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EXERCISE 7.1

1.
1

cos 2
2

x− 2.
1

sin 3
3

x 3.
21

2

x
e

4.
31

( )
3

ax b
a

+ 5.
31 4

cos2
2 3

x
x e− − 6.

34
C

3

x
e x+ +

7.

3

C
3

x
x− + 8.

3 2

C
3 2

ax bx
cx+ + + 9.

32
C

3

x
x e+ +

10.

2

log 2 C
2

x
x x+ − + 11.

2 4
5 C

2

x
x

x
+ + +

12.

7 3

2 2
2

2 8 C
7

x x x+ + + 13.

3

C
3

x
x+ +

14.

3 5

2 2
2 2

C
3 5

x x− + 15.

7 5 3

2 2 2
6 4

2 C
7 5

x x x+ + +

16. 2 3sin + Cxx x e− + 17.

3

3 2
2 10

3cos C
3 3

x x x+ + +

18. tan x + sec x + C 19. tan x – x + C

20. 2 tan x – 3 sec x + C 21. C

22. A

EXERCISE 7.2

1. log (1 + x2) + C 2.
31

(log| |) C
3

x + 3. log 1+log Cx +

4. cos (cos x) + C 5.
1

cos 2( ) C
4

ax b
a

− + +

6.

3

2
2

( ) C
3

ax b
a

+ + 7.

5 3

2 2
2 4

( 2) ( 2) C
5 3

x x+ − + +
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8.

3

2 2
1

(1 2 ) C
6

x+ + 9.

3

2 2
4

( 1) C
3

x x+ + + 10. 2log 1 Cx − +

 11.
2

4( 8) C
3

x x+ − +

12.

7 4

3 33 3
1 1

( 1) ( 1) C
7 4

x x− + − + 13. 3 2

1
C

18(2 3 )x
− +

+

14.

1(log )
C

1

mx

m

−

+
− 15.

21
log | 9 4x | C

8
− − + 16.

2 31
C

2

xe + +

17. 2

1
C

2 xe
− + 18.

1
tan Cxe

−

+ 19. log( )+Cx xe e−+

20.
2 21

log ( ) C
2

x x
e e

−+ + 21.
1

tan (2 3) C
2

x x− − +

22.
1

tan (7 4 ) C
4

x− − + 23.
1 21

(sin ) C
2

x
− +

24.
1

log 2sin 3cos C
2

x x+ + 25.

1
C

(1 tan )x
+

−

26. 2sin Cx + 27.

3

2
1

(sin 2 ) C
3

x + 28. 2 1+sin Cx +

29.
21

(logsin ) C
2

x + 30. – log 1+cos Cx + 31.

1
C

1+cos x
+

32.
1

log cos sin C
2 2

x
x x− + + 33.

1
log cos sin C

2 2

x
x x− − +

34. 2 tan Cx + 35.
31

(1 log ) C
3

x+ + 36.
31

( log ) C
3

x x+ +

37.
1 41

cos(tan ) C
4

x
−− + 38. D

39. B
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EXERCISE 7.3

1.
1

sin (4 10) C
2 8

x
x− + + 2.

1 1
cos7 cos C

14 2
x x− + +

3.
1

4
C

1

12
12

1

8
8

1

4
4sin sin sinx x x x+ + +





+

4.
31 1

cos(2 1) cos (2 1) C
2 6

x x− + + + + 5.
6 41 1

cos cos C
6 4

x x− +

6.
1

4

1

6
6

1

4
4

1

2
2cos cos cosx x x− −





+ C

7.
1

2

1

4
4

1

12
12sin sinx x−





+ C 8. 2tan C
2

x
x− +

9. tan C
2

x
x − + 10.

3 1 1
sin 2 sin 4 C

8 4 32

x
x x− + +

11.
3 1 1

sin 4 sin8 C
8 8 64

x
x x+ + + 12. x – sin x + C

13. 2 (sinx + x cosα) + C 14.

1
C

cos +sinx x
− +

15.
31 1

sec 2 sec2 C
6 2

x x− + 16.
31

tan tan C
3

x x x− + +

17. sec x – cosec x + C 18. tan x + C

19.
21

log tan tan C
2

x x+ + 20. log cos sin Cx x+ +

21.

2

C
2 2

x xπ
− + 22.

1 cos ( )
log C

sin ( ) cos ( )

x a

a b x b

−
+

− −

23. A 24. B

EXERCISE 7.4

1. 1 3tan + Cx− 2.
21

log 2 1 4 C
2

x x+ + +
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3. 2

1
log C

2 4 5x x x
+

− + − +
4.

–11 5
sin C

5 3

x
+

5.
1 23

tan 2 C
2 2

x− + 6.

3

3

1 1
log C

6 1

x

x

+
+

−

7.
2 2

1 log 1 Cx x x− − + − + 8.
3 6 61

log C
3

x x a+ + +

9.
2

log tan + tan + 4 Cx x + 10.
2

log 1 2 2 Cx x x+ + + + +

11. 12.

13.
23

log – 3 2 C
2

x x x+ − + + 14.

15.
+

log – ( )( ) C
2

a b
x x a x b+ − − +

16. 22 2 + 3 Cx x − + 17.
2 21 2log 1 Cx x x− + + − +

18.

19.
2 29

6 – 9 + 20 34log 9 20 C
2

x x x x x+ − + − + +

20.

21.
2 2

2 +3 log 1 2 3 Cx x x x x+ + + + + + +

22.
21 2 1 6

log 2 5 log C
2 6 1 6

x
x x

x

− −
− − + +

− +
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23.
2 25 4 +10 7 log 2 4 10 Cx x x x x+ − + + + + +

24. B 25. B

EXERCISE 7.5

1.

2( 2)
log C

1

x

x

+
+

+ 2.
1 3

log C
6 3

x

x

−
+

+

3. log 1 5log 2 4log 3 Cx x x− − − + − +

4.
1 3

log 1 2log 2 log 3 C
2 2

x x x− − − + − +

5. 4log +2 2log 1 Cx x− + + 6.
3

log log 1 2 C
2 4

x
x x+ − − +

7.
2 11 1 1

log 1 log ( 1) tan C
2 4 2

x x x
−− − + + +

8.
2 1 1

log C
9 2 3( 1)

x

x x

−
− +

+ − 9.
1 1 4

log C
2 1 1

x

x x

+
− +

− −

10.
5 1 12

log 1 log 1 log 2 3 C
2 10 5

x x x+ − − − + +

11.
5 5 5

log 1 log 2 log 2 C
3 2 6

x x x+ − + + − +

12.

2 1 3
log 1 log 1 C

2 2 2

x
x x+ + + − +

13. – log 1x − +
1

2
log (1 + x2) + tan–1x + C

14.
7

3log 2 C
2

+ + +
+

x
x

15.
11 1 1

log tan C
4 1 2

x
x

x

−−
− +

+

16.
1

log C
1

n

n

x

n x
+

+ 17.
2 – sin

log C
1– sin

x

x
+

18.
1 12

+ tan 3tan C
23 3

x x
x − −− + 19.
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20.

4

4

1 1
log C

4

x

x

−
+ 21.

– 1
log C

x

x

e

e

 
+ 

 
22. B 23. A

EXERCISE 7.6

1. – x cos x + sin x + C 2.
1

cos3 sin 3 C
3 9

x
x x− + +

3. ex (x2 – 2x + 2) + C 4.

2 2

log C
2 4

x x
x − +

5.

2 2

log 2 C
2 4

x x
x − + 6.

3 3

log C
3 9

x x
x − +

7.

2
2 11 1

(2 1) sin C
4 4

x x
x x− −

− + + 8.

2
1 11

tan tan C
2 2 2

x x
x x

− −− + +

9.

–1
2 2cos

(2 1) 1 C
4 4

x x
x x− − − +

10. ( )2
–1 2 1

sin 2 1 sin 2 Cx x x x x
−+ − − +

11.
2 –1– 1– cos Cx x x  

+ +
    

12. x tan x + log cos x + C

13.
1 21

tan log(1 ) C
2

x x x− − + + 14.

2 2 2
2

(log ) log C
2 2 4

x x x
x x− + +

15. 16. ex sin x + C

17. C
1+

xe

x
+ 18. tan C

2

x x
e +

19. C
xe

x
+ 20. 2

C
( 1)

xe

x
+

−

21.

2

(2sin cos ) C
5

xe
x x− + 22. 2x tan–1x – log (1 + x2) + C

23. A 24. B
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EXERCISE 7.7

1.
2 11

4 2sin C
2 2

x
x x

−− + + 2.
1 21 1

sin 2 1 4 C
4 2

x x x
− + − +

3.
2 2( +2)

4 6 log 2 4 6 C
2

x
x x x x x+ + + + + + + +

4.
2 2( +2) 3

4 1 log 2 4 1 C
2 2

x
x x x x x+ + − + + + + +

5.

6.
2 2( +2) 9

4 5 log 2 4 5 C
2 2

x
x x x x x+ − − + + + − +

7.

8.
2 22 +3 9 3

3 log 3 C
4 8 2

x
x x x x x+ − + + + +

9.
2 23

9 log 9 C
6 2

x
x x x+ + + + +

10. A 11. D

EXERCISE 7.8

1. 2 2.
3

log
2

3.
64

3

4.
1

2
5. 0 6. e4 (e – 1)

7.
1

2
log 2 8. 9.

π

2

10.
π

4
11.

1 3
log

2 2
12.

π

4
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13.
1

2
log 2 14.

11 3
log6 tan 5

5 5

−+

15.
1

2
(e – 1) 16.

17.

4

2
1024 2

π π
+ + 18. 0 19.

3
3log 2

8

π
+

20. 1 + 
4 2 2

π π
− 21. D 22. C

EXERCISE 7.9

1.
1

log 2
2

2.
64

231
3.

π

2
– log 2

4.
16 2

( 2 1)
15

+ 5.
π

4
6.

1 21 5 17
log

417

+

7.
π

8
8.

2 2( 2)

4

e e −
9. D

10. B

EXERCISE 7.10

1.
π

4
2.

π

4
3.

π

4
4.

π

4

5. 29 6. 9 7.

1

( 1)( 2)n n+ +

8.
π

log 2
8

9.
16 2

15
10.

π 1
log

2 2
11.

π

2

12. π 13. 0 14. 0 15. 0

16. – π log 2 17.
2

a
18. 5 20. C

21. C
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MISCELLANEOUS EXERCISE ON CHAPTER 7

1.

2

2

1
log C

2 1

x

x
+

− 2.

3.
( )2

– C
a x

a x

−
+ 4.

5.

1 1 1

3 6 62 3 6 6log(1 ) Cx x x x− + − + +

6.
2 11 1 3

log 1 log ( 9) tan C
2 4 2 3

x
x x

−− + + + + +

7. sin log sin ( ) cos Ca x a x a− + + 8.

3

C
3

x
+

9. 10.
1

sin 2 C
2

x− +

11.
cos ( )1

log C
sin ( –  ) cos( )

x b

a b x a

+
+

+
12.

1 41
sin ( ) C

4
x

− +

13. 14.
1 11 1

tan tan C
3 6 2

x
x

− −− +

15.
41

cos C
4

x− + 16.
41

log( 1) C
4

x + +

17.

+1[ ( + )]
C

( +1)

nf ax b

a n
+ 18.

sin ( )–2
C

sin sin

x

x

α
α

+
+

19. 1 2
–2 1– cos Cx x x x

−+ + − +

20. ex tan x + C 21.
1

2log +1 3log 2 C
1

x x
x

− − + + +
+

22. 23.
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24. 2e

π
25.

8

π

26.
6

π
27.

1 ( 3 1)
2sin

2

− −

28.
4 2

3
29.

1
log9

40

30.
π

1
2

− 31.
19

2

38. A 39. B

40. D

EXERCISE 8.1

1. 12π 2. 6π 3. A 4. B

Miscellaneous Exercise on Chapter 8

1. (i)
7

3
(ii) 624.8

2. 9 3. 4 4. D 5. C

EXERCISE 9.1

1. Order 4; Degree not defined 2. Order 1; Degree 1

3. Order 2; Degree 1 4. Order 2; Degree not defined

5. Order 2; Degree 1 6. Order 3; Degree 2

7. Order 3; Degree 1 8. Order 1; Degree 1

9. Order 2; Degree 1 10. Order 2; Degree 1

11. D 12. A

EXERCISE 9.2

11. D 12. D
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EXERCISE 9.3

1. 2 tan C
2

x
y x= − + 2. y = 2 sin (x + C)

3. y = 1 + Ae–x 4. tan tan Cx y =

5. y = log (ex + e–x) + C 6.

3
–1

tan = + C
3

x
y x +

7. y = ecx 8. x – 4 + y –4 = C

9. y = x sin–1x + 2
1– x + C 10. tan y = C ( 1 – ex)

11.

12.

2

2

1 1 1 3
log log

2 2 4

 −
= − 

 

x
y

x
13.

14. y = sec x 15. 2y – 1 = ex ( sin x – cos x)

16. y – x + 2 = log (x2 (y + 2)2) 17. y2 – x2 = 4

18. (x + 4)2 = y + 3 19.

1

3(63 27)t +

20. 6.93% 21. Rs 1648

22. 23. A

EXERCISE 9.4

1.
2( ) C

y

xx y x e

−

− = 2. log Cy x x x= +

3.
–1 2 21

tan log( ) C
2

y
x y

x

 = + + 
 

4. x2 + y2 = Cx

5.

1 2
log log C

2 2 2

x y
x

x y

+
= +

− 6. 2 2 2
+ + Cy x y x=

7. xy cos 
y

x
 = C 8. 1 cos Csin

y y
x

x x

    − =    
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9. cy = log 
y

x
–1 10. C

x

yye x+ =

11. log ( x2 + y2) + 2 tan–1 
y

x
 = 
π

log 2
2

+

12. y + 2x = 3x2 y 13. cot log
y

ex
x

 = 
 

14. cos log
y

ex
x

 = 
 

15.
2

( 0, )
1 log

x
y x x e

x
= ≠ ≠

−

16. C 17. D

EXERCISE 9.5

1. y = 
1

5
(2sin x – cos x) + C e–2x 2. y = e–2x + Ce–3x

3.

4

C
4

x
xy = + 4. y (sec x + tan x) = sec x + tan x – x + C

5. y = (tan x – 1) + Ce–tanx 6.

2
2

(4log 1) C
16

−= − +
x

y x x

7.
2

log (1 log ) C
−

= + +y x x
x

8.
1 2 1=(1+ )  log sin C(1 )y x x x− −+ +

9.

1 C
cot

sin
y x

x x x
= − + 10. (x + y + 1) = C ey

11.

2
C

3
= +

y
x

y
12. x = 3y2 + Cy

13. y = cos x – 2 cos2 x 14. y (1 + x2) = tan–1 x – 
4

π

15. y = 4 sin3 x – 2 sin2 x 16. x + y + 1 = ex

17. y = 4 – x – 2 ex 18. C        19.  D

Miscellaneous Exercise on Chapter 9

1. (i) Order 2; Degree 1 (ii) Order 1; Degree 3

(iii) Order 4; Degree not defined
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4. sin–1y + sin–1x = C 6. cos y = 
sec

2

x

7. tan–1 y + tan–1(ex) = 
π

2
8. C

x

ye y= +

9. log – 1x y x y= + + 10.
2

(2 C)
x

y e x= +

11.

2
2 π

sin 2 (sin 0)
2

y x x x= − ≠ 12.

2 1
log , 1

1

x
y x

x

+
= ≠ −

+

13. C 14. C

15. C

EXERCISE 10.1

1. In the adjoining figure, the vector  represents the required displacement.

2. (i) scalar (ii) vector (iii) scalar (iv) scalar (v) scalar

(vi) vector

3. (i) scalar (ii) scalar (iii) vector (iv) vector (v) scalar

4. (i) Vectors  and  are coinitial

(ii) Vectors  and  are equal

(iii) Vectors  and  are collinear but not equal

5. (i) True (ii) False (iii) False (iv) False

EXERCISE 10.2

1.

2. An infinite number of possible answers.
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3. An infinite number of possible answers.

4. x = 2, y = 3 5. –7 and 6; ˆ ˆ–7 and 6i j

6. ˆˆ4 j k− − 7.
1 1 2 ˆˆ ˆ
6 6 6

i j k+ +

8.
1 1 1 ˆˆ ˆ
3 3 3

i j k+ + 9.
1 1 ˆˆ
2 2

i k+

10.

40 8 16 ˆˆ ˆ
30 30 30

i j k− + 12.

1 2 3
, ,

14 14 14

13.
1 2 2

, ,
3 3 3

− − 15. (i)  
1 4 1 ˆˆ ˆ
3 3 3

i j k− + +    (ii)  ˆˆ3 3i k− +

16. ˆˆ ˆ3 2i j k+ + 18. (C) 19.  (B), (C), (D)

EXERCISE 10.3

1.
π

4
2. 3. 0

4.
60

114
6.

16 2 2 2
,

3 7 3 7
7.

8. 9. 13 10. 8

12. Vector  can be any vector 13.
3

2

−

14. Take any two non-zero perpendicular vectors  and 

15. 18. (D)

EXERCISE 10.4

1. 19 2 2.
2 2 1 ˆˆ ˆ
3 3 3

i j k±   3.
π 1 1 1

; , ,
3 2 22

5.
27

3,
2

6. Either 
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8. No; take any two nonzero collinear vectors

9.
61

2
10. 15 2 11. (B)        12.  (C)

Miscellaneous Exercise on Chapter 10

1.
3 1ˆ ˆ

2 2
i j+

2.
2 2 2

2 1 2 1 2 1 2 1 2 1 2 1– , – , ; ( ) ( ) ( )x x y y z z x x y y z z− − + − + −

3.
5 3 3ˆ ˆ

2 2
i j

−
+

4. No; take ,  and 
r
c  to represent the sides of a triangle.

5.
1

3
± 6.

3 10ˆ ˆ10
2 2

i j+ 7.
3 3 2 ˆˆ ˆ
22 22 22

i j k− +

8. 2 : 3 9. 3  + 5 10.
1 ˆˆ ˆ(3 – 6 2 ); 11 5
7

i j k+

12.
1 ˆˆ ˆ(160 – 5 70 )
3

i j k+ 13. λ = 1 16. (B)

17. (D) 18. (C) 19. (B)

EXERCISE 11.1

1.
1 1

0, ,
2 2

−
2.

1 1 1
, ,

3 3 3
± ± ± 3.

5.
2 2 3 2 3 2 4 5 1

, , ; , , ; , ,
1717 17 17 17 17 42 42 42

− − − − − −

EXERCISE 11.2

4. , where λ is a real number

5. and cartesian form is

1

4

2

1

1

2

−
−

=
+

=
− zyx
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6.
6

5

5

4

3

2 +
=

−
=

+ zyx

7. ˆ ˆˆ ˆ ˆ ˆ(5 4 6 ) (3 7 2 )= − + + λ + +
r
r i j k i j k

8. (i) θ = 
1 19

cos
21

−  
 
 

(ii) θ = 
1 8

cos
5 3

−  
  
 

9. (i) θ = 
1 26

cos
9 38

−  
  
 

(ii) θ = 
1 2

cos
3

−  
 
 

10.
70

11
p = 12.

3 2

2
13. 2 29

14.
3

19
15.

29

8

Miscellaneous Exercise on Chapter 11

1. 90° 2.
1 0 0

x y z= = 3.
10

7
k

−
=

4. 9 5.

EXERCISE 12.1

1. Maximum Z = 16 at (0, 4)

2. Minimum Z = – 12 at (4, 0)

3. Maximum Z = 
235

19
 at 

20

19

45

19
,







4. Minimum Z = 7 at 
3

2

1

2
,







5. Maximum Z = 18 at (4, 3)

6. Minimum Z = 6 at all the points on the line segment joining the points (6, 0)

and (0, 3).
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7. Minimum Z = 300 at (60, 0);

Maximum Z = 600 at all the points on the line segment joining the points (120, 0)

and (60, 30).

8. Minimum Z = 100 at all the points on the line segment joining the points (0, 50)

and (20, 40);

Maximum Z = 400 at (0, 200)

9. Z has no maximum value

10. No feasible region, hence no maximum value of Z.

EXERCISE 13.1

1. ( ) ( )2 1
P E|F , P F|E

3 3
= = 2. ( ) 16

P A|B
25

=

3. (i) 0.32 (ii) 0.64 (iii) 0.98

4.
11

26

5. (i)
4

11
(ii)

4

5
(iii)

2

3

6. (i)
1

2
(ii)

3

7
(iii)

6

7

7. (i) 1 (ii) 0

8.
1

6
9. 1 10. (a) 

1

3
,   (b) 

1

9

11. (i)
1

2
, 

1

3
(ii)

1

2
, 

2

3
(iii)

3

4
, 

1

4

12. (i)
1

2
(ii)

1

3
13.

5

9

14.
1

15
15. 0 16. C     17.   D
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EXERCISE 13.2

1.
3

25
2.

25

102
3.

44

91

4. A and B are independent 5. A and B are not independent

6. E and F are not independent
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Foreword

The National Curriculum Framework, 2005, recommends that children’s life at school

must be linked to their life outside the school. This principle marks a departure from the

legacy of bookish learning which continues to shape our system and causes a gap

between the school, home and community. The syllabi and textbooks developed on the

basis of NCF signify an attempt to implement this basic idea. They also attempt to

discourage rote learning and the maintenance of sharp boundaries between different

subject areas. We hope these measures will take us significantly further in the

direction of a child-centred system of education outlined in the National Policy on

Education (1986).

The success of this effort depends on the steps that school principals and teachers

will take to encourage children to reflect on their own learning and to pursue imaginative

activities and questions. We must recognise that, given space, time and freedom, children

generate new knowledge by engaging with the information passed on to them by adults.

Treating the prescribed textbook as the sole basis of examination is one of the key

reasons why other resources and sites of learning are ignored. Inculcating creativity

and initiative is possible if we perceive and treat children as participants in learning, not

as receivers of a fixed body of knowledge.

These aims imply considerable change in school routines and mode of functioning.

Flexibility in the daily time-table is as necessary as rigour in implementing the annual

calendar so that the required number of teaching days are actually devoted to teaching.

The methods used for teaching and evaluation will also determine how effective this

textbook proves for making children’s life at school a happy experience, rather than a

source of stress or boredom. Syllabus designers have tried to address the problem of

curricular burden by restructuring and reorienting knowledge at different stages with

greater consideration for child psychology and the time available for teaching. The

textbook attempts to enhance this endeavour by giving higher priority and space to

opportunities for contemplation and wondering, discussion in small groups, and activities

requiring hands-on experience.
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NCERT appreciates the hard work done by the textbook development committee

responsible for this book. We wish to thank the Chairperson of the advisory group in

Science and Mathematics, Professor J.V. Narlikar and the Chief Advisor for this book,

Professor P.K. Jain for guiding the work of this committee. Several teachers contributed

to the development of this textbook; we are grateful to their principals for making this

possible. We are indebted to the institutions and organisations which have generously

permitted us to draw upon their resources, material and personnel. As an organisation

committed to systemic reform and continuous improvement in the quality of its products,

NCERT welcomes comments and suggestions which will enable us to undertake further

revision and refinement.

