes on to increase
the kinetic energy of the body. The rate at which
work is done on the body is given by Eq. (6.40).
This is to be equated to the rate at which kinetic
energy increases. The rate of increase of kinetic
energy is

d

d

d

dt

I
I

t

ω ω ω
2

2

2

2







= ( )

We assume that the moment of inertia does
not change with time. This means that the mass
of the body does not change, the body remains
rigid and also the axis does not change its
position with respect to the body.

Since d /d ,tα ω=  we get

d

dt

I
I

ω
ω α

2

2







=

Equating rates of work done and of increase
in kinetic energy,

Iτω ω α=

Iτ α= (6.41)
Eq. (6.41) is similar to Newton’s second law

for linear motion expressed symbolically as
F = ma
Just as force produces acceleration, torque

produces angular acceleration in a body. The
angular acceleration is directly proportional to
the applied torque and is inversely proportional
to the moment of inertia of the body. In this
respect, Eq.(6.41) can be called Newton’s second
law for rotational motion about a fixed axis.

Example 6.12  A cord of negligible mass is
wound round the rim of a fly wheel of mass
20 kg and radius 20 cm. A steady pull of
25 N is applied on the cord as shown in
Fig. 6.31. The flywheel is mounted on a
horizontal axle with frictionless bearings.

(a) Compute the angular acceleration of
the wheel.

(b) Find the work done by the pull, when
2m of the cord is unwound.

(c) Find also the kinetic energy of the
wheel at this point. Assume that the
wheel starts from rest.

(d) Compare answers to parts (b) and (c).

Answer

Fig. 6.31

(a) We use I α = τ
the torque τ = F R

= 25 × 0.20 Nm (as R = 0.20m)
                        = 5.0 Nm

I = Moment of inertia of flywheel about its

axis 
2

2

MR
=

= 
220.0 (0.2)

2

×
 = 0.4 kg m2

α = angular acceleration
   = 5.0 N m/0.4 kg m2 = 12.5 s–2

(b) Work done by the pull unwinding 2m of the
cord
= 25 N × 2m = 50 J

(c) Let ω be the final angular velocity. The

kinetic energy gained =  
21

2
Iω ,

since the wheel starts from rest. Now,
2 2

0 02 , 0ω ω αθ ω= + =

The angular displacement θ = length of
unwound string / radius of wheel
= 2m/0.2 m = 10 rad

ω
2 22 12 5 10 0 250= × × =. . )(rad/s

∴

(d) The answers are the same, i.e. the kinetic energy
gained by the wheel = work   done by the force.
There is no loss of energy due to friction.   ⊳
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6.12 ANGULAR MOMENTUM IN CASE OF

ROTATION ABOUT A FIXED AXIS

We have studied in section 6.7, the angular
momentum of a system of particles. We already
know from there that the time rate of total
angular momentum of a system of particles
about a point is equal to the total external torque
on the system taken about the same point. When
the total external torque is zero, the total angular
momentum of the system is conserved.

We now wish to study the angular momentum
in the special case of rotation about a fixed axis.
The general expression for the total angular
momentum of the system of n particles is

L r p= ×
=
∑ i i

i

N

1

(6.25b)

We first consider the angular momentum of
a typical particle of the rotating rigid body. We
then sum up the contributions of individual
particles to get L of the whole body.

For a typical particle l = r × p. As seen in the
last section r = OP = OC + CP [Fig. 6.17(b)]. With
p = m v ,

( ) ( )= × + ×OC v CP vm ml

The magnitude of the linear velocity v of the
particle at P is given by v = ωr

⊥
 where r

⊥
 is the

length of CP or the perpendicular distance of P
from the axis of rotation. Further, v is tangential
at P to the circle which the particle describes.
Using the right-hand rule one can check that
CP × v is parallel to the fixed axis. The unit
vector along the fixed axis (chosen as the z-axis)
is k̂ . Hence

( ) ˆ
⊥× =CP v km r mv

= 2 ˆ ω⊥ kmr (since υ = ωr⊥ )

Similarly, we can check that OC × v is
perpendicular to the fixed axis. Let us denote
the part of  l along the fixed axis (i.e. the z-axis)
by l

z
, then

 z = ×CP vml = 2 ˆω⊥ kmr

and = + ×OC v
z

ml l

We note that l
z
 is parallel to the fixed axis,

but l is not. In general, for a particle, the angular
momentum l is not along the axis of rotation,
i.e. for a particle, l and ωωωωω are not necessarily
parallel. Compare this with the corresponding
fact in translation. For a particle, p and v are
always parallel to each other.

For computing the total angular momentum

of the whole rigid body, we add up the

contribution of each particle of the body.

Thus

We denote by ⊥L  and 
z

L  the components of

L  respectively perpendicular to the z-axis and

along the z-axis;

L OC v⊥ = ×∑ i i i
m (6.42a)

where m
i
 and v

i
 are respectively the mass and

the velocity of the ith particle and C
i
 is the centre

of the circle described by the particle;

and

or ˆω=L k
z

I (6.42b)

The last step follows since the perpendicular
distance of the ith particle from the axis is r

i
; and

by definition the moment of inertia of the body

about the axis of rotation is I m r
i i

=∑ 2 .

Note
z ⊥= +L L L (6.42c)

The rigid bodies which we have mainly
considered in this chapter are symmetric about
the axis of rotation, i.e. the axis of rotation is
one of their symmetry axes. For such bodies, for
a given OC

i
, for every particle which has a

velocity v
i
 , there is another particle of velocity

–v
i
  located diametrically opposite on the circle

with centre C
i
 described by the particle. Together

such pairs will contribute zero to ⊥L  and as a

result for symmetric bodies ⊥L  is zero, and

hence

ˆω= =L L k
z

I (6.42d)

For bodies, which are not symmetric about

the axis of rotation, L is not equal to L
z
 and hence

L does not lie along the axis of rotation.

Referring to Table 6.1, can you tell in which

cases L = L
z 
will not apply?

Let us differentiate Eq. (6.42b). Since k̂ is a

fixed (constant) vector, we get

d

d

d

d
z

t t
IL k( ) = ( )





ω
ˆ

Now, Eq. (6.28b) states

d

dt
=L

τ
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As we have seen in the last section, only
those components of the external torques which
are along the axis of rotation, need to be taken
into account, when we discuss rotation about a

fixed axis. This means we can take ˆτ= kτ .

Since z ⊥= +L L L  and the direction of L
z
 (vector

k̂ ) is fixed, it follows that for rotation about a
fixed axis,

d ˆ
d

τ=
L

kz

t
(6.43a)

and 
d

0
dt

⊥ =
L

(6.43b)

Thus, for rotation about a fixed axis, the
component of angular momentum perpendicular

to the fixed axis is constant. As ˆω=L kz I , we

get from Eq. (6.43a),

( )d

d
I

t
ω τ= (6.43c)

If the moment of inertia I does not change with
time,

( )d d

d d
I I I

t t

ωω α= =

and we get from Eq. (6.43c),
Iτ α= (6.41)

We have already derived this equation using
the work - kinetic energy route.

6.12.1 Conservation of angular momentum

We are now in a position to revisit the principle
of conservation of angular momentum in the
context of rotation about a fixed axis. From Eq.
(6.43c), if the external torque is zero,

Lz = Iω = constant (6.44)
For symmetric bodies, from Eq. (6.42d), L

z

may be replaced by L .(L and L
z  are respectively

the magnitudes of L and L
z
.)

This then is the required form, for fixed axis
rotation, of Eq. (6.29a), which expresses the
general law of conservation of angular momentum
of a system of particles.  Eq. (6.44) applies to many
situations that we come across in daily life.  You
may do this experiment with your friend.  Sit on a
swivel chair (a chair with a seat, free to rotate
about a pivot) with your arms folded and feet not
resting on, i.e., away from, the ground.  Ask your
friend to rotate the chair rapidly. While the chair
is rotating with considerable angular speed
stretch your arms horizontally.  What happens?
Your angular speed is reduced.  If you bring back
your arms closer to your body, the angular speed
increases again.  This is a situation where the
principle of conservation of angular momentum
is applicable. If friction in the rotational

Fig 6.32 (a) A demonstration of conservation of
angular momentum. A girl sits  on a
swivel chair and stretches her arms/
brings her arms closer to the body.