Director

New Delhi National Council of Educational

20 November 2006 Research and Training

iv
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Rationalisation of Content in the Textbooks

In view of the COVID-19 pandemic, it is imperative to reduce content load on students.

The National Education Policy 2020, also emphasises reducing the content load and

providing opportunities for experiential learning with creative mindset. In this background,

the NCERT has undertaken the exercise to rationalise the textbooks across all classes.

Learning Outcomes already developed by the NCERT across classes have been taken

into consideration in this exercise.

Contents of the textbooks have been rationalised in view of the following:

• Overlapping with similar content included in other subject areas in the same class

• Similar content included in the lower or higher class in the same subject

• Difficulty level

• Content, which is easily accessible to students without much interventions from

teachers and can be learned by children through self-learning or peer-learning

• Content, which is irrelevant in the present context

This present edition, is a reformatted version after carrying out the changes given above.
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Preface

The National Council of Educational Research and Training (NCERT) had constituted

21 Focus Groups on Teaching of various subjects related to School Education,

to review the National Curriculum Framework for School Education - 2000

(NCFSE - 2000) in face of new emerging challenges and transformations occurring in

the fields of content and pedagogy under the contexts of National and International

spectrum of school education. These Focus Groups made general and specific comments

in their respective areas. Consequently, based on these reports of Focus Groups, National

Curriculum Framework (NCF)-2005 was developed.

NCERT designed the new syllabi and constituted Textbook Development

Teams for Classes XI and XII to prepare textbooks in Mathematics under the new

guidelines and new syllabi. The textbook for Class XI is already in use, which was

brought in 2005.

The first draft of the present book (Class XII) was prepared by the team

consisting of NCERT faculty, experts and practicing teachers. The draft was refined

by the development team in different meetings. This draft of the book was exposed

to a group of practicing teachers teaching Mathematics at higher secondary stage

in different parts of the country, in a review workshop organised by the NCERT at

Delhi. The teachers made useful comments and suggestions which were incorporated

in the draft textbook. The draft textbook was finalised by an editorial board constituted

out of the development team. Finally, the Advisory Group in Science and Mathematics

and the Monitoring Committee constituted by the HRD Ministry, Government of India

have approved the draft of the textbook.

In the fitness of things, let us cite some of the essential features dominating the

textbook. These characteristics have reflections in almost all the chapters. The existing

textbook contains thirteen main chapters and  two appendices. Each chapter contains

the followings :

§ Introduction: Highlighting the importance of the topic; connection with earlier

studied topics; brief mention about the new concepts to be discussed in the

chapter.

§ Organisation of chapter into sections comprising one or more concepts/

subconcepts.

§ Motivating and introducing the concepts/subconcepts. Illustrations have been

provided wherever possible.
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§ Proofs/problem solving involving deductive or inductive reasoning, multiplicity

of approaches wherever possible have been inducted.

§ Geometric viewing / visualisation of concepts have been emphasized whenever

needed.

§ Applications of mathematical concepts have also been integrated with allied

subjects like Science and Social Sciences.

§ Adequate and variety of examples/exercises have been given in each section.

§ For refocusing and strengthening the understanding and skill of problem solving

and applicabilities, miscellaneous types of examples/exercises have been

provided involving two or more subconcepts at a time at the end of the chapter.

The scope of challenging problems to talented minority have been reflected

conducive to the recommendation as reflected in NCF-2005.

§ For more motivational purpose, brief historical background of topics have been

provided at the end of the chapter and at the beginning of each chapter, relevant

quotation and photograph of eminent mathematician who have contributed

significantly in the development of the topic undertaken, are also provided.

§ Lastly, for direct recapitulation of main concepts, formulas and results, brief

summary of the chapter has also been provided.

I am thankful to Professor Krishan Kumar, Director, NCERT who constituted the

team and invited me to join this national endeavour for the improvement of Mathematics

education. He has provided us with an enlightened perspective and a very conducive

environment. This made the task of preparing the book  much more enjoyable and

rewarding. I express my gratitude to Professor J.V. Narlikar, Chairperson of the Advisory

Group in Science and Mathematics, for his specific suggestions and advice towards

the improvement of the book from time to time. I, also, thank Professor

G. Ravindra, Joint Director, NCERT for his help from time to time.

I express my sincere thanks to Professor Hukum Singh, Chief Coordinator and

Head, DESM,  Dr. V. P. Singh, Coordinator and Professor, S. K. Singh Gautam who

have been helping for the success of this project academically as well as administratively.

Also, I would like to place on records my appreciation and thanks to all the members

of the team and the teachers who have been associated with this noble cause in one or

the other form.

PAWAN K. JAIN

Chief Advisor

viii
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INTEGRALS         225

v Just as a mountaineer climbs a mountain – because it is there, so

a good mathematics student studies new material because

it is there. — JAMES B. BRISTOL v

7.1  Introduction

Differential Calculus is centred on the concept of the

derivative. The original motivation for the derivative was

the problem of defining tangent lines to the graphs of

functions and calculating the slope of such lines. Integral

Calculus is motivated by the problem of defining and

calculating the area of the region bounded by the graph of

the functions.

If a function f  is differentiable in an interval I, i.e., its

derivative f ′exists at each point of I, then a natural question

arises that given f ′at each point of I, can we determine

the function? The functions that could possibly have given

function as a derivative are called anti derivatives (or

primitive) of the function. Further, the formula that gives

all these anti derivatives is called the indefinite integral of the function and such

process of finding anti derivatives is called integration. Such type of problems arise in

many practical situations. For instance, if we know the instantaneous velocity of an

object at any instant, then there arises a natural question, i.e., can we determine the

position of the object at any instant? There are several such practical and theoretical

situations where the process of integration is involved. The development of integral

calculus arises out of the efforts of solving the problems of the following types:

(a) the problem of finding a function whenever its derivative is given,

(b) the problem of finding the area bounded by the graph of a function under certain
conditions.

These  two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.

Chapter 7

INTEGRALS

G .W. Leibnitz

(1646 -1716)
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226 MATHEMATICS

There is a connection, known as the Fundamental Theorem of Calculus, between

indefinite integral and definite integral which makes the definite integral as a practical

tool for science and engineering. The definite integral is also used to solve many interesting

problems from various disciplines like economics, finance and probability.

In this Chapter, we shall confine ourselves to the study of indefinite and definite

integrals and their elementary properties including some techniques of integration.

7.2  Integration as an Inverse Process of Differentiation

Integration is the inverse process of differentiation. Instead of differentiating a function,

we are given the derivative of a function and asked to find its primitive, i.e., the original

function. Such a process is called integration or anti differentiation.

Let us consider the following examples:

We know that (sin )
d

x
dx

 = cos x ... (1)

3

( )
3

d x

dx
 = x2 ... (2)

and ( )
xd

e
dx

= ex ... (3)

We observe that in (1), the function cos x is the derived function of sin x. We say

that sin x is an anti derivative (or an integral) of cos x. Similarly, in (2) and (3), 

3

3

x
 and

ex are the anti derivatives (or integrals) of x2 and ex, respectively. Again, we note that

for any real number C, treated as constant function, its derivative is zero and hence, we

can write (1), (2) and (3) as follows :

(sin + C) cos=
d

x x
dx

, 
3

2
( + C)

3
=

d x
x

dx
and ( + C) =x xd

e e
dx

Thus, anti derivatives (or integrals) of the above cited functions are not unique.

Actually, there exist infinitely many anti derivatives of each of these functions which

can be obtained by choosing C arbitrarily from the set of real numbers. For this reason

C is customarily referred to as arbitrary constant. In fact, C is the parameter by

varying which one gets different anti derivatives (or integrals) of the given function.

More generally, if there is a function F such that F ( ) = ( )
d

x f x
dx

, ∀ x ∈ I (interval),

then for any arbitrary real number C, (also called constant of integration)

[ ]F ( ) + C
d

x
dx

 = f (x), x ∈ I
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Thus, {F + C, C ∈ R} denotes a family of anti derivatives of f.

Remark  Functions with same derivatives differ by a constant. To show this, let g and h

be two functions having the same derivatives on an interval I.

Consider the function f = g – h defined by f (x) = g (x) – h(x), ∀ x ∈ I

Then
df

dx
= f′ = g′  – h′ giving  f′ (x) = g′ (x) – h′ (x) ∀ x ∈ I

or f′ (x) = 0, ∀ x ∈ I by hypothesis,

i.e., the rate of change of f with respect to x is zero on I and hence f is constant.

In view of the above remark, it is justified to infer that the family {F + C, C ∈ R}

provides all possible anti derivatives of f.

We introduce a new symbol, namely, ( )f x dx∫  which will represent the entire

class of anti derivatives read as the indefinite integral of f with respect to x.

Symbolically, we write ( ) = F ( ) + Cf x dx x∫ .

Notation Given that  ( )
dy

f x
dx

= , we write y = ( )f x dx∫ .

For the sake of convenience, we mention below the following symbols/terms/phrases

with their meanings as given in the Table (7.1).

Table 7.1

Symbols/Terms/Phrases Meaning

( )f x dx∫ Integral of f with respect to x

f (x) in ( )f x dx∫ Integrand

x in  ( )f x dx∫ Variable of integration

Integrate Find the  integral

An integral of f A function F such that

F′(x) = f (x)

Integration The process of finding the integral

Constant of Integration Any real number C, considered as

constant function
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228 MATHEMATICS

We already know the formulae for the derivatives of many important functions.

From these formulae, we can write down immediately the corresponding formulae

(referred to as standard formulae) for the integrals of these functions, as listed below

which will be used to find integrals of other functions.

Derivatives Integrals (Anti derivatives)

(i)

1

1

n
nd x

x
dx n

+ 
= 

+ 
 ;

1

C
1

n
n x

x dx
n

+

= +
+∫ , n ≠ –1

Particularly, we note that

( ) 1
d

x
dx

=  ;       Cdx x= +∫

(ii) ( )sin cos
d

x x
dx

=  ; cos sin Cx dx x= +∫

(iii) ( )– cos sin
d

x x
dx

=  ; sin cos Cx dx – x= +∫

(iv) ( ) 2tan sec
d

x x
dx

=  ;
2

sec tan Cx dx x= +∫

(v) ( ) 2
– cot cosec

d
x x

dx
=  ;

2
cosec cot Cx dx – x= +∫

(vi) ( )sec sec tan
d

x x x
dx

=  ; sec tan sec Cx x dx x= +∫

(vii) ( )– cosec cosec cot
d

x x x
dx

=  ; cosec cot – cosec Cx x dx x= +∫

(viii) ( )– 1

2

1
sin

1

d
x

dx – x
=

 ;
– 1

2
sin C

1

dx
x

– x
= +∫

(ix) ( )– 1

2

1
– cos

1

d
x

dx – x
=

 ;
– 1

2
cos C

1

dx
– x

– x
= +∫

(x) ( )– 1

2

1
tan

1

d
x

dx x
=

+  ;
– 1

2
tan C

1

dx
x

x
= +

+∫

(xi) ( )
x xd

e e
dx

=  ; C
x x

e dx e= +∫
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(xii) ( ) 1
log | |

d
x

dx x
= ;

1
log | | Cdx x

x
= +∫

(xiii)

x
xd a

a
dx log a

 
= 

 
 ; C

x
x a

a dx
log a

= +∫

ANote  In practice, we normally do not mention the interval over which the various

functions are defined. However, in any specific problem one has to keep it in mind.

7.2.1 Some properties of indefinite integral

In this sub section, we shall derive some properties of indefinite integrals.

(I) The process of differentiation and integration are inverses of each other in the

sense of the following results :

( )
d

f x dx
dx ∫  = f (x)

and ( )f x dx′∫  = f (x) + C, where C is any arbitrary constant.

Proof Let F be any anti derivative of f, i.e.,

F( )
d

x
dx

 = f (x)

Then ( )f x dx∫  = F(x) + C

Therefore ( )
d

f x dx
dx ∫  = ( )F ( ) + C

d
x

dx

= F ( ) = ( )
d

x f x
dx

Similarly, we note that

f ′(x) = ( )
d

f x
dx

and hence ( )f x dx′∫  = f (x) + C

where C is arbitrary constant called constant of integration.

(II) Two indefinite integrals with the same derivative lead to the same family of

curves and so they are equivalent.
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230 MATHEMATICS

Proof Let f and g be two functions such that

( )
d

f x dx
dx ∫  = ( )

d
g x dx

dx ∫

or ( ) ( )
d

f x dx – g x dx
dx
 
 ∫ ∫  = 0

Hence ( ) ( )f x dx – g x dx∫ ∫ = C, where C is any real number   (Why?)

or ( )f x dx∫  = ( ) Cg x dx +∫

So the families of curves { }1 1( ) C , C Rf x dx + ∈∫

and { }2 2( ) C , C Rg x dx + ∈∫  are identical.

Hence, in this sense, ( ) and ( )f x dx g x dx∫ ∫  are equivalent.

A Note The equivalence of the families { }1 1( ) + C ,Cf x dx ∈∫ R  and

{ }2 2( ) + C ,Cg x dx ∈∫ R  is customarily expressed by writing ( ) = ( )f x dx g x dx∫ ∫ ,

without mentioning the parameter.

(III) [ ]( ) + ( ) ( ) + ( )f x g x dx f x dx g x dx=∫ ∫ ∫
Proof By Property (I), we have

[ ( ) + ( )]
d

f x g x dx
dx
 
 ∫  = f (x) + g (x) ... (1)

 On the otherhand, we find that

( ) + ( )
d

f x dx g x dx
dx

 
 ∫ ∫  = ( ) + ( )

d d
f x dx g x dx

dx dx∫ ∫

= f (x) + g (x) ... (2)

  Thus, in view of Property (II), it follows by (1) and (2)  that

( )( ) ( )f x g x dx+∫ = ( ) ( )f x dx g x dx+∫ ∫ .

(IV)  For any real number k, ( ) ( )k f x dx k f x dx=∫ ∫
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Proof By the Property (I), ( ) ( )
d

k f x dx k f x
dx

=∫ .

Also ( )
d

k f x dx
dx

 
 ∫  =  ( ) = ( )

d
k f x dx k f x

dx ∫

 Therefore, using the Property (II), we have ( ) ( )k f x dx k f x dx=∫ ∫ .

(V) Properties (III) and (IV) can be generalised to a finite number of functions

f
1
, f

2
, ..., f

n
 and the real numbers, k

1
, k

2
, ..., k

n
 giving

[ ]1 1 2 2( ) ( ) ( )n nk f x k f x ... k f x dx+ + +∫

= 1 1 2 2( ) ( ) ( )n nk f x dx k f x dx ... k f x dx+ + +∫ ∫ ∫ .

To find an anti derivative of a given function, we search intuitively for a function

whose derivative is the given function. The search for the requisite function for finding

an anti derivative is known as integration by the method of inspection. We illustrate it

through some examples.

Example 1 Write an anti derivative for each of the following functions using the

method of inspection:

(i) cos 2x (ii) 3x2 + 4x3 (iii)
1

x
, x ≠ 0

Solution

(i) We look for a function whose derivative is cos 2x. Recall that

d

dx
 sin 2x = 2 cos 2x

or cos 2x = 
1

2

d

dx
 (sin 2x) =

1
sin 2

2

d
x

dx

 
 
 

Therefore, an anti derivative of cos 2x is 
1

sin 2
2

x .

(ii) We look for a function whose derivative is 3x2 + 4x3. Note that

( )3 4d
x x

dx
+ = 3x2 + 4x3.

Therefore, an anti derivative of 3x2 + 4x3  is  x3 + x4.
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(iii) We know that

1 1 1
(log ) 0 and [log ( )] ( 1) 0

d d
x , x – x – , x

dx x dx – x x
= > = = <

Combining above, we get ( ) 1
log 0

d
x , x

dx x
= ≠

Therefore, 
1

logdx x
x

=∫  is one of the anti derivatives of 
1

x
.

Example 2  Find the following integrals:

(i)

3

2

1x –
dx

x
∫ (ii)   

2

3( 1)x dx+∫ (iii)   ∫
3

2
1

( 2 – )+ 
x

x e dx
x

Solution

(i) We have

3
2

2

1 –x –
dx x dx – x dx

x
=∫ ∫ ∫ (by Property V)

= 

1 1 2 1

1 2C C
1 1 2 1

–
x x

–
–

+ +   
+ +   

+ +   
;  C

1
, C

2
 are constants of integration

= 

2 1

1 2C C
2 1

–
x x

– –
–

+  = 

2

1 2

1
+ C C

2

x
–

x
+

= 
2 1

+ C
2

x

x
+ , where C = C

1
 – C

2
 is another constant of integration.

ANote  From now onwards, we shall write only one constant of integration in the

final answer.

(ii) We have

2 2

3 3( 1)x dx x dx dx+ = +∫ ∫ ∫

=

2
1

3

C
2

1
3

x
x

+

+ +
+

 = 

5

3
3

C
5
x x+ +
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(iii) We have 

3 3

2 2
1 1

( 2 ) 2
x x

x e – dx x dx e dx – dx
x x

+ = +∫ ∫ ∫ ∫

=

3
1

2

2 – log + C
3

1
2

xx
e x

+

+
+

=

5

2
2

2 – log + C
5

x
x e x+

Example 3 Find the following integrals:

(i) (sin cos )x x dx+∫ (ii) cosec (cosec cot )x x x dx+∫

(iii) 2

1 sin

cos

– x
dx

x
∫

Solution

(i) We have

(sin cos ) sin cosx x dx x dx x dx+ = +∫ ∫ ∫
= – cos sin Cx x+ +

(ii) We have

2
(cosec (cosec + cot ) cosec cosec cotx x x dx x dx x x dx= +∫ ∫ ∫

= – cot cosec Cx – x +
(iii) We have

2 2 2

1 sin 1 sin

cos cos cos

– x x
dx dx – dx

x x x
=∫ ∫ ∫

= 
2

sec tan secx dx – x x dx∫ ∫
= tan sec Cx – x +

Example 4 Find the anti derivative F of  f defined by f (x) = 4x3 – 6, where F (0) = 3

Solution One anti derivative of f (x) is x4 – 6x since

4( 6 )
d

x – x
dx

 = 4x3 – 6

Therefore, the anti derivative F is given by

F(x) = x4 – 6x + C, where C is constant.
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Given that F(0) = 3, which gives,

3 = 0 – 6 × 0 + C    or    C = 3

Hence, the required anti derivative is the unique function F defined by

F(x) = x4 – 6x + 3.

Remarks

(i) We see that if F is an anti derivative of f, then so is F + C, where C is any

constant. Thus, if we know one anti derivative F of a function f, we can write

down an infinite number of anti derivatives of f by adding any constant to F

expressed by F(x)  + C, C ∈ R. In applications, it is often necessary to satisfy an

additional condition which then determines a specific value of C giving unique

anti derivative of the given function.

(ii) Sometimes, F is not expressible in terms of elementary functions viz., polynomial,

logarithmic, exponential, trigonometric functions and their inverses etc. We are

therefore blocked for finding ( )f x dx∫ . For example, it is not possible to find

2
– xe dx∫  by inspection since we can not find a function whose derivative is 

2– x
e

(iii) When the variable of integration is denoted by a variable other than x, the integral

formulae are modified accordingly. For instance

4 1
4 51

C C
4 1 5

y
y dy y

+

= + = +
+∫

EXERCISE 7.1

Find an anti derivative (or integral) of the following functions by the method of inspection.

1. sin 2x 2. cos 3x 3. e2x

4. (ax + b)2 5. sin 2x – 4 e3x

Find the following integrals in Exercises 6 to 20:

6.
3

(4 + 1) 
x

e dx∫ 7.
2

2

1
(1 – )x dx

x
∫ 8.

2
( )ax bx c dx+ +∫

9.
2

(2 )
x

x e dx+∫ 10.

2
1

x – dx
x

 
 
 
∫ 11.

3 2

2

5 4x x –
dx

x

+
∫

12.

3
3 4x x

dx
x

+ +
∫ 13.

3 2
1

1

x x x –
dx

x –

− +
∫ 14. (1 )– x x dx∫
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15.
2

( 3 2 3)x x x dx+ +∫ 16. (2 3cos )
x

x – x e dx+∫
17.

2
(2 3sin 5 )x – x x dx+∫ 18. sec (sec tan )x x x dx+∫

19.

2

2

sec

cosec

x
dx

x
∫ 20.

2

2 – 3sin

cos

x

x
∫ dx.

Choose the correct answer in Exercises 21 and 22.

21. The anti derivative of 
1

x
x

 
+ 

 
 equals

(A)

1 1

3 2
1

2 C
3

x x+ + (B)

2

23
2 1

C
3 2

x x+ +

(C)

3 1

2 2
2

2 C
3

x x+ + (D)

3 1

2 2
3 1

C
2 2

x x+ +

22. If 
3

4

3
( ) 4

d
f x x

dx x
= −  such that f (2) = 0. Then f (x) is

(A)
4

3

1 129

8
x

x
+ − (B)

3

4

1 129

8
x

x
+ +

(C)
4

3

1 129

8
x

x
+ + (D)

3

4

1 129

8
x

x
+ −

7.3  Methods of Integration

In previous section, we discussed integrals of those functions which were readily

obtainable from derivatives of some functions. It was based on inspection, i.e., on the

search of a function F whose derivative is f which led us to the integral of f. However,

this method, which depends on inspection, is not very suitable for many functions.

Hence, we need to develop additional techniques or methods for finding the integrals

by reducing them into standard forms. Prominent among them are methods based on:

1. Integration by Substitution

2. Integration using Partial Fractions

3. Integration by Parts

7.3.1 Integration by substitution

In this section, we consider the method of integration by substitution.

The given integral ( )f x dx∫  can be transformed into another form by changing

the independent variable x to t by substituting x = g (t).
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Consider I = ( )f x dx∫

Put x = g(t) so that 
dx

dt
 = g′(t).

We write dx = g′(t) dt

Thus I = ( ) ( ( )) ( )f x dx f g t g t dt= ′∫ ∫

This change of variable formula is one of the important tools available to us in the

name of integration by substitution. It is often important to guess what will be the useful

substitution. Usually, we make a substitution for a function whose derivative also occurs

in the integrand as illustrated in the following examples.

Example 5 Integrate the following functions w.r.t. x:

(i) sin mx (ii) 2x sin (x2 + 1)

(iii)

4 2
tan secx x

x
(iv)

1

2

sin (tan )

1

– x

x+

Solution

(i) We know that derivative of mx is m. Thus, we make the substitution
mx = t so that mdx = dt.

Therefore,      
1

sin sinmx dx t dt
m

=∫ ∫  =  – 
1

m
cos t + C  = – 

1

m
cos mx + C

(ii) Derivative of x2 + 1 is 2x. Thus, we use the substitution x2 + 1 = t so that
2x dx = dt.

Therefore,  
2

2 sin ( 1) sinx x dx t dt+ =∫ ∫  =  – cos t + C  = – cos (x2 + 1) + C

(iii) Derivative of x  is 

1

2
1 1

2 2

–

x
x

= . Thus, we use the substitution

1
so that giving

2
x t dx dt

x
= =  dx = 2t dt.

Thus,

4 2 4 2tan sec 2 tan secx x t t t dt
dx

tx
=∫ ∫  = 

4 2
2 tan sect t dt∫

Again, we make another substitution tan t = u so that sec2 t dt = du
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Therefore,
4 2 4

2 tan sec 2t t dt u du=∫ ∫  = 

5

2 C
5

u
+

=
52

tan C
5

t +  (since u = tan t)

=
52

tan C (since )
5

x t x+ =

Hence,

4 2tan secx x
dx

x
∫  =

52
tan C

5
x +

Alternatively, make the substitution tan x t=

(iv) Derivative of  1

2

1
tan

1

– x
x

=
+

. Thus, we use the substitution

tan–1 x = t so that 
2

1

dx

x+
 = dt.

Therefore ,  

1

2

sin (tan )
sin

1

–
x

dx t dt
x

=
+∫ ∫  =  – cos t + C = – cos (tan –1x) + C

Now, we discuss some important integrals involving trigonometric functions and
their standard integrals using substitution technique. These will be used later without
reference.

(i) ∫ tan = log sec + Cx dx x

We have

sin
tan

cos

x
x dx dx

x
=∫ ∫

Put  cos x = t so that sin x dx = – dt

Then tan log C log cos C
dt

x dx – – t – x
t

= = + = +∫ ∫

or tan log sec Cx dx x= +∫

(ii) ∫cot = log sin + Cx dx x

We have
cos

cot
sin

x
x dx dx

x
=∫ ∫
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Put  sin x = t so that cos x dx = dt

Then cot
dt

x dx
t

=∫ ∫  = log Ct +  = log sin Cx +

(iii) ∫sec = log sec + tan + Cx dx x x

We have

sec (sec tan )
sec

sec + tan

x x x
x dx dx

x x

+
=∫ ∫

Put sec x + tan x = t so that sec x (tan x + sec x) dx = dt

Therefore, sec log + C = log sec tan C
dt

x dx t x x
t

= = + +∫ ∫

(iv) ∫cosec = log cosec – cot + Cx dx x x

We have

cosec (cosec cot )
cosec

(cosec cot )

x x x
x dx dx

x x

+
=

+∫ ∫

Put cosec x + cot x = t so that – cosec x (cosec x + cot x) dx = dt

So cosec – – log | | – log |cosec cot | C
dt

x dx t x x
t

= = = + +∫ ∫

=

2 2cosec cot
– log C

cosec cot

x x

x x

−
+

−

= log cosec cot Cx – x +

Example 6  Find the following integrals:

(i)
3 2

sin cosx x dx∫ (ii)    
sin

sin ( )

x
dx

x a+∫     (iii)  
1

1 tan
dx

x+∫

Solution

(i) We have

3 2 2 2
sin cos sin cos (sin )x x dx x x x dx=∫ ∫

= 
2 2

(1 – cos ) cos (sin )x x x dx∫
Put t = cos x so that dt = – sin x dx
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Therefore,    
2 2

sin cos (sin )x x x dx∫  = 
2 2

(1 – )t t dt− ∫

= 

3 5
2 4

( – ) C
3 5

t t
– t t dt – –

 
= + 

 
∫

= 
3 51 1

cos cos C
3 5

– x x+ +

(ii) Put x + a = t. Then dx = dt. Therefore

sin sin ( )

sin ( ) sin

x t – a
dx dt

x a t
=

+∫ ∫

= 
sin cos cos sin

sin

t a – t a
dt

t∫

= cos – sin cota dt a t dt∫ ∫

= 1(cos ) (sin ) log sin Ca t – a t + 

= 1(cos ) ( ) (sin ) log sin ( ) Ca x a – a x a + + + 

= 1cos cos (sin ) log sin ( ) C sinx a a a – a x a – a+ +

Hence, 
sin

sin ( )

x
dx

x a+∫  = x cos a – sin a log |sin (x + a)| + C,

where,  C = – C
1
 sin a + a cos a, is another arbitrary constant.

(iii)
cos

1 tan cos sin

dx x dx

x x x
=

+ +∫ ∫

= 
1 (cos + sin + cos – sin )

2 cos sin

x x x x dx

x x+∫

= 
1 1 cos – sin

2 2 cos sin

x x
dx dx

x x
+

+∫ ∫

= 
1C 1 cos sin

2 2 2 cos sin

x x – x
dx

x x
+ +

+∫ ... (1)
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Now, consider 
cos sin

I
cos sin

x – x
dx

x x
=

+∫
Put cos x + sin x = t so that (cos x – sin x) dx = dt

Therefore       
2I log C

dt
t

t
= = +∫ = 2log cos sin Cx x+ +

Putting it in (1), we get

1 2C C1
+ + log cos sin

1 tan 2 2 2 2

dx x
x x

x
= + +

+∫

= 
1 2C C1

+ log cos sin
2 2 2 2

x
x x+ + +

= 
1 2C C1

+ log cos sin C C
2 2 2 2

x
x x ,

 
+ + = + 

 

EXERCISE 7.2

Integrate the functions in Exercises 1 to 37:

1. 2

2

1

x

x+
2.

( )2
log x

x
3.

1

logx x x+

4. sin sin (cos )x x 5. sin ( ) cos ( )ax b ax b+ +

6. ax b+ 7. 2x x + 8.
21 2x x+

9. 2
(4 2) 1x x x+ + + 10.

1

x – x
11.

4

x

x +
, x > 0

12.

1

3 53( 1)x – x 13.

2

3 3
(2 3 )

x

x+
14.

1

(log )mx x
, x > 0, 1≠m

15. 29 4

x

– x
16. 2 3x

e
+ 17. 2x

x

e

18.

1

2
1

–tan x
e

x+
19.

2

2

1

1

x

x

e –

e +
20.

2 2

2 2

x – x

x – x

e – e

e e+
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21. tan2 (2x – 3) 22. sec2 (7 – 4x) 23.

1

2

sin

1

– x

– x

24.
2cos 3sin

6cos 4sin

x – x

x x+ 25. 2 2

1

cos (1 tan )x – x
26.

cos x

x

27. sin 2 cos 2x x 28.
cos

1 sin

x

x+ 29. cot x log sin x

30.
sin

1 cos

x

x+ 31. ( )2

sin

1 cos

x

x+ 32.
1

1 cot x+

33.
1

1 tan– x
34.

tan

sin cos

x

x x
35.

( )2
1 log x

x

+

36.
( )2

( 1) logx x x

x

+ +
37.

( )3 1 4sin tan

1

–x x

x
8+

Choose the correct answer in Exercises 38 and 39.

38.
9

10

10 10 log 10

10

x
e

x

x dx

x

+

+∫  equals

(A) 10x – x10 + C (B) 10x + x10 + C

(C) (10x – x10)–1 + C (D) log (10x + x10) + C

39. 2 2
equals

sin cos

dx

x x
∫

(A) tan x + cot x + C (B)  tan x – cot x + C

(C) tan x cot x + C (D)  tan x – cot 2x + C

7.3.2  Integration using trigonometric identities

When the integrand involves some trigonometric functions, we use some known identities

to find the integral as illustrated through the following example.

Example 7 Find (i) 
2

cos x dx∫  (ii) sin 2 cos 3x x dx∫  (iii) 
3

sin x dx∫
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Solution

(i) Recall the identity cos 2x = 2 cos2 x – 1, which gives

cos2 x = 
1 cos 2

2

x+

Therefore,       = 
1

(1 + cos 2 )
2

x dx∫ = 
1 1

cos 2
2 2

dx x dx+∫ ∫

= 
1

sin 2 C
2 4

x
x+ +

(ii) Recall the identity sin x cos y = 
1

2
[sin (x + y) + sin (x – y)] (Why?)

Then    = 

= 
1 1

cos 5 cos C
2 5

– x x
 + +  

= 
1 1

cos 5 cos C
10 2

– x x+ +

(iii) From the identity sin 3x = 3 sin x – 4 sin3 x, we find that

sin3 x = 
3sin sin 3

4

x – x

Therefore,      
3

sin x dx∫  = 
3 1

sin sin 3
4 4

x dx – x dx∫ ∫

                                      = 
3 1

– cos cos 3 C
4 12

x x+ +

Alternatively, 
3 2

sin sin sinx dx x x dx=∫ ∫  = 
2

(1 – cos ) sinx x dx∫
Put cos x = t so that – sin x dx = dt

Therefore,     
3

sin x dx∫  = ( )21 – t dt− ∫  = 

3
2

C
3

t
– dt t dt – t+ = + +∫ ∫

= 
31

cos cos C
3

– x x+ +

Remark It can be shown using trigonometric identities that both answers are equivalent.
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EXERCISE 7.3

Find the integrals of the functions in Exercises 1 to 22:

1. sin2 (2x + 5) 2. sin 3x cos 4x 3. cos 2x cos 4x cos 6x

4. sin3 (2x + 1) 5. sin3 x cos3 x 6. sin x sin 2x sin 3x

7. sin 4x sin 8x 8.
1 cos

1 cos

– x

x+
9.

cos

1 cos

x

x+

10. sin4 x 11. cos4 2x 12.
2sin

1 cos

x

x+

13.
cos 2 cos 2

cos cos

x –

x –

α
α

14.
cos sin

1 sin 2

x – x

x+
15. tan3 2x sec 2x

16. tan4x 17.

3 3

2 2

sin cos

sin cos

x x

x x

+
18.

2

2

cos 2 2sin

cos

x x

x

+

19. 3

1

sin cosx x
20.

( )2

cos 2

cos sin

x

x x+
21. sin – 1 (cos x)

22.
1

cos ( ) cos ( )x – a x – b

Choose the correct answer in Exercises 23 and 24.

23.

2 2

2 2

sin cos
is equal to

sin cos

x x
dx

x x

−
∫
(A) tan x + cot x + C (B) tan x + cosec x + C

(C) – tan x + cot x + C (D) tan x + sec x + C

24.
2

(1 )
equals

cos ( )

x

x

e x
dx

e x

+
∫
(A) – cot (exx) + C (B) tan (xex) + C

(C) tan (ex) + C (D) cot (ex) + C

7.4  Integrals of Some Particular Functions

In this section, we mention below some important formulae of integrals and apply them

for integrating many other related standard integrals:

(1) ∫ 2 2

1 –
= log + C

2 +–

dx x a

a x ax a
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(2) ∫ 2 2

1 +
= log + C

2 ––

dx a x

a a xa x

(3) ∫
– 1

2 2

1
tan C

dx x
= +

a ax + a

(4) ∫
2 2

2 2
= log + – + C

–

dx
x x a

x a

(5) ∫
– 1

2 2
= sin + C

–

dx x

aa x

(6) ∫
2 2

2 2
= log + + + C

+

dx
x x a

x a

We now prove the above results:

(1) We have  2 2

1 1

( ) ( )x – a x ax – a
=

+

= 
1 ( ) – ( ) 1 1 1

2 ( ) ( ) 2

x a x – a
–

a x – a x a a x – a x a

 +  =   + +  

Therefore,  2 2

1

2

dx dx dx
–

a x – a x ax – a

 
=  + 

∫ ∫ ∫

= [ ]1
log ( )| log ( )| C

2
| x – a – | x a

a
+ +

= 
1

log C
2

x – a

a x a
+

+

(2) In view of (1) above, we have

2 2

1 1 ( ) ( )

2 ( ) ( )–

a x a x

a a x a xa x

 + + −
=  + − 

 = 
1 1 1

2a a x a x

 + − + 
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      Therefore, 2 2
–

dx

a x
∫  = 

1

2

dx dx

a a x a x

 + − + 
∫ ∫

= 
1

[ log | | log | |] C
2

a x a x
a

− − + + +

= 
1

log C
2

a x

a a x

+
+

−

ANote  The technique used in (1) will be explained in Section 7.5.

(3) Put x = a tan θ. Then dx = a sec2 θ dθ.

Therefore,      2 2

dx

x a+∫  = 

=
11 1 1

θ θ C tan C
– x

d
a a a a

= + = +∫
(4) Let x = a secθ. Then dx = a secθ tan θ dθ.

Therefore,
2 2

dx

x a−
∫  =

2 2 2

secθ tanθ θ

sec θ

a d

a a−
∫

= 1secθ θ log secθ + tanθ + Cd =∫

=

2

12
log 1 C

x x
–

a a
+ +

=
2 2

1log log Cx x – a a+ − +

=
2 2log + Cx x – a+ , where C = C

1
 – log |a |

(5) Let x = a sinθ. Then dx = a cosθ dθ.

Therefore,  
2 2

dx

a x−
∫  =

2 2 2

θ θ

θ

cos

sin

a d

a – a
∫

=
1

θ = θ + C = sin C
– x

d
a

+∫
(6) Let x = a tan θ. Then dx = a sec2θ dθ.

Therefore,
2 2

dx

x a+
∫  =

2

2 2 2

θ θ

θ

sec

tan

a d

a a+
∫

  = 1θ θsecθ θ = log (sec tan ) Cd + +∫
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=

2

12
log 1 C

x x

a a
+ + +

=
2

1log log Cx x a | a |
2+ + − +

=
2log Cx x a2+ + + , where C = C

1
 – log |a|

Applying these standard formulae, we now obtain some more formulae which

are useful from applications point of view and can be applied directly to evaluate

other integrals.

(7) To find the integral 2

dx

ax bx c+ +∫ , we write

ax2 + bx + c = 

2 2
2

22 4

b c b c b
a x x a x –

a a a a a

     
+ + = + +          

Now, put 
2

b
x t

a
+ = so that dx = dt and writing 

2
2

2
4

c b
– k

a a
= ± . We find the

integral reduced to the form 2 2

1 dt

a t k±∫  depending upon the sign of 

2

2
4

c b
–

a a

 
 
 

and hence can be evaluated.

(8) To find the integral of the type , proceeding as in (7), we

obtain the integral using the standard formulae.

(9) To find the integral of the type 2

px q
dx

ax bx c

+

+ +∫ , where p, q, a, b, c are

constants, we are to find real numbers A, B such that

2+ = A ( ) + B = A (2 ) + B
d

px q ax bx c ax b
dx

+ + +

To determine A and B, we equate from both sides the coefficients of x and the

constant terms. A and B are thus obtained and hence the integral is reduced to

one of the known forms.

Reprint 2024-25



INTEGRALS         247

(10) For the evaluation of the integral of the type 
2

( )px q dx

ax bx c

+

+ +
∫ , we proceed

as in (9) and transform the integral into known standard forms.

Let us illustrate the above methods by some examples.

Example 8 Find the following integrals:

(i) 2
16

dx

x −∫ (ii)
22

dx

x x−
∫

Solution

(i) We have 
2 2 2

16 4

dx dx

x x –
=

−∫ ∫  = 
4

log C
8 4

x –

x

1
+

+
[by 7.4 (1)]

(ii)

Put x – 1 = t. Then dx = dt.

Therefore,
22

dx

x x−
∫  =

21

dt

– t
∫  = 

1sin ( ) C– t + [by 7.4 (5)]

=
1sin ( – 1) C– x +

Example 9 Find the following integrals :

(i) 2
6 13

dx

x x− +∫ (ii) 2
3 13 10

dx

x x+ −∫ (iii) 25 2

dx

x x−
∫

Solution

(i) We have  x2 – 6x + 13 = x2 – 6x + 32 – 32 + 13 = (x – 3)2 + 4

So,
6 13

dx

x x
2 − +∫  =

( )2 2

1

3 2
dx

x – +
∫

Let x – 3 = t. Then dx = dt

Therefore,
6 13

dx

x x
2 − +∫  =  

1

2 2

1
tan C

2 22

–dt t

t
= +

+∫ [by 7.4 (3)]

=
11 3

tan C
2 2

– x –
+
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(ii) The given integral is of the form 7.4 (7). We write the denominator of the integrand,

2
3 13 10x x –+  =

2 13 10
3

3 3

x
x –
 + 
 

=

2 2
13 17

3
6 6

x –
    +    
     

(completing the square)

Thus
3 13 10

dx

x x
2 + −∫  = 2 2

1

3 13 17

6 6

dx

x
   + −   
   

∫

Put 
13

6
x t+ = . Then dx = dt.

Therefore,
3 13 10

dx

x x
2 + −∫  = 2

2

1

3 17

6

dt

t
 −  
 

∫

= 1

17

1 6log C
17 17

3 2
6 6

t –

t

+
× × +

[by 7.4 (i)]

= 1

13 17

1 6 6log C
13 1717

6 6

x –

x

+
+

+ +

= 1

1 6 4
log C

17 6 30

x

x

−
+

+

= 1

1 3 2 1 1
log C log

17 5 17 3

x

x

−
+ +

+

=
1 3 2

log C
17 5

x

x

−
+

+
, where C = 1

1 1
C log

17 3
+
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(iii) We have 
2 25 2

5
5

dx dx

xx x
x –

2
=

 −
 
 

∫ ∫

=
2 2

1

5 1 1

5 5

dx

x – –
   
   
   

∫  (completing the square)

Put 
1

5
x – t= . Then dx = dt.

Therefore,
5 2

dx

x x
2 −

∫  =
2

2

1

5 1

5

dt

t –
 
 
 

∫

=

2

21 1
log C

55
t t –

 + + 
 

[by 7.4 (4)]

=
21 1 2

log C
5 55

x
x – x –+ +

Example 10 Find the following integrals:

(i)
2

2 6 5

x
dx

x x
2

+

+ +∫ (ii) 2

3

5 4

x
dx

x – x

+

−
∫

Solution

(i) Using the formula 7.4 (9), we express

x + 2 = ( )2
A 2 6 5 B

d
x x

dx
+ + +  = A (4 6) Bx + +

Equating the coefficients of x and the constant terms from both sides, we get

4A = 1 and 6A + B = 2   or    A = 
1

4
 and B = 

1

2
.

Therefore,
2

2 6 5

x

x x
2

+

+ +∫  =
1 4 6 1

4 22 6 5 2 6 5

x dx
dx

x x x x
2 2

+
+

+ + + +∫ ∫

= 1 2

1 1
I I

4 2
+     (say) ... (1)
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In I
1
, put 2x2 + 6x + 5 = t, so that (4x + 6) dx = dt

Therefore, I
1
 = 1log C

dt
t

t
= +∫

=
2

1log | 2 6 5 | Cx x+ + +        ... (2)

and I
2
 = 2

2

1

522 6 5 3
2

dx dx

x x x x

=
+ + + +

∫ ∫

= 2 2

1

2 3 1

2 2

dx

x
   + +   
   

∫

Put 
3

2
x t+ = , so that dx = dt, we get

I
2
 = 2

2

1

2 1

2

dt

t
 +  
 

∫  = 
1

2

1
tan 2 C

1
2

2

–
t +

×
[by 7.4 (3)]

=
1

2

3
tan 2 + C

2

–
x
 + 
 

 = ( )1
2tan 2 3 + C– x + ... (3)

Using (2) and (3) in (1), we get

( )2 12 1 1
log 2 6 5 tan 2 3 C

4 22 6 5

–x
dx x x x

x x
2

+
= + + + + +

+ +∫

where, C = 1 2C C

4 2
+

(ii) This integral is of the form given in 7.4 (10). Let us express

x + 3 = 
2

A (5 4 ) + B
d

– x – x
dx

= A (– 4 – 2x) + B

Equating the coefficients of x and the constant terms from both sides, we get

– 2A = 1 and – 4 A + B = 3, i.e., A = 
1

2
–  and B = 1

Reprint 2024-25



INTEGRALS         251

Therefore,
2

3

5 4

x
dx

x x

+

− −
∫  =

( )
2 2

4 21

2 5 4 5 4

– – x dx dx
–

x x x x
+

− − − −
∫ ∫

=
1

2
–  I

1
 + I

2
... (1)

In I
1
, put 5 – 4x – x2 = t, so that (– 4 – 2x) dx = dt.

Therefore, I
1
=  

( )
2

4 2

5 4

– x dx dt

tx x

−
=

− −
∫ ∫  = 12 Ct +

= 2
12 5 4 C– x – x + ... (2)

Now consider I
2
 =

2 2
5 4 9 ( 2)

dx dx

x x – x
=

− − +
∫ ∫

Put x + 2 = t, so that dx = dt.

Therefore, I
2
 =

1
2

2 2
sin + C

33

–dt t

t
=

−
∫ [by 7.4 (5)]

=
1

2

2
sin C

3

– x +
+ ... (3)

Substituting (2) and (3) in (1), we obtain

2 1

2

3 2
5 – 4 – + sin C

35 4

–x x
– x x

– x – x

+ +
= +∫ , where 1

2

C
C C

2
–=

EXERCISE 7.4

Integrate the functions in Exercises 1 to 23.

1.

2

6

3

1

x

x +
2.

2

1

1 4x+
3.

( )2

1

2 1– x +

4.
2

1

9 25– x
5. 4

3

1 2

x

x+
6.

2

61

x

x−

7. 2

1

1

x –

x –
8.

2

6 6

x

x a+
9.

2

2

sec

tan 4

x

x +
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10.
2

1

2 2x x+ +
11. 2

1

9 6 5x x+ +
12.

2

1

7 6– x – x

13.
( )( )

1

1 2x – x –
14.

2

1

8 3x – x+
15. ( )( )

1

x – a x – b

16.
2

4 1

2 3

x

x x –

+

+
17.

2

2

1

x

x –

+
18. 2

5 2

1 2 3

x

x x

−

+ +

19.
( )( )

6 7

5 4

x

x – x –

+
20.

2

2

4

x

x – x

+
21.

2

2

2 3

x

x x

+

+ +

22. 2

3

2 5

x

x – x

+

−
23. 2

5 3

4 10

x

x x

+

+ +
.

Choose the correct answer in Exercises 24 and 25.