Fig 6.32 (b) An acrobat employing the principle of
conservation of angular momentum in
her performance.
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SUMMARY

1. Ideally, a rigid body is one for which the distances between different particles of the
body do not change, even though there are forces on them.

2. A rigid body fixed at one point or along a line can have only rotational motion. A rigid
body not fixed in some way can have either pure translational motion or a combination
of translational and rotational motions.

3. In rotation about a fixed axis, every particle of the rigid body moves in a circle which
lies in a plane perpendicular to the axis and has its centre on the axis. Every Point in
the rotating rigid body has the same angular velocity at any instant of time.

4. In pure translation, every particle of the body moves with the same velocity at any
instant of time.

5. Angular velocity is a vector. Its magnitude is ω = dθ/dt and it is directed along the axis
of rotation. For rotation about a fixed axis, this vector ωωωωω has a fixed direction.

6. The vector or cross product of two vector a and b is a vector written as a×b. The
magnitude of this vector is absinθ  and its direction is given by the right handed screw
or the right hand rule.

7. The linear velocity of a particle of a rigid body rotating about a fixed axis is given by
v = ωωωωω × r, where r is the position vector of the particle with respect to an origin along the
fixed axis. The relation applies even to more general rotation of a rigid body with one
point fixed. In that case r is the position vector of the particle with respect to the fixed
point taken as the origin.

8. The centre of mass of a system of n particles is defined as the point whose position
vector is

R
r

= ∑m

M

i i

9. Velocity of the centre of mass of a system of particles is given by V = P/M, where P is the
linear momentum of the system. The centre of mass moves as if all the mass of the
system is concentrated at this point and all the external forces act at it. If the total
external force on the system is zero, then the total linear momentum of the system is
constant.

10. The angular momentum of a system of n particles about the origin is

L r p  
  

= ×
=
∑ i

i

n

i

1

The torque or moment of force on a system of n particles about the origin is

= ×∑ r F
i i

1

τ

The force  F
i  
acting on the ith particle includes the external as well as internal forces.

Assuming Newton’s third law of motion and that forces between any two particles act
along the line joining the particles, we can show τττττint

 = 0 and

mechanism is neglected, there is no external
torque about the axis of rotation of the chair and
hence Iω is constant.  Stretching the arms
increases I about the axis of rotation, resulting in
decreasing the angular speed ω.  Bringing the
arms closer to the body has the opposite effect.

A circus acrobat and a diver take advantage
of this principle.  Also, skaters and classical,
Indian or western, dancers performing a
pirouette (a spinning about a tip–top) on the toes
of one foot display ‘mastery’ over this principle.
Can you explain?
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POINTS TO PONDER

1. To determine the motion of the centre of mass of a system no knowledge of internal
forces of the system is required. For this purpose we need to know only the external
forces on the body.

2. Separating the motion of a system of particles as the motion of the centre of mass, (i.e.,
the translational motion of the system) and motion about (i.e. relative to) the centre of
mass of the system is a useful technique in dynamics of a system of particles. One
example of this technique is separating the kinetic energy of a system of particles K as
the kinetic energy of the system about its centre of mass K′ and the kinetic energy of the
centre of mass MV2/2,

      K = K′ + MV2/2
3. Newton’s Second Law for finite sized bodies (or systems of particles) is based in  Newton’s

Second Law and also Newton’s Third Law for particles.
4. To establish that the time rate of change of the total angular momentum of a system of

particles is the total external torque in the system, we need not only Newton’s second
law for particles, but also Newton’s third law with the provision that the forces between
any two particles act along the line joining the particles.

5. The vanishing of the total external force and the vanishing of the total external torque
are independent conditions. We can have one without the other. In a couple, total
external force is zero, but total torque is non-zero.

6. The total torque on a  system is independent of the origin if the total external force is
zero.

7. The centre of gravity of a body coincides with its centre of mass only if the gravitational
field does not vary from one part of the body to the other.

d

dt
ext

L
= ττ

11. A rigid body is in mechanical equilibrium if

(1) it is in translational equilibrium, i.e., the total external force on it is zero : F 0i =∑ ,

and
(2) it is in rotational equilibrium, i.e. the total external torque on it is zero :

ττi i i= × =∑ ∑ r F 0 .

12. The centre of gravity of an extended body is that point where the total gravitational
torque on the body is zero.

13. The moment of intertia of a rigid body about an axis is defined by the formula  I m ri i=∑ 2

where r
i
 is the perpendicular distance of the ith point of the body from the axis. The

kinetic energy of rotation is 
21

2
K Iω= .
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EXERCISES

6.1 Give the location of the centre of mass of a (i) sphere, (ii) cylinder, (iii) ring, and (iv)
cube, each of uniform mass density. Does the centre of mass of a body necessarily lie
inside the body ?

6.2 In the HCl molecule, the separation between the nuclei of the two atoms is about
1.27 Å (1 Å = 10-10 m). Find the approximate location of the CM of the molecule,
given that a chlorine atom is about 35.5 times as massive as a hydrogen atom and
nearly all the mass of an atom is concentrated in its nucleus.

6.3 A child sits stationary at one end of a long trolley moving uniformly with a speed V
on a smooth horizontal floor. If the child gets up and runs about on the trolley in
any manner, what is the speed of the CM of the (trolley + child) system ?

6.4 Show that the area of the triangle contained between the vectors a and b is one half
of the magnitude of a × b.

6.5 Show that a.(b × c) is equal in magnitude to the volume of the parallelepiped formed
on the three vectors , a, b and c.

6.6 Find the components along the x, y, z axes of the angular momentum l of a particle,
whose position vector is r with components x, y, z and momentum is p with
components px, py and pz. Show that if the particle moves only in the x-y plane the
angular momentum has only a z-component.

6.7 Two particles, each of mass m and speed v, travel in opposite directions along parallel
lines separated by a distance d. Show that the angular momentum vector of the two
particle system is the same whatever be the point about which the angular momentum
is taken.

6.8 A non-uniform bar of weight W is suspended at rest by two strings of negligible
weight as shown in Fig.6.33. The angles made by the strings with the vertical are
36.9° and 53.1° respectively. The bar is 2 m long. Calculate the distance d of the
centre of gravity of the bar from its left end.

Fig. 6.33

6.9 A car weighs 1800 kg. The distance between its front and back axles is 1.8 m. Its
centre of gravity is 1.05 m behind the front axle. Determine the force exerted by the
level ground on each front wheel and each back wheel.

8. The angular momentum L and the angular velocity ωωωωω are not necessarily parallel vectors.
However, for the simpler situations discussed in this chapter when rotation is about a
fixed axis which is an axis of symmetry of the rigid body, the relation L = Iωωωωω holds good,
where I is the moment of the inertia of the body about the rotation axis.
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6.10 Torques of equal magnitude are applied to a hollow cylinder and a solid sphere, both
having the same mass and radius. The cylinder is free to rotate about its standard
axis of symmetry, and the sphere is free to rotate about an axis passing through its
centre. Which of the two will acquire a greater angular speed after a given time.

6.11 A solid cylinder of mass 20 kg rotates about its axis with angular speed 100 rad s-1.
The radius of the cylinder is 0.25 m. What is the kinetic energy associated with the
rotation of the cylinder? What is the magnitude of angular momentum of the cylinder
about its axis?

6.12 (a) A child stands at the centre of a turntable with his two arms outstretched. The
turntable is set rotating with an angular speed of 40 rev/min. How much is the
angular speed of the child if he folds his hands back and thereby reduces his
moment of inertia to 2/5 times the initial value ? Assume that the turntable
rotates without friction.

(b) Show that the child’s new kinetic energy of rotation is more than the initial
kinetic energy of rotation. How do you account for this increase in kinetic energy?

6.13 A rope of negligible mass is wound round a hollow cylinder of mass 3 kg and radius
40 cm. What is the angular acceleration of the cylinder if the rope is pulled with a
force of 30 N ? What is the linear acceleration of the rope ? Assume that there is no
slipping.

6.14 To maintain a rotor at a uniform angular speed of 200 rad s-1, an engine needs to
transmit a torque of 180 N m. What is the power required by the engine ?
(Note: uniform angular velocity in the absence of friction implies zero torque. In
practice, applied torque is needed to counter frictional torque). Assume that the
engine is 100% efficient.

6.15 From a uniform disk of radius R, a circular hole of radius R/2 is cut out. The centre
of the hole is at R/2 from the centre of the original disc. Locate the centre of gravity
of the resulting flat body.

6.16 A metre stick is balanced on a knife edge at its centre. When two coins, each of mass
5 g are put one on top of the other at the 12.0 cm mark, the stick is found to be
balanced at 45.0 cm. What is the mass of the metre stick?

6.17 The oxygen molecule has a mass of 5.30 × 10-26 kg and a moment of inertia of
1.94 ×10-46 kg m2 about an axis through its centre perpendicular to the lines joining
the two atoms. Suppose the mean speed of such a molecule in a gas is 500 m/s and
that its kinetic energy of rotation is two thirds of its kinetic energy of translation.
Find the average angular velocity of the molecule.
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CHAPTER SEVEN

GRAVITATION

7.1 INTRODUCTION

Early in our lives, we become aware of the tendency of all
material objects to be attracted towards the earth.  Anything
thrown up falls down towards the earth, going uphill is lot
more tiring than going downhill, raindrops from the clouds
above fall towards the earth and  there are many other such
phenomena.  Historically it was the Italian Physicist Galileo
(1564-1642) who recognised the fact that all bodies,
irrespective of their masses, are accelerated towards the earth
with a constant acceleration.  It is said  that he made a public
demonstration of this fact.  To find the truth, he certainly
did experiments with bodies rolling down inclined planes and
arrived at a value of the acceleration due to gravity which is
close to the more accurate value obtained later.

A seemingly unrelated phenomenon, observation of stars,
planets and their motion has been the subject of attention
in many countries since the earliest of times.  Observations
since early times recognised stars which appeared in the
sky with positions unchanged year after year.  The more
interesting objects are the planets which seem to have regular
motions against the background of stars.  The earliest
recorded model for planetary motions proposed by Ptolemy
about 2000 years ago was a ‘geocentric’ model in which all
celestial objects, stars, the sun and the planets, all revolved
around the earth.  The only motion that was thought to be
possible for celestial objects was motion in a circle.
Complicated schemes of motion  were put forward by Ptolemy
in order to describe the observed motion of the planets.  The
planets were described as moving in circles with the centre
of the circles themselves moving in larger circles.  Similar
theories were also advanced by Indian astronomers some
400 years later.  However a more elegant model in which the
Sun was the centre around which the planets revolved – the
‘heliocentric’ model – was already mentioned by Aryabhatta
(5th century A.D.) in his treatise. A thousand years later, a
Polish monk named Nicolas Copernicus (1473-1543)

7.1 Introduction

7.2 Kepler’s laws

7.3 Universal law of
gravitation

7.4 The gravitational
constant

7.5 Acceleration due to
gravity of the earth

7.6 Acceleration due to
gravity below and above
the surface of earth

7.7 Gravitational potential
energy

7.8 Escape speed

7.9 Earth satellites

7.10 Energy of an orbiting
satellite

Summary

Points to ponder

Exercises
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proposed a definitive model in which the planets
moved in circles around a fixed central sun.  His
theory was discredited by the church, but
notable amongst its supporters was Galileo who
had to face prosecution from the state for his
beliefs.

It was around the same time as Galileo, a
nobleman called Tycho Brahe (1546-1601)
hailing from Denmark, spent his entire lifetime
recording observations of the planets with the
naked eye.  His compiled data were analysed
later by his assistant Johannes Kepler (1571-
1640). He could extract from the data three
elegant laws that now go by the name of Kepler’s
laws.  These laws were known to Newton and
enabled him to make a great scientific leap in
proposing his universal law of gravitation.

7.2  KEPLER’S LAWS

The three laws of Kepler can be stated as
follows:
1.  Law of orbits : All planets move in elliptical
orbits with the Sun situated at one of the  foci

Fig. 7.1(a) An ellipse traced out by a planet around
the sun. The closest point is P and the
farthest point is A, P is called the
perihelion and A the aphelion. The
semimajor axis is half the distance AP.

Fig. 7.1(b) Drawing an ellipse. A string has its ends
fixed at F

1
 and F

2
. The tip of a pencil holds

the string taut and is moved around.

of the ellipse (Fig. 7.1a). This law was a
deviation from the Copernican model which
allowed only circular orbits. The ellipse, of
which the circle is a special case, is a closed
curve which can be drawn very simply as
follows.

Select two points F
1
 and F

2
.  Take a length

of a string and  fix its ends at F
1
 and F

2
 by

pins.  With the tip of a pencil  stretch the string
taut and then draw a curve by moving the
pencil keeping the string taut throughout.(Fig.
7.1(b))  The closed curve you get is called an
ellipse. Clearly for any point T on the ellipse,
the sum of the distances from F

1
 and F

2
 is a

constant.  F
1
,
 
F

2
 are called the focii. Join the

points F
1 

and
  
F

2 
 and extend 

  
the line to

intersect the ellipse at points P and A as shown
in Fig. 7.1(b). The midpoint of the line PA is
the centre of the ellipse O and the length PO =
AO  is called the semi-major axis of the ellipse.
For a circle, the two focii  merge into one  and
the semi-major axis becomes the radius of the
circle.
2. Law of areas : The line that joins any planet
to the sun sweeps  equal areas in equal
intervals of time (Fig. 7.2).  This law comes from
the observations that planets appear to move
slower when they are  farther from the sun
than when they are nearer.

Fig. 7.2 The planet P moves around the sun in an
elliptical orbit. The shaded area is the area
∆A swept out in a small interval of time  ∆t.
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⊳

3. Law of periods : The square of the time period

of revolution of a planet is proportional to the

cube of the semi-major axis of the ellipse traced

out by  the planet.

Table 7.1 gives the approximate time periods

of revolution of eight* planets around the sun

along with values of their semi-major axes.

Table 7.1 Data from measurement of
planetary motions given below
confirm Kepler’s Law of Periods

(a ≡ Semi-major  axis in units of  1010 m.
T ≡ Time period of revolution of the planet

in years(y).
Q ≡ The quotient ( T2/a3  ) in units of

10 -34 y2 m-3.)

Planet a T Q

Mercury 5.79 0.24 2.95
Venus 10.8 0.615 3.00
Earth 15.0 1 2.96
Mars 22.8 1.88 2.98
Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98
Uranus 287 84 2.98
Neptune 450 165 2.99

The law of areas can be understood as a
consequence of  conservation of angular
momentum whch is valid for any central
force . A central force is such that  the force
on the planet is along the vector joining the
Sun and the planet. Let the Sun be at the
origin and let the position and momentum
of  the p lanet  be denoted by r  and p
respectively. Then the area swept out by the

planet of mass m in time interval ∆t is (Fig.

7.2) ∆A given by

∆A  = ½  (r × v∆t) (7.1)

 Hence

∆A /∆t   =½ (r × p)/m, (since  v = p/m)

                       =    L / (2 m) (7.2)
where v is the velocity,  L is the angular

momentum equal  to   ( r  ×  p).  For a central
force, which is directed along r, L is  a constant

as the planet goes around. Hence,  ∆ A /∆t is a

constant according to the last equation. This is

the law of areas. Gravitation is a central force
and hence the law of areas follows.

Example 7.1  Let  the speed of the planet
at  the  perihelion P in Fig. 7.1(a) be vP  and
the Sun-planet distance SP be rP. Relate
{rP, vP} to the corresponding quantities at
the aphelion {rA, vA}. Will the planet take
equal times to traverse BAC and CPB ?

Answer  The magnitude of the angular

momentum at P is Lp =  mp rp vp, since inspection

tells us that rp and vp are mutually

perpendicular. Similarly, LA = mp rA vA. From

angular momentum conservation
mp rp vp = mp rA vA

or

v

v

p

A

=
r

r

A

p

⊳

Since rA   > rp, vp > vA .