24. 2
equals

2 2

dx

x x+ +∫
(A) x tan–1 (x + 1) + C (B) tan–1 (x + 1) + C

(C) (x + 1) tan–1x + C (D) tan–1x + C

25.
2

equals
9 4

dx

x x−
∫

(A) –11 9 8
sin C

9 8

x −  + 
 

(B) –11 8 9
sin C

2 9

x −  + 
 

(C) –11 9 8
sin C

3 8

x −  + 
 

(D)
–11 9 8

sin C
2 9

x −  + 
 

7.5  Integration by Partial Fractions

Recall that a rational function is defined as the ratio of two polynomials in the form

P( )

Q( )

x

x
, where P (x) and Q(x) are polynomials in x and Q(x) ≠ 0. If the degree of P(x)

is less than the degree of Q(x), then the rational function is called proper, otherwise, it

is called improper. The improper rational functions can be reduced to the proper rational
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functions by long division process. Thus, if 
P( )

Q( )

x

x
 is improper, then 1P ( )P( )

T( )
Q( ) Q( )

xx
x

x x
= + ,

where T(x) is a polynomial in x and 
1P ( )

Q( )

x

x
is a proper rational function. As we know

how to integrate polynomials, the integration of any rational function is reduced to the

integration of a proper rational function. The rational functions which we shall consider

here for integration purposes will be those whose denominators can be factorised into

linear and quadratic factors. Assume that we want to evaluate 
P( )

Q( )

x
dx

x∫ , where 
P( )

Q( )

x

x

is proper rational function. It is always possible to write the integrand as a sum of

simpler rational functions by a method called partial fraction decomposition. After this,

the integration can be carried out easily using the already known methods. The following

Table 7.2 indicates the types of simpler partial fractions that are to be associated with

various kind of rational functions.

Table 7.2

 S.No. Form of the rational function Form of the partial fraction

1.
( – ) ( – )

px q

x a x b

+
, a ≠ b

A B

x – a x – b
+

2.
2

( – )

px q

x a

+
( )2

A B

x – a x – a
+

3.

2

( – ) ( ) ( )

px qx r

x a x – b x – c

+ + A B C

x – a x – b x – c
+ +

4.
2

2
( – ) ( )

px qx r

x a x – b

+ +
2

A B C

( )x – a x – bx – a
+ +

5.

2

2
( – ) ( )

px qx r

x a x bx c

+ +

+ + 2

A B + Cx

x – a x bx c
+

+ +
,

where x2 + bx + c cannot be factorised further

In the above table, A, B and C are real numbers to be determined suitably.
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Example 11 Find 
( 1) ( 2)

dx

x x+ +∫

Solution The integrand is a proper rational function. Therefore, by using the form of

partial fraction [Table 7.2 (i)], we write

1

( 1) ( 2)x x+ +
 =

A B

1 2x x
+

+ +
... (1)

where, real numbers A and B are to be determined suitably. This gives

1 = A (x + 2) + B (x + 1).

Equating the coefficients of x and the constant term, we get

A + B = 0

and 2A + B = 1

Solving these equations, we get A =1 and B = – 1.

Thus, the integrand is given by

1

( 1) ( 2)x x+ +
 =

1 – 1

1 2x x
+

+ +

Therefore,
( 1) ( 2)

dx

x x+ +∫  =
1 2

dx dx
–

x x+ +∫ ∫

= log 1 log 2 Cx x+ − + +

=
1

log C
2

x

x

+
+

+

Remark The equation (1) above is an identity, i.e. a statement true for all (permissible)

values of x. Some authors use the symbol ‘≡’ to indicate that the statement is an

identity and use the symbol ‘=’ to indicate that the statement is an equation, i.e., to

indicate that the statement is true only for certain values of x.

Example 12 Find 

2

2

1

5 6

x
dx

x x

+

− +∫

Solution Here the integrand 

2

2

1

5 6

x

x – x

+

+
 is not proper rational function, so we divide

x2 + 1 by x2 – 5x + 6 and find that
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2

2

1

5 6

x

x – x

+

+
 = 2

5 5 5 5
1 1

( 2) ( 3)5 6

x – x –

x – x –x – x
+ = +

+

Let
5 5

( 2) ( 3)

x –

x – x –
 =

A B

2 3x – x –
+

So that 5x – 5 = A (x – 3) + B (x – 2)

Equating the coefficients of x and constant terms on both sides, we get A + B = 5
and 3A + 2B = 5. Solving these equations, we get A = – 5  and B = 10

Thus,

2

2

1

5 6

x

x – x

+

+
 =

5 10
1

2 3x – x –
− +

Therefore,

2

2

1

5 6

x
dx

x – x

+

+∫  =
1

5 10
2 3

dx
dx dx

x – x –
− +∫ ∫ ∫

= x – 5 log | x – 2 | + 10 log | x – 3 | + C.

Example 13 Find 2

3 2

( 1) ( 3)

x
dx

x x

−

+ +∫

Solution The integrand is of the type as given in Table 7.2 (4). We write

2

3 2

( 1) ( 3)

x –

x x+ +
 = 2

A B C

1 3( 1)x xx
+ +

+ ++

So that 3x – 2 = A (x + 1) (x + 3) + B (x + 3) + C (x + 1)2

= A (x2 + 4x + 3) + B (x + 3) + C (x2 + 2x + 1 )

Comparing coefficient of x2, x and constant term on both sides, we get
A + C = 0, 4A + B + 2C = 3 and 3A + 3B + C = – 2. Solving these equations, we get

11 5 11
A B and C

4 2 4

– –
,= = = . Thus the integrand is given by

2

3 2

( 1) ( 3)

x

x x

−

+ +  = 2

11 5 11

4 ( 1) 4 ( 3)2 ( 1)
– –

x xx+ ++

Therefore, 2

3 2

( 1) ( 3)

x

x x

−

+ +∫  = 2

11 5 11

4 1 2 4 3( 1)

dx dx dx
–

x xx
−

+ ++∫ ∫ ∫

=
11 5 11

log +1 log 3 C
4 2 ( +1) 4

x x
x

+ − + +

=
11 +1 5

log + C
4 + 3 2 ( + 1)

x

x x
+
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Example 14 Find 

2

2 2
( 1) ( 4)

x
dx

x x+ +∫

Solution  Consider 

2

2 2( 1) ( 4)

x

x x+ +
 and put x2 = y.

Then

2

2 2
( 1) ( 4)

x

x x+ +
 =

( 1) ( 4)

y

y y+ +

Write
( 1) ( 4)

y

y y+ +
 =

A B

1 4y y
+

+ +

So that y =  A (y + 4) + B (y + 1)

Comparing coefficients of y and constant terms on both sides, we get A + B = 1

and 4A + B = 0, which give

A =
1 4

and B
3 3

− =

Thus,

2

2 2
( 1) ( 4)

x

x x+ +
 = 2 2

1 4

3 ( 1) 3 ( 4)
–

x x
+

+ +

Therefore,

2

2 2( 1) ( 4)

x dx

x x+ +∫  =
2 2

1 4

3 31 4

dx dx
–

x x
+

+ +∫ ∫

=
1 11 4 1

tan tan C
3 3 2 2

– – x
– x + × +

=
1 11 2

tan tan C
3 3 2

– – x
– x + +

In the above example, the substitution was made only for the partial fraction part

and not for the integration part. Now, we consider an example, where the integration

involves a combination of the substitution method and the partial fraction method.

Example 15 Find 
( )

2

3 sin 2 cos

5 cos 4 sin

–
d

– –

φ φ
φ

φ φ∫

Solution Let y = sinφ

Then dy = cosφ dφ
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Therefore,
( )

2

3 sin 2 cos

5 cos 4 sin

–
d

– –

φ φ
φ

φ φ∫  = 2

(3 – 2)

5 (1 ) 4

y dy

– – y – y
∫

= 2

3 2

4 4

y –
dy

y – y +∫

= ( )2

3 2
I (say)

2

y –

y –
=∫

Now, we write
( )2

3 2

2

y –

y –
 = 2

A B

2 ( 2)y y
+

− −
[by Table 7.2 (2)]

Therefore, 3y – 2 = A (y – 2) + B

Comparing the coefficients of y and constant term, we get A = 3 and B – 2A = – 2,

which gives A = 3 and B = 4.

Therefore, the required integral is given by

I = 2

3 4
[ + ]

2 ( 2)
dy

y – y –
∫  = 2

3 + 4
2 ( 2)

dy dy

y – y –
∫ ∫

=
1

3 log 2 4 C
2

y –
y

 
− + + − 

=
4

3 log sin 2 C
2 sin–

φ − + +
φ

=
4

3 log (2 sin ) + C
2 sin

− φ +
− φ

 (since, 2 – sinφ is always positive)

Example 16 Find 

2

2

1

( 2) ( 1)

x x dx

x x

+ +

+ +∫

Solution The integrand is a proper rational function. Decompose the rational function

into partial fraction [Table 2.2(5)]. Write

2

2

1

( 1) ( 2)

x x

x x

+ +

+ +
 = 2

A B + C

2 ( 1)

x

x x
+

+ +

Therefore, x2 + x + 1 = A (x2 + 1) + (Bx + C) (x + 2)
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Equating the coefficients of x2, x and of constant term of both sides, we get

A + B =1, 2B + C = 1 and A + 2C = 1. Solving these equations, we get

3 2 1
A , B and C

5 5 5
= = =

Thus, the integrand is given by

2

2

1

( 1) ( 2)

x x

x x

+ +

+ +
 = 2

2 1
3 5 5

5 ( 2) 1

x

x x

+
+

+ +
 = 

2

3 1 2 1

5 ( 2) 5 1

x

x x

+ +  + + 

Therefore,

2

2

1

( +1) ( 2)

x x
dx

x x

+ +

+∫  = 2 2

3 1 2 1 1

5 2 5 51 1

dx x
dx dx

x x x
+ +

+ + +∫ ∫ ∫

=
2 13 1 1

log 2 log 1 tan C
5 5 5

–
x x x+ + + + +

EXERCISE 7.5

Integrate the rational functions in Exercises 1 to 21.

1.
( 1) ( 2)

x

x x+ +
2. 2

1

9x –
3.

3 1

( 1) ( 2) ( 3)

x –

x – x – x –

4.
( 1) ( 2) ( 3)

x

x – x – x –
5. 2

2

3 2

x

x x+ +
6.

2
1

(1 2 )

– x

x – x

7. 2
( 1) ( – 1)

x

x x+
8. 2

( 1) ( 2)

x

x – x +
9. 3 2

3 5

1

x

x – x x

+

− +

10. 2

2 3

( 1) (2 3)

x

x – x

−

+
11. 2

5

( 1) ( 4)

x

x x+ −
12.

3

2

1

1

x x

x

+ +

−

13. 2

2

(1 ) (1 )x x− + 14. 2

3 1

( 2)

x –

x + 15. 4

1

1x −

16.
1

( 1)
n

x x +  [Hint:  multiply numerator and denominator by x n – 1 and put xn = t ]

17.
cos

(1 – sin ) (2 – sin )

x

x x
[Hint : Put sin x = t]
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18.

2 2

2 2

( 1) ( 2)

( 3) ( 4)

x x

x x

+ +

+ +
19. 2 2

2

( 1) ( 3)

x

x x+ +
20. 4

1

( 1)x x –

21.
1

( 1)
x

e –
[Hint : Put ex = t]

Choose the correct answer in each of the Exercises 22 and 23.

22.
( 1) ( 2)

x dx

x x− −∫  equals

(A)

2( 1)
log C

2

x

x

−
+

−
(B)

2( 2)
log C

1

x

x

−
+

−

(C)

2
1

log C
2

x

x

−  + 
− 

(D) log ( 1) ( 2) Cx x− − +

23.
2( 1)

dx

x x +∫ equals

(A)
21

log log ( +1) + C
2

x x− (B)
21

log log ( +1) + C
2

x x+

(C) 21
log log ( +1) + C

2
x x− + (D)

21
log log ( +1) + C

2
x x+

7.6  Integration by Parts

In this section, we describe one more method of integration, that is found quite useful in
integrating products of functions.

If u and v are any two differentiable functions of a single variable x (say). Then, by
the product rule of differentiation, we have

( )
d

uv
dx

 =
dv du

u v
dx dx

+

Integrating both sides, we get

uv =
dv du

u dx v dx
dx dx

+∫ ∫

or
dv

u dx
dx∫  =

du
uv – v dx

dx∫ ... (1)

Let u = f (x) and 
dv

dx
= g(x). Then

du

dx
= f ′(x) and v = ( )g x dx∫
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Therefore, expression (1) can be rewritten as

( ) ( )f x g x dx∫  = ( ) ( ) [ ( ) ] ( )f x g x dx – g x dx f x dx′∫ ∫ ∫

i.e., ( ) ( )f x g x dx∫  = ( ) ( ) [ ( ) ( ) ]f x g x dx – f x g x dx dx′∫ ∫ ∫
If we take f as the first function and g as the second function, then this formula

may be stated as follows:

“The integral of the product of two functions = (first function) × (integral

of the second function) – Integral of [(differential coefficient of the first function)

× (integral of the second function)]”

Example 17 Find cosx x dx∫
Solution Put f (x) = x (first function) and g (x) = cos x (second function).

Then, integration by parts gives

cosx x dx∫  = cos [ ( ) cos ]
d

x x dx – x x dx dx
dx∫ ∫ ∫

= sin sinx x – x dx∫  = x sin x + cos x + C

Suppose, we take f (x) = cos x and g (x) = x. Then

cosx x dx∫  = cos [ (cos ) ]
d

x x dx – x x dx dx
dx∫ ∫ ∫

= ( )
2 2

cos sin
2 2

x x
x x dx+ ∫

Thus, it shows that the integral cosx x dx∫  is reduced to the comparatively more

complicated integral having more power of x. Therefore, the proper choice of the first

function and the second function is significant.

Remarks

(i) It is worth mentioning that integration by parts is not applicable to product of

functions in all cases. For instance, the method does not work for sinx x dx∫ .

The reason is that there does not exist any function whose derivative is

x  sin x.

(ii) Observe that while finding the integral of the second function, we did not add

any constant of integration. If we write the integral of the second function cos x
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as sin x + k, where k is any constant, then

cosx x dx∫  = (sin ) (sin )x x k x k dx+ − +∫
= (sin ) (sinx x k x dx k dx+ − −∫ ∫
= (sin ) cos Cx x k x – kx+ − +  = sin cos Cx x x+ +

This shows that adding a constant to the integral of the second function is

superfluous so far as the final result is concerned while applying the method of

integration by parts.

(iii) Usually, if any function is a power of x or a polynomial in x, then we take it as the

first function. However, in cases where other function is inverse trigonometric

function or logarithmic function, then we take them as first function.

Example 18 Find log x dx∫
Solution To start with, we are unable to guess a function whose derivative is log x. We

take log x as the first function and the constant function 1 as the second function. Then,

the integral of the second function is x.

Hence, (log .1)x dx∫  = log 1 [ (log ) 1 ]
d

x dx x dx dx
dx

−∫ ∫ ∫

=
1

(log ) – log Cx x x dx x x – x
x

⋅ = +∫ .

Example 19 Find 
x

x e dx∫
Solution Take first function as x and second function as ex. The integral of the second

function is ex.

Therefore,
x

x e dx∫  = 1
x x

x e e dx− ⋅∫  = xex – ex + C.

Example 20 Find 

1

2

sin

1

–
x x

dx
x−

∫

Solution Let first function be sin – 1x and second function be 
21

x

x−
.

First we find the integral of the second function, i.e., 
21

x dx

x−
∫ .

Put t =1 – x2. Then dt = – 2x dx
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Therefore,
2

1

x dx

x−
∫  =

1

2

dt
–

t
∫  = 

2
– 1t x= − −

Hence,

1

2

sin

1

–x x
dx

x−
∫  = ( )1 2 2

2

1
(sin ) 1 ( 1 )

1

–
x – x – x dx

x
− − −

−
∫

=
2 11 sin C– x x x

−− + +  = 
2 1

1 sin Cx – x x
−− +

Alternatively, this integral can also be worked out by making substitution sin–1 x  = θ and

then integrating by parts.

Example 21  Find sin
x

e x dx∫

Solution  Take ex as the first function and sin x as second function. Then, integrating

by parts, we have

I sin ( cos ) cos
x x x

e x dx e – x e x dx= = +∫ ∫
= – ex cos x + I

1
 (say) ... (1)

Taking ex

 
and cos x as the first and second functions, respectively, in I

1
, we get

I
1
 = sin sin

x x
e x – e x dx∫

Substituting the value of I
1
 in (1), we get

I = – ex cos x + ex sin x – I  or  2I = ex (sin x – cos x)

Hence, I = sin (sin cos ) + C
2

x
x e

e x dx x – x=∫
Alternatively, above integral can also be determined by taking sin x as the first function

and ex the second function.

7.6.1 Integral of the type [ ( ) + ( )]
x

e f x f x dx′∫

We have I = [ ( ) + ( )]
x

e f x f x dx′∫  = ( ) + ( )
x x

e f x dx e f x dx′∫ ∫

= 1 1I ( ) , where I = ( )
x x

e f x dx e f x dx′+ ∫ ∫ ... (1)

Taking f (x) and ex as the first function and second function, respectively, in I
1
 and

integrating it by parts, we have I
1
 = f (x) ex – ( ) C

x
f x e dx′ +∫

Substituting I
1
 in (1), we get

I = ( ) ( ) ( ) C
x x x

e f x f x e dx e f x dx′ ′− + +∫ ∫  = ex f (x) + C
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Thus, ′∫ [ ( ) ( )]
x

e  f x + f x dx  = ( ) Cxe f x +

Example 22 Find (i) 1

2

1
(tan )

1

x –
e x

x
+

+∫ dx   (ii) 
2

2

( +1)

( +1)

xx e

x
∫  dx

Solution

(i) We have I =
1

2

1
(tan )

1

x –
e x dx

x
+

+∫

Consider f (x) = tan– 1x, then  f ′(x) = 2

1

1 x+
Thus, the given integrand is of the form ex [ f (x) + f ′(x)].

Therefore, 
1

2

1
I (tan )

1

x –
e x dx

x
= +

+∫  = ex tan– 1x + C

(ii) We have 
2

2

( + 1)
I

( +1)

xx e

x
= ∫ dx

2

2

1 +1+1)
[ ]

( +1)

x x –
e dx

x
= ∫

2

2 2

1 2
[ ]

( + 1) ( +1)

x x –
e dx

x x
= +∫  2

1 2
[ + ]

+1 ( +1)

x x –
e dx

x x
= ∫

Consider 
1

( )
1

x
f x

x

−
=

+
, then  2

2
( )

( 1)
f x

x
′ =

+

Thus, the given integrand is of the form ex [f (x) + f ′(x)].

Therefore,
2

2

1 1
C

1( 1)

x xx x
e dx e

xx

+ −
= +

++∫

EXERCISE 7.6

Integrate the functions in Exercises 1 to 22.

1. x sin x 2. x sin 3x 3. x2 ex 4. x log x

5. x log 2x 6. x2 log x 7. x sin– 1x 8. x tan–1 x

9. x cos–1 x 10. (sin–1x)2 11.

1

2

cos

1

x x

x

−

−
12. x sec2 x

13. tan–1x 14. x (log x)2 15. (x2 + 1) log x
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16. ex (sinx + cosx) 17. 2(1 )

x
x e

x+
18.

1 sin

1 cos

x x
e

x

 +
 + 

19. 2

1 1
–

x
e

x x

 
 
 

20. 3

( 3)

( 1)

x
x e

x

−

−
21. e2x sin x

22.
1

2

2
sin

1

– x

x

 
 + 

Choose the correct answer in Exercises 23 and 24.

23.
32 xx e dx∫  equals

(A)
31

C
3

x
e + (B)

21
C

3

x
e +

(C)
31

C
2

xe + (D)
21

C
2

x
e +

24. sec (1 tan )
x

e x x dx+∫  equals

(A) ex cos x + C (B) ex sec x + C

(C) ex sin x + C (D) ex tan x + C

7.6.2 Integrals of some more types

Here, we discuss some special types of standard integrals based on the technique of

integration  by parts :

(i) 2 2
x a dx−∫ (ii) 2 2

x a dx+∫ (iii) 2 2
a x dx−∫

(i)  Let 
2 2I x a dx= −∫

Taking constant function 1 as the second function and integrating by parts, we

have

I =
2 2

2 2

1 2

2

x
x x a x dx

x a
− −

−
∫

=

2
2 2

2 2

x
x x a dx

x a
− −

−
∫  = 

2 2 2
2 2

2 2

x a a
x x a dx

x a

− +
− −

−
∫

Reprint 2024-25



INTEGRALS         265

=
2 2 2 2 2

2 2

dx
x x a x a dx a

x a
− − − −

−
∫ ∫

=
2 2 2

2 2
I

dx
x x a a

x a
− − −

−
∫

or 2I =
2 2 2

2 2

dx
x x a a

x a
− −

−
∫

or I = ∫
2 2

x – a dx = 

2
2 2 2 2

– – log + – + C
2 2

x a
x a x x a

Similarly, integrating other two integrals by parts, taking constant function 1 as the

second function, we get

(ii) ∫
2

2 2 2 2 2 21
+ = + + log + + + C

2 2

a
x a dx x x a x x a

(iii)

Alternatively, integrals (i), (ii) and (iii) can also be found by making trigonometric

substitution x = a secθ in (i), x = a tanθ in (ii) and x = a sinθ in (iii) respectively.

Example 23 Find 
2

2 5x x dx+ +∫
Solution Note that

2 2 5x x dx+ +∫  =
2( 1) 4x dx+ +∫

Put  x + 1 = y, so that dx = dy. Then

2
2 5x x dx+ +∫  =

2 2
2y dy+∫

=
2 21 4

4 log 4 C
2 2

y y y y+ + + + +         [using 7.6.2 (ii)]

=
2 21

( 1) 2 5 2 log 1 2 5 C
2

x x x x x x+ + + + + + + + +

Example 24 Find 
2

3 2x x dx− −∫

Solution Note that 
2 23 2 4 ( 1)x x dx x dx− − = − +∫ ∫
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Put x + 1 = y so that dx = dy.

Thus
2

3 2x x dx− −∫  =
2

4 y dy−∫

=
2 11 4

4 sin C
2 2 2

– y
y y− + + [using 7.6.2 (iii)]

=
2 11 1

( 1) 3 2 2 sin C
2 2

– x
x x x

+ + − − + + 
 

EXERCISE 7.7

Integrate the functions in Exercises 1 to 9.

1. 2
4 x− 2. 2

1 4x− 3. 2
4 6x x+ +

4. 2
4 1x x+ + 5. 2

1 4x x− − 6. 2
4 5x x+ −

7. 2
1 3x x+ − 8. 2

3x x+ 9.