The area SBAC bounded by the ellipse and

the radius vectors SB and SC is larger than SBPC

in Fig. 7.1. From Kepler’s second law, equal areas

are swept in equal times. Hence the planet will

take a longer time to traverse BAC than CPB.

7.3  UNIVERSAL LAW OF GRAVITATION

Legend has it that observing an apple falling from
a tree, Newton was inspired to arrive at an
universal law of gravitation that led to an
explanation of terrestrial  gravitation as well as
of Kepler’s laws.  Newton’s reasoning was that
the moon revolving in an orbit of radius R

m
 was

subject to a centripetal acceleration due to
earth’s gravity of magnitude

22

2

4
m

m

m

RV
a

R T

π
= = (7.3)

where V is the speed of the moon related to the

time period T  by the relation 2 /
m

V R Tπ= . The

time period T is about 27.3 days and R
m
 was

already known then to be about 3.84 × 108m.  If
we substitute these numbers in Eq. (7.3), we get
a value of a

m
 much smaller than the value of

acceleration due to gravity g on the surface of
the earth, arising also due to earth’s gravitational
attraction.
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⊳

This clearly shows that the force due to
earth’s gravity decreases with distance.  If one
assumes that the gravitational force due to the
earth decreases in proportion to the inverse
square of the distance from the centre of the

earth, we will have a
m
 α 2

mR− ; g α 2
ER−  and we get

2

2

m

m E

Rg

a R
=  3600 (7.4)

in agreement with a value of g  9.8  m s-2 and

the value of a
m
 from Eq. (7.3).  These observations

led Newton to propose the following Universal Law
of Gravitation :
Every body in the universe attracts every other
body with a force which is directly proportional
to the product of their masses and inversely
proportional to the square of the distance
between them.

The quotation is essentially from Newton’s
famous treatise  called ‘Mathematical Principles
of Natural Philosophy’ (Principia for short).

Stated Mathematically, Newton’s gravitation
law reads : The force F on a point mass m

2
 due

to another point mass m
1
 has the magnitude

1 2
2

| |
m m

G
r

=F (7.5)

Equation (7.5) can be expressed in vector form as

ɵ( ) ɵ1 2 1 2
2 2

– –
m m m m

G G
r r

= =F r r

   
ɵ1 2

3
–

m m
G= r

r

where G is the universal gravitational constant,

ɵr  is the unit vector from m
1
 to m

2
 and r = r

2
 – r

1

as shown in Fig. 7.3.

The  gravitational force is attractive, i.e., the

force F is along – r. The force on point mass m
1

due to m
2
 is of course – F by Newton’s third law.

Thus, the gravitational force F
12

 on the body 1

due to 2 and F
21

 on the body 2 due to 1 are related

as F
12

 = – F
21

.

Before we can apply Eq. (7.5) to objects under

consideration, we have to be careful since the

law refers to point masses whereas we deal with

extended objects which have finite size. If we have

a collection of point masses, the force on any

one of them is the vector sum of the gravitational

forces exerted by the other point masses as

shown in Fig 7.4.

Fig. 7.4 Gravitational force on point mass m
1
 is the

vector sum of the gravitational forces exerted

by m
2
, m

3
 and m

4
.

The total force on m
1
 is

2 1
1 2

21

Gm m

r
=F ɵ 3 1

21 2
31

Gm m

r
+r  

ɵ ɵ4 1
31 412

41

Gm m

r
+r r

Example 7.2  Three equal masses of m kg
each are fixed at the vertices of an
equilateral triangle ABC.
(a) What is the force acting on a mass 2m

placed at the centroid G of the triangle?
(b) What is the force if the mass at the
vertex A is doubled ?
      Take AG = BG = CG = 1 m (see Fig. 7.5)

Answer  (a) The angle between GC and the

positive x-axis is 30° and so is the angle between

GB and the negative x-axis. The individual forces

in vector notation are

Fig. 7.3 Gravitational force on m
1
 due to m

2
 is along

r where the vector r is (r
2
– r

1
).

O
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cases, a  simple law results when you do that :

(1) The force of attraction between a hollow
spherical shell of uniform density and a
point mass situated outside is just as if
the entire mass of the shell is
concentrated at the centre of the shell.
Qualitatively this can be understood as
follows: Gravitational forces caused by the
various regions of the shell have components
along the line joining the point mass to the
centre as well as along a direction
prependicular to this line. The components
prependicular to this line cancel out when
summing over all regions of the shell leaving
only a resultant force along the line joining
the point to the centre. The magnitude of
this force works out to be as stated above.

(2) The force of attraction due to a hollow
spherical shell of uniform density, on a
point mass situated inside it is zero.
Qualitatively, we can again understand this
result. Various regions of the spherical shell
attract the point mass inside it in various
directions. These forces cancel each other
completely.

7.4  THE GRAVITATIONAL CONSTANT

The value of the gravitational constant G entering

the Universal law of gravitation  can be

determined experimentally and this was first done

by English scientist Henry Cavendish in 1798.

The apparatus used by him is schematically

shown in Fig.7.6

Fig. 7.6 Schematic drawing of Cavendish’s
experiment. S

1
 and S

2
 are large spheres

which are kept on either side (shown
shades) of the masses at A and B. When
the big spheres are taken to the other side
of the masses (shown by dotted circles),
the bar AB rotates a little since the torque
reverses direction. The angle of rotation can
be measured experimentally.

Fig. 7.5 Three equal masses are placed at the three
vertices of the ∆ ABC. A mass 2m is placed
at the centroid G.

( )
GA

2
ˆ

1

Gm m
=F j

( ) ( )GB

2
ˆ ˆcos 30 sin 30

1

Gm m ο ο= − −F  i j 

( ) ( )GC

2
ˆ ˆcos 30 sin 30

1

Gm m ο ο= + −F  i j 

From the principle of superposition and the law
of vector addition, the resultant gravitational
force FR on (2m) is

 FR  =  FGA + FGB + FGC

 ( )οο−−+= 30 sinˆ30 cosˆ2  ̂2  
 22

R  j ij F GmGm

              ( ) 030 sinˆ30 cosˆ2 
2

=−+
οο  j i Gm

Alternatively, one expects on the basis of
symmetry that the resultant force ought to be
zero.

(b) Now if the mass at vertex A is doubled
then

⊳

For the gravitational force between an extended

object (like the earth) and a point mass, Eq. (7.5) is not

directly applicable. Each point mass in the extended
object will exert a force on the given point mass and

these force will not all be in the same direction. We

have to add up these forces vectorially  for all the point
masses in the extended object to get the total force.

This is easily done using calculus. For two special

2024-25



132 PHYSICS

M r

The bar AB has two small lead spheres

attached at its ends.  The bar is suspended from

a rigid support by a fine wire.  Two large lead

spheres are brought close to the small ones but

on opposite sides as shown.  The big spheres

attract the nearby small ones by equal and

opposite force as shown.  There is no net force

on the bar but only a torque which is clearly

equal to F times the length of the bar,where F is

the force of attraction between a big sphere and

its neighbouring small sphere.  Due to this

torque, the suspended wire  gets twisted till such

time as the restoring torque of the wire equals

the gravitational torque .  If θ is the angle of twist

of the suspended wire, the restoring torque is

proportional to θ, equal to τθ. Where τ is the

restoring couple per unit angle of twist. τ can be

measured independently e.g. by applying a

known torque and measuring the angle of twist.

The gravitational force between the spherical

balls is the same as if their masses are

concentrated at their centres.  Thus if d is the

separation between the centres of the big and

its neighbouring small ball, M and m their

masses, the gravitational force between the big

sphere and its neighouring small ball is.