2

1
9

x
+

Choose the correct answer in Exercises 10 to 11.

10. 21 x dx+∫ is equal to

(A) ( )2 21
1 log 1 C

2 2

x
x x x+ + + + +

(B)

3

2 2
2

(1 ) C
3

x+ + (C)

3

2 2
2

(1 ) C
3

x x+ +

(D)

2
2 2 21

1 log 1 C
2 2

x
x x x x+ + + + +

11.
2 8 7x x dx− +∫  is equal to

(A)
2 21

( 4) 8 7 9log 4 8 7 C
2

x x x x x x− − + + − + − + +

(B)
2 21

( 4) 8 7 9log 4 8 7 C
2

x x x x x x+ − + + + + − + +

(C)
2 21

( 4) 8 7 3 2 log 4 8 7 C
2

x x x x x x− − + − − + − + +

(D)
2 21 9

( 4) 8 7 log 4 8 7 C
2 2

x x x x x x− − + − − + − + +
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7.7   Definite Integral

In the previous sections, we have studied about the indefinite integrals and discussed

few methods of finding them including integrals of some special functions. In this

section, we shall study what is called definite integral of a function. The definite integral

has a unique value. A definite integral is denoted by ( )
b

a
f x dx∫ , where a is called the

lower limit of the integral and b is called the upper limit of the integral. The definite

integral is introduced either as the limit of a sum or if it has an anti derivative F in the

interval [a, b], then its value is the difference  between the values of F at the end

points, i.e., F(b) – F(a).

7.8  Fundamental Theorem of Calculus

7.8.1  Area function

We have defined ( )
b

a
f x dx∫  as the area of

the region bounded by the curve y = f (x),

the ordinates x = a and x = b and x-axis. Let x

be a given point in [a, b]. Then ( )
x

a
f x dx∫

represents the area of the light shaded region

in Fig 7.1 [Here it is assumed that f (x) > 0 for

x ∈ [a, b], the assertion made below is

equally true for other functions as well].

The area of this shaded region depends upon

the value of x.

In other words, the area of this shaded region is a function of x. We denote this

function of x by A(x). We call the function A(x) as Area function and is given by

A (x) = ∫ ( )
x

a
f x dx ... (1)

Based on this definition, the two basic fundamental theorems have been given.

However, we only state them as their proofs are beyond the scope of this text book.

7.8.2  First fundamental theorem of integral calculus

Theorem 1 Let f be a continuous function on the closed interval [a, b] and let A (x) be

the area function. Then A′′′′′(x) = f (x), for all x ∈∈∈∈∈ [a, b].

Fig 7.1
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7.8.3  Second fundamental theorem of integral calculus

We state below an important theorem which enables us to evaluate definite integrals

by making use of anti derivative.

Theorem 2 Let f  be continuous function defined on the closed interval [a, b] and F be

an anti derivative of f. Then ∫ ( )
b

a
f x dx = [F( )] =b

ax  F (b) – F(a).

Remarks

(i) In words, the Theorem 2 tells us that ( )
b

a
f x dx∫ = (value of the anti derivative F

of f at the upper limit b – value of the same anti derivative at the lower limit a).

(ii) This theorem is very useful, because it gives us a method of calculating the

definite integral more easily, without calculating the limit of a sum.

(iii) The crucial operation in evaluating a definite integral is that of finding a function

whose derivative is equal to the integrand. This strengthens the relationship

between differentiation and integration.

(iv) In ( )
b

a
f x dx∫ , the function f needs to be well defined and continuous in [a, b].

For instance, the consideration of definite integral 

1
3 2 2

2
( –1)x x dx

−∫  is erroneous

since the function f expressed by f (x) = 

1

2 2( –1)x x  is not defined in a portion

– 1 < x < 1 of the closed interval [– 2, 3].

Steps for calculating ( )
b

a
f x dx∫ .

(i) Find the indefinite integral ( )f x dx∫ . Let this be F(x). There is no need to keep

integration constant C because if we consider F(x) + C instead of F(x), we get

( ) [F ( ) C] [F( ) C] – [F( ) C] F( ) – F( )
b b

a
a

f x dx x b a b a= + = + + =∫ .

Thus, the arbitrary constant disappears in evaluating the value of the definite

integral.

(ii) Evaluate F(b) – F(a) = [F ( )]
b
ax , which is the value of  ( )

b

a
f x dx∫ .

We now consider some examples
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Example 25 Evaluate the following integrals:

(i)
3

2

2
x dx∫ (ii)

9

34
22(30 – )

x
dx

x

∫

(iii)
2

1 ( 1) ( 2)

x dx

x x+ +∫ (iv)   34

0
sin 2 cos 2t t dt

π

∫

Solution

(i) Let 
3

2

2
I x dx= ∫ . Since 

3
2 F ( )

3

x
x dx x= =∫ ,

Therefore, by the second fundamental theorem, we get

I = 
27 8 19

F (3) – F (2) –
3 3 3

= =

(ii) Let 
9

34
22

I

(30 – )

x
dx

x

= ∫ . We first find the anti derivative of the integrand.

Put 

3

2
3

30 – . Then –
2

x t x dx dt= =  or 
2

–
3

x dx dt=

Thus,  
3 2

22

2
–

3
(30 – )

x dt
dx

t
x

=∫ ∫  = 
2 1

3 t

 
  

 = 3

2

2 1
F ( )

3
(30 – )

x

x

 
  = 
  

Therefore, by the second fundamental theorem of calculus, we have

I =

9

3

2
4

2 1
F(9) – F(4)

3
(30 – )x

 
 =  
  

=
2 1 1

3 (30 – 27) 30 – 8

 
− 

 
 = 

2 1 1 19

3 3 22 99

 − =  

(iii) Let 
2

1
I

( 1) ( 2)

x dx

x x
=

+ +∫

Reprint 2024-25



270 MATHEMATICS

Using partial fraction, we get  
–1 2

( 1) ( 2) 1 2

x

x x x x
= +

+ + + +

So
( 1) ( 2)

x dx

x x+ +∫  = – log 1 2log 2 F( )x x x+ + + =

Therefore, by the second fundamental theorem of calculus, we have

I = F(2) – F(1) = [– log 3 + 2 log 4] – [– log 2 + 2 log 3]

= – 3 log 3 + log 2 + 2 log 4 = 
32

log
27

 
 
 

(iv) Let 
34

0
I sin 2 cos 2t t dt

π

= ∫ . Consider 
3

sin 2 cos2∫ t t dt

Put sin 2t = u so that 2 cos 2t dt = du or cos 2t dt = 
1

2
 du

So
3

sin 2 cos2∫ t t dt =
31

2
u du∫

=
4 41 1

[ ] sin 2 F ( ) say
8 8

u t t= =

Therefore, by the second fundamental theorem of integral calculus

I =
4 41 1

F ( ) – F (0) [sin – sin 0]
4 8 2 8

π π
= =

EXERCISE 7.8

Evaluate the definite integrals in Exercises 1 to 20.

1.
1

1
( 1)x dx

−
+∫ 2.

3

2

1
dx

x∫ 3.
2

3 2

1
(4 – 5 6 9)x x x dx+ +∫

4. sin 2
0

4
x dx

π

∫ 5. cos 2
0

2
x dx

π

∫ 6.
5

4

x
e dx∫ 7.

4

0
tan x dx

π

∫

8.
4

6

cosec x dx

π

π∫ 9.
1

0 21 –

dx

x
∫ 10.

1

201

dx

x+∫ 11.
3

22 1

dx

x −∫
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12. 22

0
cos x dx

π

∫ 13.
3

22 1

x dx

x +∫ 14.
1

20

2 3

5 1

x
dx

x

+

+∫ 15.
21

0

x
x e dx∫

16.

2
2

21

5

4 3

x

x x+ +∫ 17.
2 34

0
(2sec 2)x x dx

π

+ +∫ 18.
2 2

0
(sin – cos )

2 2

x x
dx

π

∫

19.
2

20

6 3

4

x
dx

x

+

+∫ 20.
1

0
( sin )

4

x x
x e dx

π
+∫

Choose the correct answer in Exercises 21 and 22.

21.
3

21 1

dx

x+∫  equals

(A)
3

π
(B)

2

3

π
(C)

6

π
(D)

12

π

22.

2

3

20 4 9

dx

x+∫  equals

(A)
6

π
(B)

12

π
(C)

24

π
(D)

4

π

7.9  Evaluation of Definite Integrals by Substitution

In the previous sections, we have discussed several methods for finding the indefinite

integral. One of the important methods for finding the indefinite integral is the method

of substitution.

To evaluate ( )
b

a
f x dx∫ , by substitution, the steps could be as follows:

1. Consider the integral without limits and substitute, y = f (x) or x = g(y) to reduce

the given integral to a known form.

2. Integrate the new integrand with respect to the new variable without mentioning

the constant of integration.

3. Resubstitute for the new variable and write the answer in terms of the original

variable.

4. Find the values of answers obtained in (3) at the given limits of integral and find

the difference of the values at the upper and lower limits.
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ANote In order to quicken this method, we can proceed as follows: After

performing steps 1, and 2, there is no need of step 3. Here, the integral will be kept

in the new variable itself, and the limits of the integral will accordingly be changed,

so that we can perform the last step.

Let us illustrate this by examples.

Example 26 Evaluate 
1

4 5

1
5 1x x dx

−
+∫ .

Solution Put  t = x5 + 1, then dt = 5x4 dx.

Therefore,
4 55 1x x dx+∫  = t dt∫  = 

3

2
2

3
t  = 

3

5 2
2

( 1)
3

x +

Hence,
1 4 5

1
5 1x x dx

−
+∫  =

1
3

5 2

– 1

2
( 1)

3
x

 
+ 

  

= ( )
3 3

5 52 2
2

(1 1) – (– 1) 1
3

 
+ + 

  

=

3 3

2 2
2

2 0
3

 
− 

  
 = 

2 4 2
(2 2)

3 3
=

Alternatively, first we transform the integral and then evaluate the transformed integral

with new limits.

Let t = x5 + 1. Then dt = 5 x4 dx.

Note that, when x = – 1, t = 0 and when x = 1, t = 2
Thus,  as x varies from – 1 to 1, t varies from 0 to 2

Therefore
1

4 5

1
5 1x x dx

−
+∫  =

2

0
t dt∫

=

2
3 3 3

2 2 2

0

2 2
2 – 0

3 3
t
   

=   
      

 = 
2 4 2

(2 2)
3 3

=

Example 27 Evaluate 
– 1

1

20

tan

1

x
dx

x+∫
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Solution Let t = tan – 1x, then 
2

1

1
dt dx

x
=

+
. The new limits are, when x = 0, t = 0 and

when x = 1, 
4

t
π

= . Thus, as x varies from 0 to 1, t varies from 0 to 
4

π
.

Therefore

–1
1

20

tan

1

x
dx

x+∫ =

2 4
4

0
0

2

t
t dt

π
π

 
 
 

∫  = 

2 21
– 0

2 16 32

 π π
= 

 

EXERCISE 7.9

Evaluate the integrals in Exercises 1 to 8 using substitution.

1.
1

20 1

x
dx

x +∫ 2. 52

0
sin cos d

π

φ φ φ∫ 3.
1 – 1

20

2
sin

1

x
dx

x

 
 + 

∫

4.
2

0
2x x +∫  (Put x + 2 = t2) 5. 2

20

sin

1 cos

x
dx

x

π

+∫

6.
2

20 4 –

dx

x x+∫ 7.
1

21 2 5

dx

x x− + +∫ 8.
2 2

21

1 1
–

2

x
e dx

x x

 
 
 

∫
Choose the correct answer in Exercises 9 and 10.

9. The value of the integral 

1

3 31

1 4

3

( )x x
dx

x

−
∫  is

(A) 6 (B) 0 (C) 3 (D) 4

10. If f (x) = 
0

sin
x

t t dt∫ , then f ′(x) is

(A) cosx + x sin x (B) x sinx

(C) x cosx (D) sinx + x cosx

7.10  Some Properties of Definite Integrals

We list below some important properties of definite integrals. These will be useful in
evaluating the definite integrals more easily.

P
0 
: ( ) ( )

b b

a a
f x dx f t dt=∫ ∫

P
1 
: ( ) – ( )

b a

a b
f x dx f x dx=∫ ∫ . In particular, ( ) 0

a

a
f x dx =∫

P
2
 : ( ) ( ) ( )

b c b

a a c
f x dx f x dx f x dx= +∫ ∫ ∫
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P
3
 : ( ) ( )

b b

a a
f x dx f a b x dx= + −∫ ∫

P
4
 :

0 0
( ) ( )

a a

f x dx f a x dx= −∫ ∫
(Note that P

4
 is a particular case of P

3
)

P
5
 :

2

0 0 0
( ) ( ) (2 )

a a a

f x dx f x dx f a x dx= + −∫ ∫ ∫

P
6
 :

2

0 0
( ) 2 ( ) , if (2 ) ( )

a a

f x dx f x dx f a x f x= − =∫ ∫   and

                 0 if f (2a – x) = – f (x)

P
7
 : (i)  

0
( ) 2 ( )

a a

a
f x dx f x dx

−
=∫ ∫ , if f is an even function, i.e., if f (– x) = f (x).

(ii)  ( ) 0
a

a
f x dx

−
=∫ , if f is an odd function, i.e., if f (– x) = – f (x).

We give the proofs of these properties one by one.

Proof of P
0
 It follows directly by making the substitution x = t.

Proof of P
1
 Let F be anti derivative of f. Then, by the second fundamental theorem of

calculus, we have ( ) F ( ) – F ( ) – [F ( ) F ( )] ( )
b a

a b
f x dx b a a b f x dx= = − = −∫ ∫

Here, we observe that, if a = b, then ( ) 0
a

a
f x dx =∫ .

Proof of P
2
 Let F be anti derivative of f. Then

( )
b

a
f x dx∫  = F(b) – F(a) ... (1)

( )
c

a
f x dx∫  = F(c) – F(a) ... (2)

and ( )
b

c
f x dx∫  = F(b) – F(c) ... (3)

Adding (2) and (3), we get ( ) ( ) F( ) – F( ) ( )
c b b

a c a
f x dx f x dx b a f x dx+ = =∫ ∫ ∫

This proves the property P
2
.

Proof of P
3
  Let t = a + b – x. Then dt = – dx. When x = a, t = b and when x = b, t = a.

Therefore

( )
b

a
f x dx∫  = ( – )

a

b
f a b t dt− +∫
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= ( – )
b

a
f a b t dt+∫  (by P

1
)

= ( – )
b

a
f a b x+∫ dx by P

0

Proof of P
4
 Put t = a – x. Then dt = – dx. When x = 0, t = a and when x = a, t = 0. Now

proceed as in P
3
.

Proof of P
5
 Using P

2
, we have 

2 2

0 0
( ) ( ) ( )

a a a

a
f x dx f x dx f x dx= +∫ ∫ ∫ .

Let t = 2a – x in the second integral on the right hand side. Then
dt = – dx. When x = a, t = a and when x = 2a, t = 0. Also x = 2a – t.

Therefore, the second integral becomes

2

( )
a

a
f x dx∫  =

0

– (2 – )
a

f a t dt∫  = 
0

(2 – )
a

f a t dt∫  = 
0

(2 – )
a

f a x dx∫

Hence
2

0
( )

a

f x dx∫  =
0 0

( ) (2 )
a a

f x dx f a x dx+ −∫ ∫

Proof of P
6
 Using P

5
, we have 

2

0 0 0
( ) ( ) (2 )

a a a

f x dx f x dx f a x dx= + −∫ ∫ ∫        ... (1)

Now, if f (2a – x) = f (x), then (1) becomes

2

0
( )

a

f x dx∫  =
0 0 0

( ) ( ) 2 ( ) ,
a a a

f x dx f x dx f x dx+ =∫ ∫ ∫
and if f (2a – x) = – f (x), then (1) becomes

2

0
( )

a

f x dx∫  =  
0 0

( ) ( ) 0
a a

f x dx f x dx− =∫ ∫
Proof of P

7
 Using P

2
, we have

( )
a

a
f x dx

−∫  =
0

0
( ) ( )

a

a
f x dx f x dx

−
+∫ ∫ . Then

Let t = – x in the first integral on the right hand side.

dt = – dx. When x = – a, t = a and when

x = 0, t = 0. Also x = – t.

Therefore ( )
a

a
f x dx

−∫  =
0

0
– (– ) ( )

a

a
f t dt f x dx+∫ ∫

=
0 0

(– ) ( )
a a

f x dx f x dx+∫ ∫        (by P
0
)  ... (1)
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(i) Now, if f is an even function, then f (–x) = f (x) and so (1) becomes

0 0 0
( ) ( ) ( ) 2 ( )

a a a a

a
f x dx f x dx f x dx f x dx

−
= + =∫ ∫ ∫ ∫

(ii) If f is an odd function, then f (–x) = – f (x) and so (1) becomes

0 0
( ) ( ) ( ) 0

a a a

a
f x dx f x dx f x dx

−
= − + =∫ ∫ ∫

Example 28 Evaluate 
2 3

1
–x x dx

−∫

Solution We note that x3 – x ≥ 0 on [– 1, 0] and x3 – x ≤ 0 on [0, 1] and that

x3 – x ≥ 0 on [1, 2]. So by P
2
 we write

2 3

1
–x x dx

−∫  =
0 1 23 3 3

1 0 1
( – ) – ( – ) ( – )x x dx x x dx x x dx

−
+ +∫ ∫ ∫

=
0 1 23 3 3

1 0 1
( – ) ( – ) ( – )x x dx x x dx x x dx

−
+ +∫ ∫ ∫

=

0 1 2
4 2 2 4 4 2

– 1 0 1

– – –
4 2 2 4 4 2

x x x x x x     
+ +     

     

= ( )1 1 1 1 1 1
– – – 4 – 2 – –

4 2 2 4 4 2

     + +     
     

=
1 1 1 1 1 1

– 2
4 2 2 4 4 2

+ + − + − +  = 
3 3 11

2
2 4 4

− + =

Example 29 Evaluate 
24

–

4

sin x dx

π

π∫

Solution We observe that sin2 x is an even function. Therefore, by P
7
 (i), we get

24

–

4

sin x dx

π

π∫  =
24

0
2 sin x dx

π

∫

= 4

0

(1 cos 2 )
2

2

x
dx

π −
∫  = 4

0
(1 cos 2 )x dx

π

−∫
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=
4

0

1
– sin 2

2
x x

π

 
  

 = 
1 1

– sin – 0 –
4 2 2 4 2

π π π  = 
 

Example 30 Evaluate 
20

sin

1 cos

x x
dx

x

π

+∫

Solution Let I = 20

sin

1 cos

x x
dx

x

π

+∫ . Then, by P
4
, we have

I =  20

( ) sin ( )

1 cos ( )

x x dx

x

π π − π −

+ π −∫

= 20

( ) sin

1 cos

x x dx

x

π π −

+∫  = 
20

sin
I

1 cos

x dx

x

π
π −

+∫

or 2 I = π
π sin

cos

x dx

x1
20 +∫

or I = 20

sin

2 1 cos

x dx

x

ππ

+∫

Put cos x = t so that – sin x dx = dt. When x = 0, t = 1 and when x = π, t = – 1.

Therefore, (by P
1
) we get

I =
1

21

–

2 1

dt

t

−π

+∫ = 
1

212 1

dt

t−

π

+∫

=
1

20 1

dt

t
π

+∫  (by P
7
,
 2

1
since

1 t+
 is even function)

=

2
1

– 1 – 1 1

0
tan tan 1 – tan 0 – 0

4 4
t

− π π    π = π = π =      

Example 31 Evaluate 
1 5 4

1
sin cosx x dx

−∫

Solution Let I = 
1

5 4

1
sin cosx x dx

−∫ . Let f(x) = sin5 x cos4 x. Then

f (– x) = sin5 (– x) cos4 (– x) = – sin5 x cos4 x = – f (x), i.e., f is an odd function.

Therefore, by P
7
 (ii), I = 0
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Example 32 Evaluate 
4

2

4 40

sin

sin cos

x
dx

x x

π

+∫

Solution Let I = 
4

2

4 40

sin

sin cos

x
dx

x x

π

+∫ ... (1)

Then, by P
4

I =

4

2

0 4 4

sin ( )
2

sin ( ) cos ( )
2 2

x

dx

x x

π
π

−

π π
− + −

∫  = 

4
2

4 40

cos

cos sin

x
dx

x x

π

+∫                    ... (2)

Adding (1) and (2), we get

2I =
4 4

22 2

4 40 0 0

sin cos
[ ]

2sin cos

x x
dx dx x

x x

ππ π
+ π

= = =
+∫ ∫

Hence I =
4

π

Example 33 Evaluate 
3

6
1 tan

dx

x

π

π +∫

Solution  Let I = 
3 3

6 6

cos

1 tan cos sin

x dxdx

x x x

π π

π π
=

+ +∫ ∫ ... (1)

Then, by P
3

I =
3

6

cos
3 6

cos sin
3 6 3 6

x dx

x x

π

π

π π + − 
 

π π π π   + − + + −   
   

∫

=
3

6

sin

sin cos

x
dx

x x

π

π +∫ ... (2)

Adding (1) and (2), we get

2I = [ ]3 3

6 6
3 6 6

dx x

π π

π π

π π π
= = − =∫ . Hence I

12

π
=
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Example 34 Evaluate 2

0
log sin x dx

π

∫

Solution Let I = 2

0
log sin x dx

π

∫
Then, by P

4

I = 2 2

0 0
log sin log cos

2
x dx x dx

π π
π − = 

 
∫ ∫

Adding the two values of I, we get

2I = ( )2

0
log sin logcosx x dx

π

+∫

= ( )2

0
log sin cos log 2 log 2x x dx

π

+ −∫ (by adding and subtracting log2)

= 2 2

0 0
log sin 2 log 2x dx dx

π π

−∫ ∫ (Why?)

Put 2x = t in the first integral. Then 2 dx = dt, when x = 0, t = 0 and when 
2

x
π

= ,

t = π.

Therefore 2I =
0

1
log sin log 2

2 2
t dt

π π
−∫

=
2

0

2
log sin log 2

2 2
t dt

π
π

−∫  [by P
6
 as sin (π – t) = sin t)

= 2

0
log sin log 2

2
x dx

π
π

−∫  (by changing variable t to x)

= I log 2
2

π
−

Hence
2

0
log sin x dx

π

∫  =
–

log 2
2

π
.
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EXERCISE 7.10

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

1. 22

0
cos x dx

π

∫ 2.
2

0

sin

sin cos

x
dx

x x

π

+∫ 3.

3

2
2

3 30

2 2

sin

sin cos

x dx

x x

π

+
∫

4.