2

Mm
F G

d
= (7.6)

If   L  is the length of  the bar AB , then the
torque arising out of F  is  F  multiplied by L. At
equilibrium, this is equal to the restoring torque
and hence

2

Mm
G L

d
τ θ= (7.7)

Observation of θ thus enables one to

calculate G from this equation.
Since Cavendish’s  experiment, the

measurement of G has been refined and the
currently accepted value is

G = 6.67×10-11  N m2/kg2 (7.8)

7.5 ACCELERATION DUE TO GRAVITY OF
THE EARTH

The earth can be imagined to be a sphere made

of a large number of concentric spherical shells

with the smallest one at the centre and the

largest one at its surface.  A point outside the

earth  is obviously outside all the shells.  Thus,

all the shells exert a gravitational force at the

point outside just as if their masses are

concentrated at their common centre according

to the result stated in section 7.3. The total mass

of all the shells combined is just the mass of the

earth.  Hence, at a point outside the earth, the

gravitational force is just as if its entire mass of

the earth is concentrated at its centre.

For a point inside the earth, the situation

is different.  This is illustrated in Fig. 7.7.

Fig. 7.7 The mass m is in a mine located at a depth

d below the surface of the Earth of mass

ME and radius RE. We treat the Earth to be

spherically symmetric.

Again consider the earth  to be made up of
concentric shells as before and a point mass m
situated at a distance r from the centre.  The
point  P lies outside the sphere of radius r.  For
the shells of radius greater than r, the point P
lies inside.  Hence according to result stated in
the last section, they exert no gravitational force

on mass m kept at P.  The shells with radius ≤ r

make up a sphere of radius r for which the point
P lies on the surface.  This smaller sphere
therefore exerts a force on a mass m at P as if
its mass M

r 
is concentrated at the centre.  Thus

the force on the mass m at P has a magnitude

r

2

( )Gm M
F

r
= (7.9)

We assume that the entire earth is of uniform

density and hence its mass is 
3

E

4

3
EM R

π ρ=

where M
E 
is the mass of the earth R

E
 is its radius

and ρ is the density.  On the other hand the

mass of the sphere M
r 
of radius r is 

34

3
r

π ρ  and
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hence

E

3
E

G m M
r

R
= (7.10)

If the mass m is situated on the surface of
earth, then  r = R

E
 and the gravitational force on

it is, from Eq. (7.10)

2

E

E

M m
F G

R
= (7.11)

The acceleration experienced by the mass

m, which is usually denoted by the symbol g is

related to F by Newton’s 2nd law by relation

F = mg. Thus

2

E

E

GMF
g

m R
= = (7.12)

Acceleration g is readily measurable.  R
E 
is a

known quantity.  The measurement of G by

Cavendish’s experiment (or otherwise), combined

with knowledge of g and R
E
 enables one to

estimate M
E
 from Eq. (7.12).  This is the reason

why there is a popular statement regarding

Cavendish : “Cavendish weighed the earth”.

7.6 ACCELERATION DUE TO GRAVITY BELOW

AND ABOVE THE SURFACE OF EARTH

Consider a point mass m at a height h above the

surface of the earth as shown in Fig. 7.8(a).  The

radius of the earth is denoted by  R
E 
. Since this

point is outside the earth,

Fig. 7.8 (a) g at a height h above the surface of the

earth.

its distance from the centre of the earth is

(R
E 
+

 
 h ).  If   F (h) denoted the magnitude of

the  force on the point mass m , we get from

Eq. (7.5) :

2
( )

( )
E

E

GM m
F h

R h
=

+ (7.13)

The acceleration experienced by the point

mass is ( )/ ( )F h m g h≡ and we get

2

( )
( ) .

( )
E

E

GMF h
g h

m R h
= =

+ (7.14)

This is clearly less than the value of g on the

surface of earth : 2
.E

E

GM
g

R
=  For ,Eh R<< we can

expand the RHS of Eq. (7.14) :

( ) 2

2 2
( ) 1 /

(1 / )
E

E

E E

GM
g h g h R

R h R

−= = +
+

For 1
E

h

R
<< , using binomial expression,

g h g
h

RE

( ) ≅ −






1
2

. (7.15)

Equation (7.15) thus tells us that for small
heights h above the value of g decreases by a

factor (1 2 / ).Eh R−
Now, consider a point mass m at a depth

d below the surface of the earth (Fig. 7.8(b)),
so that its distance from the centre of the

earth is ( )ER d−  as shown in the figure.   The

earth can be thought of as being composed
of a smaller sphere of radius  (R

E 
 – d )  and a

spherical shell of thickness d.  The force on
m due to the outer shell of thickness  d is
zero because the result quoted in the
previous section. As far as the smaller
sphere of radius  ( R

E 
 – d  ) is concerned, the

point mass is outside it and hence according
to the result quoted earlier, the force due to
this smaller sphere is just as if the entire
mass of the smaller sphere is concentrated
at the centre. If M

s  
is the mass of the smaller

sphere, then,
M

s
/M

E 
= (

 
R

E 
– d)3  / R

E
3 ( 7.16)

Since  mass of a sphere is proportional to be
cube of its radius.
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Fig. 7.8 (b) g at a depth d. In this case only the smaller

sphere of radius (R
E
–d) contributes to g.

Thus the force on the point mass is

F (d)  =   G  M
s 
 m  /  (R

E  
– d ) 2 (7.17)

Substituting for  M
s 
 from above , we get

F (d)   =  G  M
E
 m ( R

E
 – d ) /  R

E 
3 (7.18)

and hence the acceleration due to gravity at
a depth d,

g(d) = 
( )F d

m
is

3

( )
( ) ( )E

E

E

GMF d
g d R d

m R
= = −

(1 / )E
E

E

R d
g g d R

R

−
= = − (7.19)

Thus, as we go down below earth’s surface,
the acceleration due gravity decreases by a factor

(1 / ).Ed R− The remarkable thing about

acceleration due to earth’s gravity is that it is
maximum on its surface decreasing whether you
go up or down.

7.7  GRAVITATIONAL POTENTIAL ENERGY

We had discussed earlier the notion of potential

energy as being the energy stored in the body at

its given position.  If the position of the particle
changes on account of forces acting on it, then

the change in its potential energy is just the

amount of work done on the body by the force.
As we had discussed earlier, forces for which the

work done is independent of the path are the

conservative forces.
The force of gravity is a conservative force

and we can calculate the potential energy of a

body arising out of this force, called the
gravitational potential energy. Consider points

close to the surface of earth, at distances from

the surface much smaller than the radius of the

earth.  In such cases, the force of gravity is
practically a constant equal to mg, directed

towards the centre of the earth.  If we consider a

point at a height h
1
 from the surface of the earth

and another point vertically above it at a height

h
2
 from the surface, the work done in lifting the

particle of mass m from the first to the second
position is denoted by W

12

W
12

 = Force × displacement

      = mg (h
2
 – h

1
) (7.20)

If we associate a potential energy W(h) at a
point at a height h above the surface such that

W(h) = mgh  + W
o

(7.21)

(where W
o
 = constant) ;

then it is clear that
W

12
 = W(h

2
)  – W(h

1
) (7.22)

The work done in moving the particle is just
the difference of potential energy between its
final and initial positions.Observe that the
constant W

o
 cancels out in Eq. (7.22).  Setting  h

= 0 in the last equation, we get   W ( h = 0 ) =  W
o.

.  h = 0 means points on the surface of the earth.
Thus,  W

o 
 is the  potential energy on the surface

of the earth.
If we consider points at arbitrary distance

from the surface of the earth, the result just
derived is not valid since the assumption that
the gravitational force mg is a constant is no
longer valid.  However, from our discussion we
know that a point outside the earth, the force of
gravitation on a particle directed towards the
centre of the earth is

2

EG M m
F

r
= (7.23)

where M
E
 = mass of earth, m = mass of the

particle and r its distance from the centre of the
earth.  If we now calculate the work done in
lifting a particle from r = r

1
 to r = r

2
 (r

2
 > r

1
) along

a vertical path, we get instead of Eq. (7.20)

W
G M m

r
r

r

r

12 2
1

2= ∫ d

= − −






G M m
r r

E

1 1

2 1

(7.24)

In place of Eq. (7.21), we can thus associate
a potential energy W(r) at a distance r, such that

M
s M

E

2024-25



GRAVITATION 135

⊳

E
1( ) ,

G M m
W r W

r
=− + (7.25)

valid for r > R ,
so that once again W

12
 = W(r

2
) – W(r

1
).