5
2

5 50

cos

sin cos

x dx

x x

π

+∫ 5.
5

5
| 2 |x dx

−
+∫ 6.

8

2
5x dx−∫

7.
1

0
(1 )n

x x dx−∫ 8. 4

0
log (1 tan )x dx

π

+∫ 9.
2

0
2x x dx−∫

10.
2

0
(2log sin log sin 2 )x x dx

π

−∫ 11.
22

–

2

sin x dx

π

π∫

12.
0 1 sin

x dx

x

π

+∫ 13.
72

–

2

sin x dx

π

π∫ 14.
2 5

0
cos x dx

π

∫

15. 2

0

sin cos

1 sin cos

x x
dx

x x

π
−

+∫ 16.
0

log (1 cos )x dx
π

+∫ 17.
0

a x
dx

x a x+ −∫

18.
4

0
1x dx−∫

19. Show that 
0 0

( ) ( ) 2 ( )
a a

f x g x dx f x dx=∫ ∫ , if f and g are defined as f(x) = f (a – x)

and g(x) + g(a – x) = 4

Choose the correct answer in Exercises 20 and 21.

20. The value of 3 52

2

( cos tan 1)x x x x dx

π

−π
+ + +∫  is

(A) 0 (B) 2 (C) π (D) 1

21. The value of 2

0

4 3 sin
log

4 3 cos

x
dx

x

π
 +
 

+ 
∫  is

(A) 2 (B)
3

4
(C) 0 (D) –2
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Miscellaneous Examples

Example 35 Find cos 6 1 sin 6x x dx+∫
Solution Put t = 1 + sin 6x, so that dt = 6 cos 6x dx

Therefore

1

2
1

cos 6 1 sin 6
6

x x dx t dt+ =∫ ∫

=

3 3

2 2
1 2 1

( ) C = (1 sin 6 ) C
6 3 9

t x× + + +

Example 36 Find 

1

4 4

5

( )x x
dx

x

−
∫

Solution We have 

1
1

4
4 4 3

5 4

1
(1 )

( )x x xdx dx
x x

−
−

=∫ ∫

Put 
– 3

3 4

1 3
1 1 – , so thatx t dx dt

x x
− = = =

Therefore 

1
14 4
4

5

( ) 1

3

x x
dx t dt

x

−
=∫ ∫  = 

5
5

4
4

3

1 4 4 1
C = 1 C

3 5 15
t

x

 × + − + 
 

Example 37 Find 

4

2
( 1) ( 1)

x dx

x x− +∫

Solution We have

4

2
( 1)( 1)

x

x x− +
 = 3 2

1
( 1)

1
x

x x x
+ +

− + −

= 2

1
( 1)

( 1) ( 1)
x

x x
+ +

− +
... (1)

Now express 2

1

( 1)( 1)x x− +
 = 2

A B C

( 1) ( 1)

x

x x

+
+

− +
... (2)
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So 1 = A (x2 + 1) + (Bx + C) (x – 1)

= (A + B) x2 + (C – B) x + A – C

Equating coefficients on both sides, we get A + B = 0, C – B = 0 and A – C = 1,

which give 
1 1

A , B C –
2 2

= = = . Substituting values of A, B and C in (2), we get

2

1

( 1) ( 1)x x− +
 = 2 2

1 1 1

2( 1) 2 ( 1) 2( 1)

x

x x x
− −

− + +
... (3)

Again, substituting (3) in (1), we have

4

2
( 1) ( 1)

x

x x x− + +
 = 2 2

1 1 1
( 1)

2( 1) 2 ( 1) 2( 1)

x
x

x x x
+ + − −

− + +

Therefore

4 2
2 – 1

2

1 1 1
log 1 – log ( 1) – tan C

2 2 4 2( 1) ( 1)

x x
dx x x x x

x x x
= + + − + +

− + +∫

Example 38 Find 2

1
log (log )

(log )
x dx

x

 
+ 

 
∫

Solution Let 
2

1
I log (log )

(log )
x dx

x

 
= + 

 
∫

= 2

1
log (log )

(log )
x dx dx

x
+∫ ∫

In the first integral, let us take 1 as the second function. Then integrating it by

parts, we get

I = 2

1
log (log )

log (log )

dx
x x x dx

x x x
− +∫ ∫

= 2
log (log )

log (log )

dx dx
x x

x x
− +∫ ∫ ... (1)

Again, consider 
log

dx

x∫ , take 1 as the second function and integrate it by parts,

we have 2

1 1
– –

log log (log )

dx x
x dx

x x xx

   =    
    

∫ ∫         ... (2)
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Putting (2) in (1), we get

2 2
I log (log )

log (log ) (log )

x dx dx
x x

x x x
= − − +∫ ∫  = log (log ) C

log

x
x x

x
− +

Example 39 Find cot tanx x dx + ∫
Solution We have

I = cot tanx x dx + ∫ tan (1 cot )x x dx= +∫
Put tan x = t2, so that sec2 x dx = 2t dt

or dx =  
4

2

1

t dt

t+

Then I = 2 4

1 2
1

(1 )

t
t dt

t t

 
+ 

+ 
∫

=

2 2 2

4 2
2

2

1 1
1 1

( 1)
2 = 2 = 2

11 1
2

dt dt
t t t

dt
t

t t
t t

   + +   +    
 +  + − +      

∫ ∫ ∫

Put 
1

t
t

−  = y, so that 2

1
1

t

 + 
 

 dt = dy. Then

I =

( )
– 1 – 1

2
2

1

2 2 tan C = 2 tan C
2 22

t
dy y t

y

 − 
 = + +

+
∫

=

2
– 1 – 11 tan 1

2 tan C = 2 tan C
2 2 tan

t x

t x

 − − 
+ +       

Example 40 Find 
4

sin 2 cos 2

9 – cos (2 )

x x dx

x
∫

Solution Let 
4

sin 2 cos 2
I

9 – cos 2

x x
dx

x
= ∫
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Put cos2 (2x) = t so that 4 sin 2x cos 2x dx = – dt

Therefore –1 1 2

2

1 1 1 1
I – – sin C sin cos 2 C

4 4 3 4 39 –

dt t
x

t

−   = = + = − +      
∫

Example 41 Evaluate 

3

2

1
sin ( )x x dx

−
π∫

Solution Here f (x) = | x sin πx | = 

sin for 1 1

3
sin for1

2

x x x

x x x

π − ≤ ≤



− π ≤ ≤

Therefore

3

2

1
| sin |x x dx

−
π∫  =

3
1

2

1 1
sin sinx x dx x x dx

−
π + − π∫ ∫

=

3
1

2

1 1
sin sinx x dx x x dx

−
π − π∫ ∫

Integrating both integrals on righthand side, we get

3

2

1
| sin |x x dx

−
π∫  =

= 2 2

2 1 1 3 1 − − − = + π π ππ π 

Example 42 Evaluate 2 2 2 20 cos sin

x dx

a x b x

π

+∫

Solution Let I = 2 2 2 2 2 2 2 20 0

( )

cos sin cos ( ) sin ( )

x dx x dx

a x b x a x b x

π π π −
=

+ π − + π −∫ ∫ (using P
4
)

=
2 2 2 2 2 2 2 20 0cos sin cos sin

dx x dx

a x b x a x b x

π π
π −

+ +∫ ∫

= 2 2 2 20
I

cos sin

dx

a x b x

π
π −

+∫

Thus 2I = 2 2 2 20 cos sin

dx

a x b x

π
π

+∫
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or I =
2

2 2 2 2 2 2 2 20 0
2

2 2cos sin cos sin

dx dx

a x b x a x b x

π
ππ π

= ⋅
+ +∫ ∫ (using P

6
)

=
24

2 2 2 2 2 2 2 2
0

4

cos sin cos sin

ππ

π

 
π + 

+ +  
∫ ∫

dx dx

a x b x a x b x

= 

2 2
24

2 2 2 2 2 2
0

4

sec cosec

tan cot

ππ

π

 
π + 

+ +  
∫ ∫

x dx x dx

a b x a x b

= ( )
01

2 2 2 2 2 2
0 1

tan t cot
 π − = = + + 
∫ ∫

dt du
put x and x u

a b t a u b

= 

1 0

–1 –1

0 1

tan – tan
π π   
      

bt au

ab a ab b
 =  

–1 –1
tan tan

π  +  

b a

ab a b
= 

2

2

π
ab

Miscellaneous Exercise on Chapter 7

Integrate the functions in Exercises 1 to 23.

1. 3

1

x x−
2.

1

x a x b+ + +
3.

2

1

x ax x−
 [Hint: Put x = 

a

t
]

4. 3

2 4 4

1

( 1)x x +

5. 11

32

1

x x+

      [Hint:
11 1 1

32 3 6

1 1

1x x x x

=
 

+ + 
 
 

, put x = t6]

6. 2

5

( 1) ( 9)

x

x x+ +
7.

sin

sin ( )

x

x a−
8.

5 log 4 log

3 log 2 log

x x

x x

e e

e e

−

−

9.
2

cos

4 sin

x

x−
10.

8 8

2 2

sin cos

1 2sin cos

x

x x

−

−
11.

1

cos ( ) cos ( )x a x b+ +

12.

3

81

x

x−
13.

(1 ) (2 )

x

x x

e

e e+ +
14. 2 2

1

( 1) ( 4)x x+ +

15. cos3 x elog sinx 16. e3 logx (x4 + 1)– 1 17.  f ′ (ax + b) [f (ax + b)]n
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18. 3

1

sin sin ( )x x + α 19.
1

1

x

x

−

+
20.

2 sin 2

1 cos 2

xx
e

x

+
+

21.

2

2

1

( 1) ( 2)

x x

x x

+ +

+ +
22.

– 1 1
tan

1

x

x

−
+

23.

2 2

4

1 log ( 1) 2 logx x x

x

 + + − 

Evaluate the definite integrals in Exercises 24 to 31.

24.
2

1 sin

1 cos

π

π

− 
 − 

∫
x x

e dx
x

25. 4

4 40

sin cos

cos sin

x x
dx

x x

π

+∫ 26.
2

2

2 20

cos

cos 4 sin

x dx

x x

π

+∫

27. 3

6

sin cos

sin 2

x x
dx

x

π

π

+
∫ 28.

1

0 1

dx

x x+ −∫ 29.
4

0

sin cos

9 16 sin 2

x x
dx

x

π
+

+∫

30.
12

0
sin 2 tan (sin )x x dx

π
−

∫

31.
4

1
[| 1| | 2 | | 3 |]x x x dx− + − + −∫

Prove the following (Exercises 32 to 37)

32.
3

21

2 2
log

3 3( 1)

dx

x x
= +

+∫ 33.
1

0
1

x
x e dx =∫

34.
1

17 4

1
cos 0x x dx

−
=∫ 35. 32

0

2
sin

3
x dx

π

=∫

36.
34

0
2 tan 1 log2x dx

π

= −∫ 37.
1 1

0
sin 1

2
x dx

− π
= −∫

Choose the correct answers in Exercises 38 to 40

38.
x x

dx

e e
−+∫  is equal to

(A) tan–1 (ex) + C (B) tan–1 (e–x) + C

(C) log (ex – e–x) + C (D) log (ex + e–x) + C

39.
2

cos 2

(sin cos )

x
dx

x x+∫  is equal to
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(A)
–1

C
sin cosx x

+
+

(B) log |sin cos | Cx x+ +

(C) log |sin cos | Cx x− + (D) 2

1

(sin cos )+x x

40. If f (a + b – x) = f (x), then ( )
b

a
x f x dx∫  is equal to

(A) ( )
2

b

a

a b
f b x dx

+
−∫ (B) ( )

2

b

a

a b
f b x dx

+
+∫

(C) ( )
2

b

a

b a
f x dx

−
∫ (D) ( )

2

b

a

a b
f x dx

+
∫

Summary

® Integration is the inverse process of differentiation. In the differential calculus,

we are given a function and we have to find the derivative or differential of

this function, but in the integral calculus, we are to find a function whose

differential is given. Thus, integration is a process which is the inverse of

differentiation.

Let F( ) ( )
d

x f x
dx

= . Then we write ( ) F ( ) Cf x dx x= +∫ . These integrals

are called indefinite integrals or general integrals, C is called constant of

integration. All these integrals differ by a constant.

® Some properties of indefinite integrals are as follows:

1. [ ( ) ( )] ( ) ( )f x g x dx f x dx g x dx+ = +∫ ∫ ∫

2. For any real number k, ( ) ( )k f x dx k f x dx=∫ ∫
More generally, if f

1
, f

2
, f

3
, ... , f

n
 are functions and k

1
, k

2
, ... ,k

n
 are real

numbers. Then

1 1 2 2[ ( ) ( ) ... ( )]n nk f x k f x k f x dx+ + +∫

= 1 1 2 2( ) ( ) ... ( )n nk f x dx k f x dx k f x dx+ + +∫ ∫ ∫
® Some standard integrals

(i)

1

C
1

n
n x

x dx
n

+

= +
+∫ , n ≠ – 1. Particularly, Cdx x= +∫
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(ii) cos sin Cx dx x= +∫ (iii) sin – cos Cx dx x= +∫

(iv)
2

sec tan Cx dx x= +∫ (v)
2

cosec – cot Cx dx x= +∫

(vi) sec tan sec Cx x dx x= +∫

(vii) cosec cot – cosec Cx x dx x= +∫ (viii)
1

2
sin C

1

dx
x

x

−= +
−

∫

(ix)
1

2
cos C

1

dx
x

x

−= − +
−

∫ (x)
1

2
tan C

1

dx
x

x

−= +
+∫

(xi)
1

2
cot C

1

dx
x

x

−= − +
+∫ (xii) C

x x
e dx e= +∫

(xiii) C
log

x
x a

a dx
a

= +∫ (xiv)
1

log | | Cdx x
x

= +∫

® Integration by partial fractions

Recall that a rational function is ratio of two polynomials of the form 
P( )

Q( )

x

x
,

where P(x) and Q (x) are polynomials in x and Q (x) ≠ 0. If degree of the

polynomial P (x) is greater than the degree of the polynomial Q (x), then we

may divide P (x) by Q (x) so that 1P ( )P( )
T ( )

Q( ) Q( )

xx
x

x x
= + , where T(x) is a

polynomial in x and degree of P
1
(x) is less than the degree of Q(x). T(x)

being polynomial can be easily integrated. 1P ( )

Q( )

x

x
 can be integrated by

expressing 
1P ( )

Q( )

x

x
 as the sum of partial fractions of the following type:

1.
( ) ( )

px q

x a x b

+

− −
=

A B

x a x b
+

− −
, a ≠ b

2. 2
( )

px q

x a

+

− = 2

A B

( )x a x a
+

− −
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3.

2

( ) ( ) ( )

px qx r

x a x b x c

+ +

− − − =
A B C

x a x b x c
+ +

− − −

4.

2

2
( ) ( )

px qx r

x a x b

+ +

− −
= 2

A B C

( )x a x bx a
+ +

− −−

5.

2

2
( ) ( )

px qx r

x a x bx c

+ +

− + +
=

2

A B + Cx

x a x bx c
+

− + +

where x2 + bx + c can not be factorised further.

® Integration by substitution

A change in the variable of integration often reduces an integral to one of the

fundamental integrals. The method in which we change the variable to some

other variable is called the method of substitution. When the integrand involves

some trigonometric functions, we use some well known identities to find the

integrals. Using substitution technique, we obtain the following standard

integrals.

(i) tan log sec Cx dx x= +∫ (ii) cot log sin Cx dx x= +∫

(iii) sec log sec tan Cx dx x x= + +∫

(iv) cosec log cosec cot Cx dx x x= − +∫
® Integrals of some special functions

(i) 2 2

1
log C

2

dx x a

a x ax a

−
= +

+−∫

(ii) 2 2

1
log C

2

dx a x

a a xa x

+
= +

−−∫ (iii)
1

2 2

1
tan C

dx x

a ax a

−= +
+∫

(iv) 2 2

2 2
log C

dx
x x a

x a
= + − +

−
∫ (v)

1

2 2
sin C

dx x

aa x

−= +
−

∫

(vi)
2 2

2 2
log | | C

dx
x x a

x a
= + + +

+
∫

® Integration by parts

For given functions f
1
 and  f

2
, we have
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, i.e., the

integral of the product of two functions = first function × integral of the

second function – integral of {differential coefficient of the first function ×

integral of the second function}. Care must be taken in choosing the first

function and the second function. Obviously, we must take that function as

the second function whose integral is well known to us.

® [ ( ) ( )] ( ) C
x x

e f x f x dx e f x dx′+ = +∫ ∫
® Some special types of integrals

(i)

2
2 2 2 2 2 2

log C
2 2

x a
x a dx x a x x a− = − − + − +∫

(ii)

2
2 2 2 2 2 2

log C
2 2

x a
x a dx x a x x a+ = + + + + +∫

(iii)

2
2 2 2 2 1

sin C
2 2

x a x
a x dx a x

a

−− = − + +∫

(iv) Integrals of the types 
2 2

or
dx dx

ax bx c ax bx c+ + + +
∫ ∫ can be

transformed into standard form by expressing

ax2 + bx + c = 

2 2
2

22 4

b c b c b
a x x a x

a a a a a

     + + = + + −    
      

(v) Integrals of the types 2 2
or

px q dx px q dx

ax bx c ax bx c

+ +

+ + + +
∫ ∫ can be

transformed into standard form by expressing

2
A ( ) B A (2 ) B

d
px q ax bx c ax b

dx
+ = + + + = + + , where A and B are

determined by comparing coefficients on both sides.

® We have defined ( )
b

a
f x dx∫  as the area of the region bounded by the curve

y = f (x), a ≤ x ≤ b, the x-axis and the ordinates x = a and x = b. Let x be a
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given point in [a, b]. Then ( )
x

a
f x dx∫  represents the Area function A (x).

This concept of area function leads to the Fundamental Theorems of Integral

Calculus.

® First fundamental theorem of integral calculus

Let the area function be defined by A(x) = ( )
x

a
f x dx∫  for all x ≥ a, where

the function f is assumed to be continuous on [a, b]. Then A′ (x) = f (x) for all

x ∈ [a, b].

® Second fundamental theorem of integral calculus

Let f be a continuous function of x defined on the closed interval [a, b] and

let F be another function such that F( ) ( )
d

x f x
dx

=  for all x in the domain of

f, then [ ]( ) F( ) C F ( ) F ( )
b b

aa
f x dx x b a= + = −∫ .

This is called the definite integral of f over the range [a, b], where a and b

are called the limits of integration, a being the lower limit and b the

upper limit.

—vvvvv—
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Fig 8.1

v One should study Mathematics because it is only through Mathematics that

nature can be conceived in harmonious form. – BIRKHOFF v

8.1  Introduction

In geometry, we have learnt formulae to calculate areas
of various geometrical figures including triangles,
rectangles, trapezias and circles. Such formulae are
fundamental in the applications of mathematics to many
real life problems. The formulae of elementary geometry
allow us to calculate areas of many simple figures.
However, they are inadequate for calculating the areas
enclosed by curves. For that we shall need some concepts
of Integral Calculus.

In the previous chapter, we have studied to find the
area bounded by the curve y = f (x), the ordinates x = a,
x = b and x-axis, while calculating definite integral as the
limit of a sum. Here, in this chapter, we shall study a specific
application of integrals to find the area under simple curves,
area between lines and arcs of circles, parabolas and
ellipses (standard forms only). We shall also deal with finding
the area bounded by the above said curves.

8.2 Area under Simple Curves

In the previous chapter, we have studied
definite integral as the limit of a sum and
how to evaluate definite integral using
Fundamental Theorem of Calculus. Now,
we consider the easy and intuitive way of
finding the area bounded by the curve
y = f (x), x-axis and the ordinates x = a and
x = b. From Fig 8.1, we can think of area
under the curve as composed of large
number of very thin vertical strips. Consider
an arbitrary strip of height y and width dx,
then dA (area of the elementary strip)= ydx,
where, y = f (x).

Chapter 8

APPLICATION OF INTEGRALS

A.L. Cauchy

(1789-1857)
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Fig  8.2

This area is called the elementary area which is located at an arbitrary position

within the region which is specified by some value of x between a and b. We can think

of the total area A of the region between x-axis, ordinates x = a, x = b and the curve

y = f (x) as the result of adding up the elementary areas of thin strips across the region

PQRSP. Symbolically, we express

A = A ( )
b b b

a a a
d ydx f x dx= =∫ ∫ ∫

The area A of the region bounded by

the curve x = g (y), y-axis and the lines y  =  c,

y = d is given by

A = ( )
d d

c c
xdy g y dy=∫ ∫

Here, we consider horizontal strips as shown in

the Fig 8.2

Remark If the position of the curve under consideration is below the x-axis, then since

f (x) < 0 from x = a to x = b, as shown in Fig 8.3, the area bounded by the curve, x-axis

and the ordinates x = a, x = b come out to be negative. But, it is only the numerical

value of the area which is taken into consideration. Thus, if the area is negative, we

take its absolute value, i.e., ( )
b

a
f x dx∫ .

Fig 8.3

Generally, it may happen that some portion of the curve is above x-axis and some is

below the x-axis as shown in the Fig 8.4. Here, A
1
 < 0 and A

2
 > 0. Therefore, the area

A bounded by the curve y = f (x), x-axis and the ordinates x = a and x = b is given

by A = |A
1
| + A

2
.
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Example 1 Find the area enclosed by the circle x2 + y2 = a2.

Solution From Fig 8.5, the whole area enclosed

by the given circle

= 4 (area of the region AOBA bounded by

the curve, x-axis and the ordinates x = 0 and

x = a) [as the circle is symmetrical about both

x-axis and y-axis]

= 
0

4
a

ydx∫  (taking vertical strips)

= 
2 2

0
4

a

a x dx−∫

Since x2 + y2 = a2 gives     y = 2 2
a x± −

As the region AOBA lies in the first quadrant, y is taken as positive. Integrating, we get

the whole area enclosed by the given circle

= 

2
2 2 –1

0

4 sin
2 2

a

x a x
a x

a

 
− + 

 

=  =  

2
2

4
2 2

a
a

  π =π   
   

Fig 8.5

Fig  8.4
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Alternatively, considering horizontal strips as shown in Fig 8.6, the whole area of the
region enclosed by circle

= 
0

4
a

xdy∫  = 
2 2

0
4

a

a y dy−∫ (Why?)