Setting   r = infinity in the last equation, we get
W ( r = infinity ) =   W

1 
.   Thus,  W

1 
 is the potential

energy at infinity. One should note that only the
difference of potential energy between two points
has a definite meaning  from Eqs. (7.22) and
(7.24). One conventionally sets  W

1
 equal to zero,

so that the potential energy at a point is just the
amount of work done in displacing the particle
from infinity to that point.

We have  calculated the potential energy at
a point of a particle  due to gravitational forces
on it due to the earth and it is proportional to
the mass of the particle. The gravitational
potential due to the gravitational force of the
earth is defined as the potential energy of  a
particle of unit mass at that point. From the
earlier discussion, we learn that the gravitational
potential energy associated with two particles
of masses m

1
 and m

2
 separated by distance by a

distance r is given by

1 2–
Gm m

V
r

=  (if we choose V = 0 as r → ∞ )

It should be noted that an isolated system of
particles will have the total potential energy that
equals the sum of energies (given by the above
equation) for all possible pairs of its constituent
particles. This is an example of the application
of the superposition principle.

Example 7.3  Find the potential energy of
a system of four particles placed at the
vertices of a square of side l. Also obtain
the potential at the centre of the square.

Answer   Consider four masses each of mass m
at the corners of a square of side l ; See Fig. 7.9.
We have four mass pairs at distance l and two

diagonal pairs at distance 2 l

Hence,

2 2G  
( )   4   2 

2 

m G m
W r

l l
= − −

l

mG

l

mG 22  
 5.41   

2

1
  2 

  2
  −=





+−=

The gravitational potential at the centre of

the square  ( )2 2=r  l/  is

G m
( )   4 2 = −  

U r
l

. ⊳

7.8  ESCAPE SPEED

If a stone is thrown by hand, we see it falls back
to the earth. Of course using machines we can
shoot an object with much greater speeds and
with greater and greater initial speed, the object
scales higher and higher heights. A natural
query that arises in our mind is the following:
‘can we throw an object with such high initial
speeds that it does not fall back to the earth?’

The principle of conservation of energy helps
us to answer this question. Suppose the object
did reach infinity and that its speed there was
V

f
. The energy of an object is the sum of potential

and kinetic energy. As before W
1
 denotes that

gravitational potential energy of the object at
infinity. The total energy of the projectile at
infinity then is

2

1( )
2

fmV
E W∞ = + (7.26)

If the object was thrown initially with a speed
V

i
 from a point at a distance (h+R

E
) from the

centre of the earth (R
E
 = radius of the earth), its

energy initially was

2
1

1
( ) –

2 ( )

E

E i

E

GmM
E h R mV W

h R
+ = +

+ (7.27)

Fig. 7.9
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⊳By the principle of energy conservation
Eqs. (7.26) and (7.27) must be equal. Hence

22

–
2 ( ) 2

fi E

E

mVmV GmM

h R
=

+ (7.28)

The R.H.S. is a positive quantity with a
minimum value zero hence so must be the L.H.S.
Thus, an object can reach infinity as long as V

i

is such that

2

– 0
2 ( )

i E

E

mV GmM

h R
≥

+ (7.29)

The minimum value of V
i
 corresponds to the

case when the L.H.S. of  Eq. (7.29) equals zero.
Thus, the minimum speed required for an object
to reach infinity (i.e. escape from the earth)
corresponds to

( )2

min

1

2
E

i

E

GmM
m V

h R
=

+ (7.30)

If the object is thrown from the surface of
the earth, h = 0, and we get

( )
min

2 E
i

E

GM
V

R
= (7.31)

Using the relation 2/E Eg GM R= , we get

( )
min

2i EV gR= (7.32)

Using the value of g and R
E
, numerically

(V
i
)
min

≈11.2 km/s. This is called the escape
speed, sometimes loosely called the escape
velocity.

Equation (7.32) applies equally well to an
object thrown from the surface of the moon with
g replaced by the acceleration due to Moon’s
gravity on its surface and r

E
 replaced by the

radius of the moon. Both are smaller than their
values on earth and the escape speed for the
moon turns out to be 2.3 km/s, about five times
smaller. This is the reason that moon has no
atmosphere. Gas molecules if formed on the
surface of the moon having velocities larger than
this will escape the gravitational pull of the
moon.

Example 7.4  Two uniform solid spheres
of equal radii R, but mass M and 4 M have
a centre to centre separation 6 R, as shown
in Fig. 7.10. The two spheres are held fixed.
A projectile of mass m is projected from the
surface of the sphere of mass M directly
towards the centre of the second sphere.
Obtain an expression for the minimum
speed v of the projectile so that it reaches
the surface of the second sphere.

Fig. 7.10

Answer  The projectile is acted upon by two
mutually opposing gravitational forces of the two
spheres. The neutral point N (see Fig. 7.10) is
defined as the position where the two forces
cancel each other exactly. If ON = r, we have

( )22 rR6

m M G

r

m M G

−
=  4
  

(6R – r)2 = 4r2

6R – r = ±2r

r = 2R   or – 6R.

The neutral point r =  – 6R does not concern
us in this example. Thus ON = r = 2R. It is
sufficient to project the particle with a speed
which would enable it to reach N. Thereafter,
the greater gravitational pull of 4M would
suffice. The mechanical energy at the surface
of M is

 R

mM G

R

m M G
vmE 2

i
 5

  4
       

2

1
  −−= .

At the neutral point N, the speed approaches
zero. The mechanical energy at N is purely
potential.

 R

m M G

R

m M G
EN

 4

 4
  

 2
   −−= .

From the principle of conservation of
mechanical energy

1

2

4

2
v

GM

R

GM

R

GM

R

GM

R 

2 − − = − −
5

or
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⊳






 −=

2

1
  

5

4 2
  2

R

M G
v

2/1

 5

  3
  





=

R

MG
v ⊳

A point to note is that the speed of the projectile
is zero at N, but is nonzero when it strikes the
heavier sphere 4 M. The calculation of this speed
is left as an exercise to the students.

7.9  EARTH SATELLITES

Earth satellites are objects which revolve around
the earth.  Their motion is very similar to the
motion of planets around the Sun and hence
Kepler’s laws of planetary motion are equally
applicable to them.  In particular, their orbits
around the earth are circular or elliptic.  Moon is
the only natural satellite of the earth with a near
circular orbit with a time period of approximately
27.3 days which is also roughly equal to the
rotational period of the moon about its own axis.
Since, 1957, advances in technology have enabled
many countries including India to launch artificial
earth satellites for practical use in fields like
telecommunication, geophysics and meteorology.

We will consider a satellite in a circular orbit
of a distance (R

E
 + h ) from the centre of the earth,

where R
E
 = radius of the earth. If m is the mass

of the satellite and V its speed, the centripetal
force required for this orbit is

F(centripetal) = 

2

( )E

mV

R h+ (7.33)

directed towards the centre.  This centripetal force
is provided by the gravitational force, which is

F(gravitation) = 2( )
E

E

G m M

R h+ (7.34)

where M
E
 is the mass of the earth.

Equating R.H.S of Eqs. (7.33) and (7.34) and
cancelling out m, we get

2

( )
E

E

G M
V

R h
=

+ (7.35)

Thus V decreases as h increases.  From
equation (7.35),the speed V  for  h = 0  is

2 ( 0) / E EV h GM R gR= = = (7.36)

where we have used the relation

g = 2/ EGM R . In every orbit, the satellite

traverses a distance 2π(R
E 
+ h) with speed V.  Its

time period T therefore is
3 /22 ( ) 2 ( )E E

E

R h R h
T

V G M

π π+ += = (7.37)

on substitution of value of V from Eq. (7.35).
Squaring both sides  of  Eq. (7.37), we get

T 2  = k  ( R
E 
+ h)3   (where k = 4 π2 / GM

E
)    (7.38)

which is Kepler’s law of periods, as applied to
motion of satellites around the earth. For a
satellite very close to the surface of earth h can
be neglected in comparison to R

E
 in Eq. (7.38).

Hence, for such satellites, T is T
o
, where

0 2 /ET R gπ= (7.39)

If we substitute the numerical values
g ≃  9.8 m s-2 and R

E
 = 6400 km., we get

6

0

6.4 10
2

9.8
T π ×

=  s

Which is approximately 85 minutes.

Example 7.5  The planet Mars has two
moons, phobos and delmos. (i) phobos has
a period 7 hours, 39 minutes and an orbital
radius of 9.4 ×103 km. Calculate the mass
of mars. (ii) Assume that earth and mars
move in circular orbits around the sun,
with the martian orbit being 1.52 times
the orbital radius of  the earth. What is
the length of the martian year in days ?

Answer   (i) We employ Eq. (7.38) with the sun’s
mass replaced by the martian mass Mm

T
GM

R
2

m

=
4

2
3π

Mm
G

R

T
=

4
2 3

2

π

( ) ( )
( )

=
× × ×

× × ×

4 3.14

6.67 10 459 60
-11 2

2 3 18
9 4 10.

( ) ( )

( )
M

4 3.14

6.67 4.59 6 10
2 -5m =

× × ×

× × ×

2 3 18
9 4 10.

= 6.48 × 1023 kg.
(ii) Once again Kepler’s third law comes to our

aid,

T

T

R

R

M
2

E

2

MS
3

ES

3
=
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⊳

⊳

where RMS is the mars -sun distance and RES is
the earth-sun distance.

∴ TM  = (1.52)3/2 × 365
       = 684 days

We note that the orbits of all planets except
Mercury and Mars are very close to being
circular. For example, the ratio of the semi-
minor to semi-major axis for our Earth is,
b/a = 0.99986. ⊳

Example 7.6   Weighing the Earth : You
are given the following data: g = 9.81 ms–2,
RE = 6.37×106 m, the distance to the moon R
= 3.84×108 m and the time period of the
moon’s revolution is 27.3 days. Obtain the
mass of the Earth ME in two different ways.

Answer From Eq. (7.12) we have

G

R g
M

2
E

E   =

( )
=

× ×

×

9.81 6.37 10

6.67 10

6 2

-11

 = 5.97× 1024 kg.
The moon is a satellite of the Earth. From

the derivation of Kepler’s third law [see Eq.
(7.38)]

EM G

R
T

32
2 4

  
π

=

2

324
  

T G

R
ME

π
=

( )

( )
=

× × × ×

× × × × ×

4 3.14 3.14 3.84 10

6.67 10 27.3 24 60 60

3 24

-11 2

= ×6.02 10
24

kg

Both methods yield almost the same answer,
the difference between them being less than 1%.

                                                                              ⊳

Example 7.7  Express the constant k of Eq.
(7.38) in days and kilometres. Given
k = 10–13 s2 m–3. The moon is at a distance
of 3.84 × 105 km  from the earth. Obtain its
time-period of revolution in days.

Answer Given
k = 10–13 s2 m–3

= 
( ) ( )

10
1

d
1

km

−

× ×

























13

2

2

3 3
24 60 60 1 1000

 
/

= 1.33 ×10–14 d2  km–3

Using Eq. (7.38) and the given value of k,
the time period of the moon is

T 2 = (1.33 × 10-14)(3.84 × 105)3

T   = 27.3 d ⊳

Note that Eq. (7.38) also holds for elliptical
orbits if we replace (RE+h) by the semi-major axis
of the ellipse. The earth will then be at one of
the foci of this ellipse.

7.10  ENERGY OF AN ORBITING SATELLITE

Using Eq. (7.35), the kinetic energy of the satellite
in a circular orbit with speed v is

21

2
K E m v=i

2( )
E

E

Gm M

R h
=

+ , (7.40)

Considering gravitational potential energy at
infinity to be zero, the potential energy at distance
(R

e

+h) from the centre of the earth is

.
( )

E

E

G m M
P E

R h
= −

+ (7.41)

The K.E is positive whereas the P.E is
negative. However, in magnitude the K.E. is half
the P.E, so that the total E is

. .
2( )

E

E

G m M
E K E P E

R h
= + = −

+ (7.42)

The total energy of an circularly orbiting
satellite is thus negative, with the potential
energy being negative but twice is magnitude of
the positive kinetic energy.

When the orbit of a satellite becomes
elliptic, both the K.E. and P.E. vary from point
to point.  The total energy which remains
constant is negative as in the circular orbit case.
This is what we expect, since as we have
discussed before if the total energy is positive or
zero, the object escapes to infinity.   Satellites
are always at finite distance from the earth and
hence their energies cannot be positive or zero.
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SUMMARY

1. Newton’s law of universal gravitation states that the gravitational force of attraction between
any two particles of masses m1 and m2 separated by a distance r has the magnitude

F G
m m

r
2

= 1 2

where G is the universal gravitational constant, which has the value  6.672 ×10–11 N m2 kg–2.
2. If we have to find the resultant gravitational force acting on the particle m due to a number of

masses M1, M2, ….Mn etc. we use the principle of superposition. Let F1, F2, ….Fn be the individual
forces due to M1, M2, ….Mn, each given by the law of gravitation. From the principle of superposition
each force acts independently  and uninfluenced by the other bodies. The resultant force FR is
then found by vector addition

FR  =  F1 + F2 + ……+ Fn   =  F
i

i

n

=

∑
1

where the symbol ‘Σ’ stands for summation.
3. Kepler’s laws of planetary motion state that

(a) All planets move in elliptical orbits with the Sun at one of the focal points
(b) The radius vector drawn from the Sun to a planet sweeps out equal areas in equal time

intervals. This follows from the fact that the force of gravitation on the planet is central
and hence angular momentum is conserved.

(c) The square of the orbital period of a planet is proportional to the cube of the   semi-major
axis of the elliptical orbit of the planet

The period T and radius R of the circular orbit of a planet about the Sun are related
by

3
2

2 4
  R

M G
T

s












 π
=

where Ms is the mass of the Sun. Most planets have nearly circular orbits about the Sun. For
elliptical orbits, the above equation is valid if R is replaced by the semi-major axis, a.

4. The acceleration due to gravity.
(a) at a height h above the earth’s surface

( )2
( )  

  

E

E

G M
g h

R h
=

+

≈ −






 1  
2

2

G M

R

h

R

E

E E

   for h << RE

⊳
Example 7.8  A 400 kg satellite is in a circular
orbit of radius 2RE about the Earth. How much
energy is required to transfer it to a circular
orbit of radius 4RE? What are the changes in
the kinetic and potential energies ?

Answer  Initially,

E

E
i

R

mMG
E

 4

  
   −=

While finally

E

E
f

R

mMG
E

 8

  
   −=

The change in the total energy is
∆E = Ef  – Ei

8

 
  

 8

  
 

2

E

E

E

E

E R m

R

MG

R

mMG













==

J10  13.3  
8

10  37.6  400  81.9
  

8

  
   

9
6

×=
×××

==∆ ERmg
E

The kinetic energy is reduced and it mimics
∆E, namely,  ∆K = Kf – Ki = – 3.13 × 109 J.

The change in potential energy is twice the
change in the total energy, namely

∆V = V
f
  – V

i
 = – 6.25 × 109 J                      ⊳
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g h g( )  1  
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   = ( ) −
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(b) at depth d below the earth’s surface is

g gd
G M
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0

 5. The gravitational force is a conservative force, and therefore a potential energy function can be
defined. The gravitational potential energy associated with two particles separated by a distance
r is given by

r

mmG
V 21  

   −=

where V is taken to be zero at r → ∞. The total potential energy for a system of particles is the
sum of energies for all pairs of particles, with each pair represented by a term of the form given
by above equation. This prescription follows from the principle of superposition.

6. If an isolated system consists of a particle of mass m moving with a speed v in the vicinity of a
massive body of mass M, the total mechanical energy of the particle is given by

r

m M G
vmE    

2

1
  

2
−=

That is, the total mechanical energy is the sum of the kinetic and potential energies. The total
energy is a constant of motion.