= 

2

2 2 1

0

4 sin
2 2

a

ay y
a y

a

− 
− + 

 

= 

= 

2
2

4
2 2

a
a

π
= π

Example 2 Find the area enclosed by the ellipse 
2 2

2 2
1

x y

a b
+ =

Solution From Fig 8.7, the area of the region ABA′B′A bounded by the ellipse

= 
in

4
, 0,

area of theregion AOBA the first quadrant bounded

by thecurve x axis and theordinates x x a

 
 − = = 

(as the ellipse is symmetrical about both x-axis and y-axis)

= 
0

4 (taking verticalstrips)
a

ydx∫

Now 

2 2

2 2

x y

a b
+  = 1 gives 

2 2b
y a x

a
= ± − , but as the region AOBA lies in the first

quadrant, y is taken as positive. So, the required area is

= 
2 2

0
4

a b
a x dx

a
−∫

= 

2
2 2 –1

0

4
sin

2 2

a

b x a x
a x

a a

 
− + 

 
 (Why?)

= 

2
14

0 sin 1 0
2 2

b a a

a

−  
× + −  

   

= 
2

4

2 2

b a
ab

a

π
= π

Fig 8.6

Fig 8.7
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Alternatively, considering horizontal strips as
shown in the Fig 8.8, the area of the ellipse is

= 4
0

xdy
b

∫  = 4
2 2

0

a

b
b y dy

b

−∫  (Why?)

= 

= 

2
–14

0 sin 1 0
2 2

a b b

b

  
× + −  

   

= 

2
4

2 2

a b
ab

b

π
=π

EXERCISE 8.1

1. Find the area of the region bounded by the ellipse 

2 2

1
16 9

x y
+ = .

2. Find the area of the region bounded by the ellipse 

2 2

1
4 9

x y
+ = .

Choose the correct answer in the following Exercises 3 and 4.

3. Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines

x = 0 and x = 2 is

(A) π (B)
2

π
(C)

3

π
(D)

4

π

4. Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3 is

(A) 2 (B)
9

4
(C)

9

3
(D)

9

2

Miscellaneous Examples

Example 3  Find the area of the region bounded by the line y = 3x + 2, the x-axis and
the ordinates x = –1 and x = 1.

Fig 8.8
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Solution As shown in the Fig 8.9, the line

y = 3x + 2 meets x-axis at x = 
2

3

−
 and its graph

lies below x-axis for and above

x-axis for .

The required area = Area of the region ACBA +

Area of the region ADEA

=

2
1

3
21

3

(3 2) (3 2)x dx x dx

−

−−
+ + +∫ ∫

=

2
1

2 23

2
1

3

3 3
2 2

2 2

x x
x x

−

−
−

   
+ + +   

   
 = 

1 25 13

6 6 3
+ =

Example 4 Find the area bounded by

the curve y = cos x between x = 0 and

x = 2π.

Solution From the Fig 8.10, the required

area = area of the region OABO + area

of the region BCDB + area of the region

DEFD.

Thus, we have the required area

= 

3ππ

2π22

3ππ0

22

cos cos cosx dx x dx xdx+ +∫ ∫ ∫

= [ ] [ ] [ ]
3

22 2

30
2 2

sin sin sinx x x

π π
π

π π
+ +

= 1 + 2 + 1 = 4

Fig 8.9

Fig 8.10
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Miscellaneous Exercise on Chapter 8

1. Find the area under the given curves and given lines:

(i) y = x2, x = 1, x = 2 and x-axis

(ii) y = x4, x = 1, x = 5 and x-axis

2. Sketch the graph of y = 3x +  and evaluate .

3. Find the area bounded by the curve y = sin x between x = 0 and x = 2π.

Choose the correct answer in the following Exercises from 4 to 5.

4. Area bounded by the curve y = x3, the x-axis and the ordinates x = – 2 and x = 1 is

(A) – 9 (B)
15

4

−
(C)

15

4
(D)

17

4

5. The area bounded by the curve y = x | x | , x-axis and the ordinates x = – 1 and

x = 1 is given by

(A) 0 (B)
1

3
(C)

2

3
(D)

4

3

[Hint : y = x2 if x > 0 and y = – x2 if x < 0].

Summary

® The area of the region bounded by the curve y = f (x), x-axis and the lines

x = a and x = b (b > a) is given by the formula: Area ( )
b b

a a
ydx f x dx= =∫ ∫ .

® The area of the region bounded by the curve x = φ (y), y-axis and the lines

y = c, y = d is given by the formula: Area ( )
d d

c c
xdy y dy= = φ∫ ∫ .

Historical Note

The origin of the Integral Calculus goes back to the early period of development

of Mathematics and it is related to the method of exhaustion developed by the

mathematicians of ancient Greece. This method arose in the solution of problems

on calculating areas of plane figures, surface areas and volumes of solid bodies

etc. In this sense, the method of exhaustion can be regarded as an early method
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of integration. The greatest development of method of exhaustion in the early

period was obtained in the works of Eudoxus (440 B.C.) and Archimedes

(300 B.C.)

Systematic approach to the theory of Calculus began in the 17th century.

In 1665, Newton began his work on the Calculus described by him as the theory

of fluxions and used his theory in finding the tangent and radius of curvature at

any point on a curve. Newton introduced the basic notion of inverse function

called the anti derivative (indefinite integral) or the inverse method of tangents.

During 1684-86, Leibnitz published an article in the Acta Eruditorum which

he called Calculas summatorius, since it was connected with the summation of

a number of infinitely small areas, whose sum, he indicated by the symbol ‘∫’. In
1696, he followed a suggestion made by J. Bernoulli and changed this article to

Calculus integrali. This corresponded to Newton’s inverse method of tangents.

Both Newton and Leibnitz adopted quite independent lines of approach which

was radically different. However, respective theories accomplished results that

were practically identical. Leibnitz used the notion of definite integral and what is

quite certain is that he first clearly appreciated tie up between the antiderivative

and the definite integral.

Conclusively, the fundamental concepts and theory of Integral Calculus and

primarily its relationships with Differential Calculus were developed in the work

of P.de Fermat, I. Newton and G. Leibnitz at the end of 17th century. However,

this justification by the concept of limit was only developed in the works of A.L.

Cauchy in the early 19th century. Lastly, it is worth mentioning the following

quotation by Lie Sophie’s:

“It may be said that the conceptions of differential quotient and integral which

in their origin certainly go back to Archimedes were introduced in Science by the

investigations of Kepler, Descartes, Cavalieri, Fermat and Wallis .... The discovery

that differentiation and integration are inverse operations belongs to Newton

and Leibnitz”.

—vvvvv—
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vHe who seeks for methods without having a definite problem in mind

seeks for the most part in vain. – D. HILBERT v

9.1  Introduction

In Class XI and in Chapter 5 of the present book, we

discussed how to differentiate a given function f with respect

to an independent variable, i.e., how to find f ′(x) for a given

function f at each x in its domain of definition. Further, in

the chapter on Integral Calculus, we discussed  how to find

a function f whose derivative is the function g, which may

also be formulated as follows:

For a given function g, find a function f such that

dy

dx
 = g (x), where y = f (x)                   ... (1)

An equation of the form (1) is known as a differential

equation. A formal definition will be given later.

These equations arise in a variety of applications, may it be in Physics, Chemistry,

Biology, Anthropology, Geology,  Economics etc. Hence, an indepth study of differential

equations has assumed prime importance in all modern scientific investigations.

In this chapter, we will study some basic concepts related to differential equation,

general and particular solutions of a differential equation, formation of differential

equations, some methods to solve a first order - first degree differential equation and

some applications of differential equations in different areas.

9.2  Basic Concepts

We are already familiar with the equations of the type:

x2 – 3x + 3 = 0 ... (1)

sin x + cos x = 0 ... (2)

x + y = 7 ... (3)

Chapter 9

DIFFERENTIAL  EQUATIONS

Henri Poincare

(1854-1912 )

Reprint 2024-25



DIFFERENTIAL EQUATIONS 301

Let us consider the equation:

dy
x y

dx
+  = 0 ... (4)

We see that equations (1), (2) and (3) involve independent and/or dependent variable

(variables) only but equation (4) involves variables as well as derivative of the dependent

variable y with respect to the independent variable x. Such an equation is called a

differential equation.

In general, an equation involving  derivative (derivatives) of the dependent variable

with respect to independent variable (variables) is called a differential equation.

A differential equation involving derivatives of the dependent variable with respect

to only one independent variable is called an ordinary differential equation, e.g.,

32

2
2

d y dy

dxdx

 +  
 

 = 0  is an ordinary differential equation .... (5)

Of course, there are differential equations involving derivatives with respect to

more than one independent variables, called partial differential equations but at this

stage we shall confine ourselves to the study of ordinary differential equations only.

Now onward, we will use the term ‘differential equation’ for ‘ordinary differential

equation’.

ANote

1. We shall prefer to use the following notations for derivatives:

2 3

2 3
, ,

dy d y d y
y y y

dx dx dx
′ ′′ ′′′= = =

2. For derivatives of higher order, it will be inconvenient  to use so many dashes

as supersuffix therefore, we use the notation y
n
 for nth order derivative 

n

n

d y

dx
.

9.2.1.  Order of a differential equation

Order of a differential equation is defined as the order of the highest order derivative of

the dependent variable with respect to the independent variable involved in the given

differential equation.

Consider the following differential equations:

dy

dx
 = ex ... (6)
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2

2

d y
y

dx
+  = 0 ... (7)

3
3 2

2

3 2

d y d y
x

dx dx

   
+   

  
= 0 ... (8)

The equations (6), (7) and (8) involve the highest derivative of first, second and

third order respectively. Therefore, the order of these equations are 1, 2 and 3 respectively.

9.2.2  Degree of a differential equation

To study the degree of a differential equation, the key point is that the differential

equation must be a polynomial equation in derivatives, i.e., y′, y″, y″′ etc. Consider the

following differential equations:

2
3 2

3 2
2

d y d y dy
y

dxdx dx

 
+ − + 

 
 = 0 ... (9)

2

2sin
dy dy

y
dx dx

   + −   
   

 = 0 ... (10)

sin
dy dy

dx dx

 +  
 

 = 0 ... (11)

We observe that equation (9) is a polynomial equation in y″′,  y″ and y′, equation (10)

is a polynomial equation in y′ (not a polynomial in y though). Degree of such differential

equations can be defined. But equation (11) is not a polynomial equation in y′ and

degree of such a differential equation can not be defined.

By the degree of a differential equation, when it is a polynomial equation in

derivatives, we mean the highest power (positive integral index) of the highest order

derivative involved in the given differential equation.

In view of the above definition, one may observe that differential equations (6), (7),

(8) and (9) each are of degree one, equation (10) is of degree two while the degree of

differential equation (11) is not defined.

ANote   Order and degree (if defined) of a differential equation are always

positive integers.

Reprint 2024-25



DIFFERENTIAL EQUATIONS 303

Example 1 Find the order and degree, if defined, of each of the following differential

equations:

(i) cos 0
dy

x
dx

− = (ii)  

22

2
0

d y dy dy
xy x y

dx dxdx

 + − = 
 

(iii) 2 0yy y e
′′′′ + + =

Solution

(i) The highest order derivative present in the differential equation is 
dy

dx
, so its

order is one. It is a polynomial equation in y′ and the highest power raised to 
dy

dx

is one, so its degree is one.

(ii) The highest order derivative present in the given differential equation is 

2

2

d y

dx
, so

its order is two. It is a polynomial equation in 

2

2

d y

dx
 and 

dy

dx
 and the highest

power raised to 

2

2

d y

dx
 is one, so its degree is one.

(iii) The highest order derivative present in the differential equation is y′′′ , so its

order is three. The given differential equation is not a polynomial equation in its

derivatives and so its degree is not defined.

EXERCISE 9.1

Determine order and degree (if defined) of differential equations given in Exercises

1 to 10.

1.

4

4
sin( ) 0

d y
y

dx
′′′+ = 2.  y′ + 5y = 0 3.

4 2

2
3 0

ds d s
s

dt dt

  + = 
 

4.

2
2

2
cos 0

d y dy

dxdx

   + =   
  

5.

2

2
cos3 sin3

d y
x x

dx
= +

6.
2( )y′′′  + (y″)3 + (y′)4 + y5 = 0 7. y′′′  + 2y″ + y′ = 0
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8. y′ + y = ex 9. y″ + (y′)2 + 2y = 0 10. y″ + 2y′ + sin y = 0

11. The degree of the differential equation

3 22

2
sin 1 0

d y dy dy

dx dxdx

     + + + =     
    

 is

(A) 3 (B) 2 (C) 1 (D) not defined

12. The order of the differential equation

2
2

2
2 3 0

d y dy
x y

dxdx
− + =  is

(A) 2 (B) 1 (C) 0 (D) not defined

9.3.  General and Particular Solutions of a Differential Equation

In earlier Classes, we have solved the equations of the type:

x2 + 1 = 0 ... (1)

sin2 x – cos x = 0 ... (2)

Solution of equations (1) and (2) are numbers, real or complex, that will satisfy the

given equation i.e., when that number is substituted for the unknown x in the given

equation, L.H.S. becomes equal to the R.H.S..

Now consider the differential equation 

2

2
0

d y
y

dx
+ = ... (3)

In contrast to the first two equations, the solution of this differential equation is a

function φ that will satisfy it i.e., when the function φ is substituted for the unknown y

(dependent variable) in the given differential equation, L.H.S. becomes equal to R.H.S..

The curve y = φ (x) is called the solution curve (integral curve) of the given

differential equation. Consider the function given by

y = φ (x) = a sin (x + b), ... (4)

where a, b ∈ R. When this function and its derivative are substituted in equation (3),

L.H.S. = R.H.S.. So it is a solution of the differential equation (3).

Let a and b be given some particular values say a = 2 and 
4

b
π

= , then we get a

function y = φ
1
(x) = 2sin

4
x

π + 
 

... (5)

When this function and its derivative are substituted in equation (3) again

L.H.S. = R.H.S.. Therefore φ
1 
is also a solution of equation (3).
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Function φ  consists of two arbitrary constants (parameters) a, b and it is called

general solution of the given differential equation. Whereas function φ
1
 contains no

arbitrary constants but only the particular values of the parameters a and b and hence
is called a particular solution of the given differential equation.

The solution which contains  arbitrary constants is called the general solution
(primitive) of the differential equation.

The solution free from arbitrary constants i.e., the solution obtained from the general

solution by giving particular values to the arbitrary constants is called a particular

solution of the differential equation.

Example 2 Verify that the function y = e– 3x is a solution of the differential equation

2

2
6 0

d y dy
y

dxdx
+ − =

Solution Given function is  y = e– 3x. Differentiating both sides of equation with respect

to x , we get

3
3

xdy
e

dx

−= − ... (1)

Now, differentiating (1) with respect to x, we have

2

2

d y

dx
 = 9 e – 3x

Substituting the values of  

2

2
,

d y dy

dxdx
and y in the given differential equation, we get

L.H.S. = 9 e– 3x + (–3e– 3x) – 6.e– 3x = 9 e– 3x – 9 e– 3x = 0 = R.H.S..

Therefore, the given function is a solution of the given differential equation.

Example 3 Verify that the function y = a cos x + b sin x, where, a, b ∈ R is a solution

of the differential equation 
2

2
0

d y
y

dx
+ =

Solution The given function is
y = a cos x + b sin x ... (1)

Differentiating both sides of equation (1) with respect to x, successively, we get

dy

dx
 = – a sinx + b cosx

2

2

d y

dx
 = – a cos x – b sinx
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Substituting the values of 

2

2

d y

dx
 and y in the given differential equation, we get

L.H.S. = (– a cos x – b sin x) + (a cos x + b sin x) = 0 = R.H.S.

Therefore, the given function is a solution of the given differential equation.

EXERCISE 9.2

In each of the Exercises 1 to 10 verify that the given functions (explicit or implicit) is a

solution of the corresponding differential equation:

1. y = ex + 1 : y″ – y′ = 0

2. y = x2 + 2x + C : y′ – 2x – 2 = 0

3. y = cos x + C : y′ + sin x = 0

4. y = 2
1 x+ : y′ = 2

1

xy

x+
5. y = Ax : xy′ = y (x ≠ 0)

6. y = x sin x : xy′ = y + x 2 2
x y−  (x ≠ 0 and x > y or x < – y)

7. xy = log y + C : y′ = 

2

1

y

xy−  (xy ≠ 1)

8. y – cos y = x : (y sin y + cos y + x) y′ = y

9. x + y = tan–1y : y2 y′ + y2 + 1 = 0

10. y = 2 2
a x− x ∈ (–a, a) : x + y 

dy

dx
 = 0 (y ≠ 0)

11. The number of arbitrary constants in the general solution of a differential equation

of fourth order are:

(A) 0 (B) 2 (C) 3 (D) 4

12. The number of arbitrary constants in the particular solution of a differential equation

of third order are:

(A) 3 (B) 2 (C) 1 (D) 0

9.4.  Methods of Solving First Order, First Degree Differential Equations

In this section we shall discuss three methods of solving first order first degree differential

equations.

9.4.1  Differential equations with variables separable

A first order-first degree differential equation is of the form

dy

dx
 = F(x, y) ... (1)
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If F (x, y) can be expressed as a product g (x) h(y), where, g(x) is a function of x

and h(y) is a function of y, then the differential equation (1) is said to be of variable

separable type. The differential equation (1) then has the form

dy

dx
 = h (y) . g (x) ... (2)

If h (y) ≠ 0, separating the variables, (2) can be rewritten as

1

( )h y
 dy = g (x) dx ... (3)

Integrating both sides of (3), we get

1

( )
dy

h y∫ = ( )g x dx∫ ... (4)

Thus, (4) provides the solutions of given differential equation in the form

H(y) = G (x) + C

Here, H (y) and G (x) are the anti derivatives of 
1

( )h y
 and g (x) respectively and

C is the arbitrary constant.

Example 4 Find the general solution of the differential equation 
1

2

dy x

dx y

+
=

−
, (y ≠ 2)

Solution We have

dy

dx
 =

1

2

x

y

+
−

... (1)

Separating the variables in equation (1), we get

(2 – y) dy = (x + 1) dx ... (2)

Integrating both sides of equation (2), we get

(2 )y dy−∫ = ( 1)x dx+∫

or

2

2
2

y
y −  =

2

1C
2

x
x+ +

or x2 + y2 + 2x – 4y + 2 C
1
 = 0

or x2 + y2 + 2x – 4y + C = 0, where C = 2C
1

which is the general solution of equation (1).
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Example 5 Find the general solution of the differential equation 
2

2

1

1

dy y

dx x

+
=

+
.

Solution Since 1 + y2 ≠ 0, therefore separating the variables, the given differential

equation can be written as

2
1

dy

y+
 =

2
1

dx

x+
... (1)

Integrating both sides of equation (1), we get

2
1

dy

y+∫
 = 2

1

dx

x+∫

or tan–1 y = tan–1x + C

which is the general solution of equation (1).

Example 6 Find the particular solution of the differential equation 24
dy

xy
dx

= −  given

that y = 1, when x = 0.

Solution If y ≠ 0, the given differential equation can be written as

2

dy

y
 = – 4x dx ... (1)

Integrating both sides of equation (1), we get

2

dy

y
∫  = 4 x dx− ∫

or
1

y
−  = – 2x2 + C

or y = 2

1

2 Cx −
... (2)

Substituting y = 1 and x = 0 in equation (2), we get,  C = – 1.

Now substituting the value of C in equation (2), we get the particular solution of the

given differential equation as 
2

1

2 1
y

x
=

+
.

Example 7 Find the equation of the curve passing through the point (1, 1) whose

differential equation is x dy = (2x2 + 1) dx (x ≠ 0).
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Solution The given differential equation can be expressed as

dy* =

or dy =
1

2x dx
x

 + 
 

... (1)

Integrating both sides of equation (1), we get

dy∫  =
1

2x dx
x

 + 
 ∫

or y = x2 + log |x | + C ... (2)

Equation (2) represents the family of solution curves of the given differential equation

but we are interested in finding the equation of a particular member of the family which
passes through the point (1, 1). Therefore substituting x = 1, y = 1 in equation (2), we

get C = 0.

Now substituting the value of C in equation (2) we get the equation of the required

curve as y = x2 + log | x |.

Example 8 Find the equation of a curve passing through the point (–2, 3), given that

the slope of the tangent to the curve at any point (x, y) is 
2

2x

y
.

Solution We know that the slope of the tangent to a curve is given by 
dy

dx
.

so,
dy

dx
 = 2

2x

y
... (1)

Separating the variables, equation (1) can be written as

y2 dy = 2x dx ... (2)

Integrating both sides of equation (2), we get

2
y dy∫  = 2x dx∫

or

3

3

y
 = x2 + C ... (3)

* The notation
dy

dx
due to Leibnitz is extremely flexible and useful in many calculation and formal

transformations, where, we can deal with symbols dy and dx exactly as if they were ordinary numbers. By
treating dx and dy like separate entities, we can give neater expressions to many calculations.

Refer: Introduction to Calculus and Analysis, volume-I page 172, By Richard Courant,

Fritz John Spinger – Verlog New York.
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Substituting x = –2, y = 3 in equation (3), we get C = 5.

Substituting the value of C in equation (3), we get the equation of the required curve as

3
2

5
3

y
x= +    or   

1

2 3(3 15)y x= +

Example 9 In a bank, principal increases continuously at the rate of 5% per year. In

how many years Rs 1000 double itself?

Solution Let P be the principal at any time t. According to the given problem,

dp

dt
 =

5
P

100

 × 
 

or
dp

dt
 =

P

20
... (1)

separating the variables in equation (1), we get

P

dp
 =

20

dt
... (2)

Integrating both sides of equation (2), we get

log P = 1C
20

t
+

or P = 1C20

t

e e⋅

or P = 20C

t

e  (where 1C
Ce = ) ... (3)

Now P = 1000,   when t = 0

Substituting the values of P and t in (3), we get C = 1000. Therefore, equation (3),

gives

P = 1000 20

t

e

Let t years be the time required to double the principal. Then

2000 = 1000 20

t

e     ⇒  t = 20 log
e
2

EXERCISE 9.3

For each of the differential equations in Exercises 1 to 10, find the general solution:

1.
1 cos

1 cos

dy x

dx x

−
=

+
2.

24 ( 2 2)
dy

y y
dx

= − − < <
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3. 1 ( 1)
dy

y y
dx

+ = ≠ 4. sec2 x tan y dx + sec2 y tan x dy = 0

5. (ex + e–x) dy – (ex – e–x) dx = 0 6.
2 2

(1 ) (1 )
dy

x y
dx

= + +

7. y log y dx – x dy = 0 8.
5 5dy

x y
dx

= −

9.
1

sin
dy

x
dx

−= 10. ex tan y dx + (1 – ex) sec2 y dy = 0

For each of the differential equations in Exercises 11 to 14, find a particular solution

satisfying the given condition:

11.
3 2( 1)

dy
x x x

dx
+ + +  = 2x2 + x; y = 1 when x = 0

12.
2

( 1) 1
dy

x x
dx

− = ; y = 0 when x = 2

13. cos
dy

a
dx

  = 
 

 (a ∈ R); y = 1 when x = 0

14. tan
dy

y x
dx

= ; y = 1 when x = 0

15. Find the equation of a curve passing through the point (0, 0) and whose differential

equation is y′ = ex sin x.