7. If m moves in a circular orbit of radius a about M, where M >> m, the total energy of the system is

a

mMG
E

2

  
   −=

with the choice of the arbitrary constant in the potential energy given in the point 5., above.
The total energy is negative for any bound system, that is, one in which the orbit is closed, such
as an elliptical orbit. The kinetic and potential energies are

a

mMG
K

2

  
  =

a

m M G
V    −=

8. The escape speed from the surface of the earth is

E

E
e

R

M G
v

 2
  = = 2 EgR

and has a value of 11.2 km s–1.
9. If a particle is outside a uniform spherical shell or solid sphere with a spherically symmetric

internal mass distribution, the sphere attracts the particle as though the mass of the sphere or
shell were concentrated at the centre of the sphere.

10. If a particle is inside a uniform spherical shell, the gravitational force on the particle is zero. If a
particle is inside a homogeneous solid sphere, the force on the particle acts toward the centre of the
sphere. This force is exerted by the spherical mass interior to the particle.
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POINTS TO PONDER

1. In considering motion of an object under the gravitational influence of another object
the following quantities are conserved:
(a)  Angular momentum
(b)  Total mechanical energy
Linear momentum is not conserved

2. Angular momentum conservation leads to Kepler’s second law. However, it is not special
to the inverse square law of gravitation. It holds for any central force.

3. In Kepler’s third law (see Eq. (7.1) and  T2 = KS R
3. The constant KS is the same for all

planets in circular orbits. This applies to satellites orbiting the Earth [(Eq. (7.38)].
4. An astronaut experiences weightlessness in a space satellite. This is not because the

gravitational force is small at that location in space. It is because both the astronaut
and the satellite are in “free fall” towards the Earth.

5. The gravitational potential energy associated with two particles separated by a distance
r is given by

V
G m m

r
= +– 1 2 constant

The constant can be given any value. The simplest choice is to take it to be zero. With
this choice

V
G m m

r
= – 1 2

This choice implies that V →  0 as r →  ∞.  Choosing location of zero of the gravitational
energy is the same as choosing the arbitrary constant in the potential energy. Note that
the gravitational force is not altered by the choice of this constant.

6. The total mechanical energy of an object is the sum of its kinetic energy (which is always
positive) and the potential energy. Relative to infinity (i.e. if we presume that the potential
energy of the object at infinity is zero), the gravitational potential energy of an object is
negative. The total energy of a satellite is negative.

7. The commonly encountered expression m g h for the potential energy is actually an
approximation to the difference in the gravitational potential energy discussed in the
point 6, above.

8. Although the gravitational force between two particles is central, the force between two
finite rigid bodies is not necessarily along the line joining their centre of mass. For a
spherically symmetric body however the force on a particle external to the body is as if
the mass is concentrated at the centre and this force is therefore central.

9. The gravitational force on a particle inside a spherical shell is zero. However, (unlike a
metallic shell which shields electrical forces) the shell does not shield other bodies outside
it from exerting gravitational forces on a particle inside. Gravitational shielding is not

possible.

EXERCISES
7.1 Answer the following :

(a) You can shield a charge from electrical forces by putting it inside a hollow conductor.
Can you shield a body from the gravitational influence of nearby matter by putting
it inside a hollow sphere or by some other means ?

(b) An astronaut inside a small space ship orbiting around the earth cannot detect
gravity. If the space station orbiting around the earth has a large size, can he hope
to detect gravity ?

(c) If you compare the gravitational force on the earth due to the sun to that due
to the moon, you would find that the Sun’s pull is greater than the moon’s pull.
(you can check this yourself using the data available in the succeeding exercises).
However, the tidal effect of the moon’s pull is greater than the tidal effect of sun.
Why ?
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7.2 Choose the correct alternative :
(a) Acceleration due to gravity increases/decreases with increasing altitude.
(b) Acceleration due to gravity increases/decreases with increasing depth (assume the

earth to be a sphere of uniform density).
(c) Acceleration due to gravity is independent of mass of the earth/mass of the body.
(d) The formula –G Mm(1/r2  – 1/r1)  is more/less accurate than the formula

mg(r2 – r1) for the difference of potential energy between two points r2 and r1 distance
away from the centre of the earth.

7.3 Suppose there existed a planet that went around the Sun twice as fast as the earth.
What would be its orbital size as compared to that of the earth ?

7.4 Io, one of the satellites of Jupiter, has an orbital period of 1.769 days and the radius
of the orbit is 4.22 × 108 m. Show that the mass of Jupiter is about one-thousandth
that of the sun.

7.5 Let us assume that our galaxy consists of 2.5 × 1011 stars each of one solar mass. How
long will a star at a distance of 50,000 ly from the galactic centre take to complete one
revolution ? Take the diameter of the Milky Way to be 105 ly.

7.6 Choose the correct alternative:
(a) If the zero of potential energy is at infinity, the total energy of an orbiting satellite

is negative of its kinetic/potential energy.
(b) The energy required to launch an orbiting satellite out of earth’s gravitational

influence is more/less than the energy required to project a stationary object at
the same height (as the satellite) out of earth’s influence.

7.7 Does the escape speed of a body from the earth depend on (a) the mass of the body, (b)
the location from where it is projected, (c) the direction of projection, (d) the height of
the location from where the body is launched?

7.8 A comet orbits the sun in a highly elliptical orbit. Does the comet have a constant (a)
linear speed, (b) angular speed, (c) angular momentum, (d) kinetic energy, (e) potential
energy, (f) total energy throughout its orbit? Neglect any mass loss of the comet when
it comes very close to the Sun.

7.9 Which of the following symptoms is likely to afflict an astronaut in space (a) swollen
feet, (b) swollen face, (c) headache, (d) orientational problem.

7.10 In the following two exercises, choose the correct answer from among the given ones:
The gravitational intensity at the centre of a hemispherical shell of uniform mass
density has the direction indicated by the arrow (see Fig 7.11) (i) a, (ii) b, (iii) c, (iv) 0.

Fig. 7.11

7.11 For the above problem, the direction of the gravitational intensity at an arbitrary
point P is indicated by the arrow (i) d, (ii) e, (iii) f, (iv) g.

7.12 A rocket is fired from the earth towards the sun. At what distance from the earth’s
centre is the gravitational force on the rocket zero ? Mass of the sun = 2×1030 kg,
mass of the earth = 6×1024 kg. Neglect the effect of other planets etc. (orbital radius
= 1.5 × 1011 m).

7.13 How will you ‘weigh the sun’, that is estimate its mass? The mean orbital radius of
the earth around the sun is 1.5 × 108 km.

7.14 A saturn year is 29.5 times the earth year. How far is the saturn from the sun if the
earth is 1.50 × 108 km away from the sun ?

7.15 A body weighs 63 N on the surface of the earth. What is the gravitational force on it
due to the earth at a height equal to half the radius of the earth ?
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7.16 Assuming the earth to be a sphere of uniform mass density, how much would a
body weigh half way down to the centre of the earth if it weighed 250 N on the
surface ?

7.17 A rocket is fired vertically with a speed of 5 km s-1 from the earth’s surface. How far
from the earth does the rocket go before returning to the earth ?  Mass  of the earth
= 6.0 × 1024 kg; mean radius of the earth = 6.4 × 106 m; G = 6.67 × 10–11 N m2 kg–2.

7.18 The escape speed of a projectile on the earth’s surface is 11.2 km s–1. A body is
projected out with thrice this speed. What is the speed of the body far away from
the earth? Ignore the presence of the sun and other planets.

7.19 A satellite orbits the earth at a height of 400 km above the surface. How much
energy must be expended to rocket the satellite out of the earth’s gravitational
influence? Mass of the satellite = 200 kg; mass of the earth = 6.0×1024 kg;  radius  of
the earth = 6.4 × 106 m; G = 6.67 × 10–11 N m2 kg–2.

7.20 Two stars each of one solar mass (= 2×1030 kg) are approaching each other for a
head on collision. When they are a distance 109 km, their speeds are negligible.
What is the speed with which they collide ? The radius of each star is 104 km.
Assume the stars to remain undistorted until they collide. (Use the known value
of G).

7.21 Two heavy spheres each of mass 100 kg and radius 0.10 m are placed 1.0 m apart on
a horizontal table. What is the gravitational force and potential at the mid point of
the line joining the centres of the spheres ? Is  an object placed at that point in
equilibrium? If so, is the equilibrium stable or unstable ?
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