16. For the differential equation ( 2) ( 2)
dy

xy x y
dx

= + + , find the solution curve

passing through the point (1, –1).

17. Find the equation of a curve passing through the point (0, –2) given that at any

point (x, y) on the curve, the product of the slope of its tangent and y coordinate

of the point is equal to the x coordinate of the point.

18. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the

line segment joining the point of contact to the point (– 4, –3). Find the equation

of the curve given that it passes through (–2, 1).

19. The volume of spherical balloon being inflated changes at a constant rate. If

initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of

balloon after t seconds.
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20. In a bank, principal increases continuously at the rate of r% per year. Find the

value of r if Rs 100 double itself in 10 years (log
e
2 = 0.6931).

21. In a bank, principal increases continuously at the rate of 5% per year. An amount

of Rs 1000 is deposited with this bank, how much will it worth after 10 years

(e0.5 = 1.648).

22. In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2

hours. In how many hours will the count reach 2,00,000, if the rate of growth of

bacteria is proportional to the number present?

23. The general solution of the differential equation 
x ydy

e
dx

+=  is

(A) ex + e–y = C (B) ex + ey = C

(C) e–x + ey = C (D) e–x + e–y = C

9.4.2  Homogeneous differential equations

Consider the following functions in x and y

F
1
 (x, y) = y2 + 2xy, F

2
 (x, y) = 2x – 3y,

F
3
 (x, y) = cos

y

x

 
 
 

, F
4
 (x, y) = sin x + cos y

If we replace x and y by λx and λy respectively in the above functions, for any nonzero

constant λ, we get

F
1
 (λx, λy) = λ2 (y2 + 2xy) = λ2 F

1 
(x, y)

F
2
 (λx, λy) = λ (2x – 3y) = λ F

2 
(x, y)

F
3
 (λx, λy) = cos cos

y y

x x

λ   =   
λ   

 = λ0  F
3 
(x, y)

F
4
 (λx, λy) = sin λx + cos λy ≠ λn F

4 
(x, y), for any n ∈ N

Here, we observe that the functions F
1
, F

2
, F

3
 can be written in the form

F(λx, λy) = λn F
 
(x, y) but F

4
 can not be written in this form. This leads to the following

definition:

A function F(x, y) is said to be homogeneous function of degree n if

F(λx, λy) = λn F(x, y) for any nonzero constant λ.

We note that in the above examples, F
1
, F

2
, F

3
 are homogeneous functions of

degree 2, 1, 0 respectively but F
4
 is not a homogeneous function.
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We also observe that

F
1
(x, y) =

2
2 2

12

2y y y
x x h

x xx

   + =   
  

or F
1
(x, y) =

2 2
2

2
1

x x
y y h

y y

   + =   
   

F
2
(x, y) = 1 1

3

3
2

y y
x x h

x x

   − =   
   

or  F
2
(x, y) =

1 1
42 3

x x
y y h

y y

   − =   
   

F
3
(x, y) =

0 0
5cos

y y
x x h

x x

   =   
   

F
4
(x, y) ≠ 6

n y
x h

x

 
 
 

, for any n ∈ N

or F
4 
(x, y) ≠ 7

n x
y h

y

 
 
 

, for any n ∈ N

Therefore, a function F (x, y) is a homogeneous function of degree n if

F (x, y) = or
n ny x

x g y h
x y

   
      

A differential equation of the form 
dy

dx
= F (x, y)  is said to be homogenous if

F(x, y) is a homogenous function of degree zero.

To solve a homogeneous differential equation of the type

( )F ,
dy

x y
dx

=  =
y

g
x

 
 
 

... (1)

We make the substitution     y = v .x  ... (2)

Differentiating equation (2) with respect to x, we get

dy

dx
 =

dv
v x

dx
+ ... (3)

Substituting the value of 
dy

dx
 from equation (3) in equation (1), we get
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dv
v x

dx
+  = g (v)

or
dv

x
dx

 = g (v) – v ... (4)

Separating the variables in equation (4), we get

( )

dv

g v v−
 =

dx

x
... (5)

Integrating both sides of equation (5), we get

( )

dv

g v v−∫  =
1

Cdx
x

+∫ ... (6)

Equation (6) gives general solution (primitive) of the differential equation (1) when

we replace v by 
y

x
.

ANote  If the homogeneous differential equation is in the form F( , )
dx

x y
dy

=

where, F (x, y) is homogenous function of  degree zero, then we make substitution

x
v

y
=  i.e., x = vy and we proceed further to find the general solution as discussed

above by writing F( , ) .
dx x

x y h
dy y

 = =  
 

Example 10  Show that the differential equation (x – y) 
dy

dx
 = x + 2y is homogeneous

and solve it.

Solution The given differential equation can be expressed as

dy

dx
 =

2x y

x y

+
−

... (1)

Let F (x, y) =
2x y

x y

+
−

Now F(λx, λy) =
0( 2 )

( , )
( )

x y
f x y

x y

λ +
= λ ⋅

λ −
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Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential

equation is a homogenous differential equation.

Alternatively,

2
1

1

y

dy x
ydx

x

 + 
=  
 −
 

 =
y

g
x

 
 
 

... (2)

R.H.S. of differential equation (2) is of the form g
y

x







 and so it is a homogeneous

function of degree zero. Therefore, equation (1) is a homogeneous differential equation.

To solve it we make the substitution

y = vx ... (3)

Differentiating equation (3) with respect to, x we get

dy

dx
 =

dv
v x

dx
+ ... (4)

Substituting the value of y  and 
dy

dx
in equation (1) we get

dv
v x

dx
+  =

1 2

1

v

v

+
−

or
dv

x
dx

 =
1 2

1

v
v

v

+
−

−

or
dv

x
dx

 =

2 1

1

v v

v

+ +
−

or 2

1

1

v
dv

v v

−
+ +

 =
dx

x

−

Integrating both sides of equation (5), we get

 =

or  = – log | x | + C
1
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or

or

or

or (Why?)

Replacing v by 
y

x
, we get

or

or

2
2 1

12

1 2
log 1 3 tan C

2 3

y y y x
x

xx x

−  + + + = +   
  

or
2 2 1

1

2
log ( ) 2 3 tan 2C

3

y x
y xy x

x

− + + + = + 
 

or
2 2 1 2

log ( ) 2 3 tan C
3

− + + + = + 
 

x y
x xy y

x

which is the general solution of the differential equation (1)

Example 11 Show that the differential equation cos cos
y dy y

x y x
x dx x

   = +   
   

 is

homogeneous and solve it.

Solution The given differential equation can be written as

dy

dx
 =

cos

cos

y
y x

x

y
x

x

  + 
 
 
 
 

... (1)
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It is a differential equation of the form F( , )
dy

x y
dx

= .

Here F(x, y) =

cos

cos

y
y x

x

y
x

x

  + 
 
 
 
 

Replacing x by λx and y by λy, we get

F (λx, λy) =
0

[ cos ]

[F( , )]

cos

y
y x

x
x y

y
x

x

 λ + 
  = λ

 λ 
 

Thus, F(x, y) is a homogeneous function of degree zero.

Therefore, the given differential equation is a homogeneous differential equation.

To solve it we make the substitution

y = vx ... (2)

Differentiating equation (2) with respect to x, we get

dy

dx
 =

dv
v x

dx
+ ... (3)

Substituting the value of y and 
dy

dx
 in equation (1), we get

dv
v x

dx
+  =

cos 1

cos

v v

v

+

or
dv

x
dx

 =
cos 1

cos

v v
v

v

+
−

or
dv

x
dx

 =
1

cos v

or cosv dv =
dx

x

Therefore cosv dv∫  =
1

dx
x∫
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or sin v = log | x | + log |C |

or sin v = log | Cx |

Replacing v by 
y

x
, we get

sin
y

x

 
 
 

 = log | Cx |

which is the general solution of the differential equation (1).

Example 12 Show that the differential equation 2 2 0

x x

y yy e dx y x e dy
 
 + − =  is

homogeneous and find its particular solution, given that, x = 0 when y = 1.

Solution The given differential equation can be written as

dx

dy
 =

2

2

x

y

x

y

x e y

y e

−
... (1)

Let F(x, y) =
2

2

x

y

x

y

xe y

ye

−

Then F(λx, λy) =
0

2

[F( , )]

2

x

y

x

y

xe y

x y

ye

 
 λ −
 
  =λ
 
 λ
 
 

Thus, F(x, y) is a homogeneous function of degree zero. Therefore, the given

differential equation is a homogeneous differential equation.

To solve it, we make the substitution

x = vy ... (2)

Differentiating equation (2) with respect to y, we get

dx

dy
 = +

dv
v y

dy
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Substituting the value of and
dx

x
dy

 in equation (1), we get

dv
v y

dy
+  =

2 1

2

v

v

v e

e

−

or
dv

y
dy

 =
2 1

2

v

v

v e
v

e

−
−

or
dv

y
dy

 =
1

2
v

e
−

or 2ev dv =
dy

y

−

or 2
v

e dv⋅∫  =
dy

y
−∫

or 2 ev = – log |y| + C

and replacing v by 
x

y
 , we get

2

x

ye  + log | y | = C ... (3)

Substituting x = 0 and y = 1 in equation (3), we get

2 e0 + log |1| = C ⇒ C = 2

Substituting the value of C in equation (3), we get

2

x

ye  + log | y | = 2

which is the particular solution of the given differential equation.

Example 13 Show that the family of curves for which the slope of the tangent at any

point (x, y) on it is  
2 2

2

x y

xy

+
, is given by x2 – y2 = cx.

Solution We know that the slope of the tangent at any point on a curve is 
dy

dx
.

Therefore,
dy

dx
 =

2 2

2

x y

xy

+
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or
dy

dx
 =

2

2
1

2

y

x
y

x

+
... (1)

Clearly, (1) is a homogenous differential equation. To solve it we make substitution

y = vx

Differentiating y = vx with respect to x, we get

dy

dx
 =

dv
v x

dx
+

or
dv

v x
dx

+  =

2
1

2

v

v

+

or
dv

x
dx

=

2
1

2

v

v

−

2

2

1

v
dv

v−
 =

dx

x

or
2

2

1

v
dv

v −
 =

dx

x
−

Therefore
2

2

1

v
dv

v −∫  =
1

dx
x

−∫

or log | v2 – 1 | = – log | x | + log | C
1
|

or log | (v2 – 1) (x) | = log |C
1
|

or (v2 – 1) x = ± C
1

Replacing v by 
y

x
 , we get

2

2
1

y
x

x

 
− 

 
 = ± C

1

or (y2 – x2) = ± C
1
 x or x2 – y2 = Cx
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EXERCISE 9.4

In each of the Exercises 1 to 10, show that the given differential equation is homogeneous

and solve each of them.

1. (x2 + xy) dy = (x2 + y2) dx 2.
x y

y
x

+′ =

3. (x – y) dy – (x + y) dx = 0 4. (x2 – y2) dx + 2xy dy = 0

5.
2 2 2

2
dy

x x y xy
dx

= − + 6. x dy – y dx = 2 2x y dx+

7. cos sin sin cos
y y y y

x y y dx y x x dy
x x x x

          + = −          
          

8. sin 0
dy y

x y x
dx x

 − + = 
 

9. log 2 0
y

y dx x dy x dy
x

 + − = 
 

10.

For each of the differential equations in Exercises from 11 to 15, find the particular

solution satisfying the given condition:

11. (x + y) dy + (x – y) dx = 0; y = 1 when x = 1

12. x2 dy + (xy + y2) dx = 0; y = 1 when x = 1

13.  when x = 1

14. cosec 0
dy y y

dx x x

 − + = 
 

;  y = 0 when x = 1

15.
2 2

2 2 0
dy

xy y x
dx

+ − = ;  y = 2 when x = 1

16. A homogeneous differential equation of the from 
dx x

h
dy y

 =  
 

 can be solved by

making the substitution.

(A) y = vx (B) v = yx (C) x = vy (D) x = v
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17. Which of the following is a homogeneous differential equation?

(A) (4x + 6y + 5) dy – (3y + 2x + 4) dx = 0

(B) (xy) dx – (x3 + y3) dy = 0

(C) (x3 + 2y2) dx + 2xy dy = 0

(D) y2 dx + (x2 – xy – y2) dy = 0

9.4.3  Linear differential equations

A differential equation of the from

P
dy

y
dx

+  = Q

where, P and Q are constants or functions of x only, is known as a first order linear

differential equation. Some examples of the first order linear differential equation are

dy
y

dx
+  = sin x

1dy
y

dx x

 +  
 

 = ex

log

dy y

dx x x

 +  
 

 =
1

x

Another form of first order linear differential equation is

1P
dx

x
dy

+  = Q
1

where, P
1
 and Q

1
 are constants or functions of y only. Some examples of this type of

differential equation are

dx
x

dy
+ = cos y

2dx x

dy y

−
+  = y2e – y

To solve the first order linear differential equation of the type

P
dy

y
dx

+  = Q ... (1)

Multiply both sides of the equation by a function of x say g (x) to get

g (x) 
dy

dx
 + P. (g (x)) y = Q . g (x) ... (2)
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Choose g (x) in such a way that R.H.S. becomes a derivative of y . g (x).

i.e. g (x) 
dy

dx
 + P. g (x) y =

d

dx
 [y . g (x)]

or g (x) 
dy

dx
 + P. g (x) y = g (x) 

dy

dx
 + y g′ (x)

⇒ P. g (x) = g′ (x)

or P =
( )

( )

g x

g x

′

Integrating both sides with respect to x, we get

Pdx∫  =
( )

( )

g x
dx

g x

′
∫

or P dx⋅∫  = log (g (x))

or g (x) = P dx
e∫

On multiplying the equation (1) by g(x) = 
P dx

e∫ , the L.H.S. becomes the derivative

of some function of x and y. This function g(x) = 
P dx

e∫  is called Integrating Factor

(I.F.)  of the given differential equation.

Substituting the value of g (x) in equation (2), we get

 =

or
d

dx
ye

dxP∫



  =

Integrating both sides with respect to x, we get

 = Q
P

.e dx
dx∫



∫

or y = e e dx
dx dx−∫ ∫



 +∫

P P
Q C. .

which is the general solution of the differential equation.
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Steps involved to solve first order linear differential equation:

(i) Write the given differential equation in the form P Q
dy

y
dx

+ =  where P, Q are

constants or functions of x only.

(ii) Find the Integrating Factor (I.F) = .

(iii) Write the solution of the given differential equation as

y (I.F) =

In case, the first order linear differential equation is in the form 1 1P Q
dx

x
dy

+ = ,

where, P
1
 and Q

1
 are constants or functions of y only. Then I.F = 1P dy

e   and the

solution of the differential equation is given by

x . (I.F) = ( )1Q × I.F Cdy +∫

Example 14 Find the general solution of the differential equation cos
dy

y x
dx

− = .

Solution Given differential equation is of the form

P Q
dy

y
dx

+ = , where P = –1 and Q  =  cos x

Therefore I . F =

Multiplying both sides of equation by I.F, we get

 = e–x cos x

or ( )xdy
ye

dx

− = e–x cos x

On integrating both sides with respect to x, we get

ye– x = cos C
x

e x dx
− +∫ ... (1)

Let I = cos
x

e x dx
−

∫

= cos ( sin ) ( )
1

x
xe

x x e dx
−

− 
− − − 

−  ∫
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= cos sin
x x

x e x e dx
− −− −∫

= cos sin (– ) cos ( )x x xx e x e x e dx− − − − − − − ∫

= cos sin cos
x x x

x e x e x e dx
− − −− + − ∫

or I = – e–x cos x + sin x e–x – I

or 2I = (sin x – cos x) e–x

or I =
(sin cos )

2

x
x x e

−−

Substituting the value of I in equation (1), we get

ye– x =
sin cos

C
2

xx x
e−−  + 

 

or y =
sin cos

C
2

xx x
e

−  + 
 

which is the general solution of the given differential equation.

Example 15  Find the general solution of the differential equation 
2

2 ( 0)
dy

x y x x
dx

+ = ≠ .

Solution The given differential equation is

2
dy

x y
dx

+  = x 2 ... (1)

Dividing both sides of equation (1) by x, we get

2dy
y

dx x
+  = x

which is a linear differential equation of the type P Q
dy

y
dx

+ = , where 
2

P
x

=  and Q = x.

So I.F =
2

dx
xe
∫ = e2 log x = 

2log 2x
e x= log ( )[ ( )]f xas e f x=

Therefore, solution of the given equation is given by

y . x2 =
2

( ) ( ) Cx x dx +∫  = 
3

Cx dx +∫

or y =

2
2C

4

x
x−+

which is the general solution of the given differential equation.
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Example 16 Find the general solution of the differential equation y dx – (x + 2y2) dy = 0.

Solution The given differential equation can be written as

dx x

dy y
−  = 2y

This is a linear differential equation of the type 1 1P Q
dx

x
dy

+ = , where 1

1
P

y
= −  and

Q
1
 = 2y. Therefore 

1

1

log log( ) 1
I.F

dy
y yye e e

y

−−
−∫

= = = =

Hence, the solution of the given differential equation is

1
x

y
  =

1
(2 ) Cy dy

y

  + 
 

∫

or
x

y
 = (2 ) Cdy +∫

or
x

y
 = 2y + C

or x = 2y2 + Cy

which is a general solution of the given differential equation.

Example 17 Find the particular solution of the differential equation

cot +
dy

y x
dx

 = 2x + x2 cot x (x ≠ 0)

given that y = 0 when 
2

x
π

= .

Solution The given equation is a linear differential equation of the type P Q
dy

y
dx

+ = ,

where P = cot x and Q = 2x + x2 cot x. Therefore

I.F = e e x
x dx xcot log sin sin∫ = =

Hence, the solution of the differential equation is given by

y . sin x = ∫ (2x + x2 cot x) sin x dx + C
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or y sin x = ∫ 2x sin x dx + ∫ x2 cos x dx + C

or y sin x =
2 2

22 2
sin cos cos C

2 2

x x
x x dx x x dx
   

− + +   
   ∫ ∫

or y sin x =
2 2 2

sin cos cos Cx x x x dx x x dx− + +∫ ∫
or y sin x = x2 sin x + C ... (1)

Substituting y = 0 and 
2

x
π

=  in equation (1), we get

0 =

2

sin C
2 2

π π    +     

or C =

2

4

− π

Substituting the value of C in equation (1), we get

y sin x =

2
2

sin
4

x x
π

−

or y =

2
2 (sin 0)

4 sin
x x

x

π
− ≠

which is the particular solution of the given differential equation.

Example 18 Find the equation of a curve passing through the point (0, 1). If the slope

of the tangent to the curve at any point (x, y) is equal to the sum of the x coordinate

(abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

Solution We know that the slope of the tangent to the curve is 
dy

dx
.

Therefore,
dy

dx
 = x + xy

or
dy

xy
dx

−  = x ... (1)

This is a linear differential equation of the type P Q
dy

y
dx

+ = , where P = – x and Q = x.

Therefore, I . F =

2

2

x
x dx

e e

−
−∫ =
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Hence, the solution of equation is given by

2

2

x

y e

−

⋅  = ( )2

2( ) C
x

x dxe

−
+∫ ... (2)

Let I =

2

2( )
x

x dxe

−

∫

Let 

2

2

x
t

−
= , then – x dx = dt or x dx = – dt.

      Therefore,       I =

2

2–
x

t t
e dt e e

−

− = − =∫
Substituting the value of I in equation (2), we get

2

2

x

y e

−

 =

2

2 + C
−

−
x

e

or y =

2

21 C

x

e− + ... (3)

Now (3) represents the equation of family of curves. But we are interested in

finding a particular member of the family passing through (0, 1). Substituting x = 0 and

y = 1 in equation (3) we get

1 = – 1 + C . e0   or   C = 2

Substituting the value of C in equation (3), we get

y =

2

21 2

x

e− +
which  is the equation of the required curve.

EXERCISE 9.5

For each of the differential equations given in Exercises 1 to 12, find the general solution:

1. 2 sin
dy

y x
dx

+ = 2.
2

3
xdy

y e
dx

−+ = 3.
2dy y

x
dx x

+ =

4. (sec ) tan 0
2

dy
x y x x

dx

π + = ≤ < 
 

5.
2

cos tan
dy

x y x
dx

+ =  0
2

x
π ≤ < 

 

6.
2

2 log
dy

x y x x
dx

+ = 7.
2

log log
dy

x x y x
dx x

+ =

8. (1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)
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9. cot 0 ( 0)
dy

x y x xy x x
dx

+ − + = ≠ 10. ( ) 1
dy

x y
dx

+ =

11. y dx + (x – y2) dy = 0 12.
2( 3 ) ( 0)

dy
x y y y

dx
+ = > .

For each of the differential equations given in Exercises 13 to 15, find a particular

solution satisfying the given condition:

13. 2 tan sin ; 0 when
3

dy
y x x y x

dx

π
+ = = =

14.
2

2

1
(1 ) 2 ; 0 when 1

1

dy
x xy y x

dx x
+ + = = =

+

15. 3 cot sin 2 ; 2 when
2

dy
y x x y x

dx

π
− = = =

16. Find the equation of a curve passing through the origin given that the slope of the

tangent to the curve at any point (x, y) is equal to the sum of the coordinates of

the point.

17. Find the equation of a curve passing through the point (0, 2) given that the sum of

the coordinates of any point on the curve exceeds the magnitude of the slope of

the tangent to the curve at that point by 5.

18. The Integrating Factor of the differential equation 
2

2
dy

x y x
dx

− =  is

(A) e–x (B) e–y (C)
1

x
(D) x

19. The Integrating Factor of the differential equation

2(1 )
dx

y yx
dy

− +  = ( 1 1)− < <ay y  is

(A) 2

1

1y − (B) 2

1

1y − (C) 2

1

1 y− (D) 2

1

1 y−

Miscellaneous Examples

Example 19 Verify that the function y = c
1
 eax cos bx + c

2
 eax sin bx, where c

1
, c

2
 are

arbitrary constants is a solution of the differential equation

( )
2

2 2

2
2 0

d y dy
a a b y

dxdx
− + + =
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Solution The given function is

y = eax [c
1
 cosbx + c

2
 sinbx] ... (1)

Differentiating both sides of equation (1) with respect to x, we get

dy

dx
 = [ ] [ ]1 2 1 2– sin cos cos sinax axe bc bx bc bx c bx c bx e a+ + + ⋅

or
dy

dx
 =

2 1 2 1[( )cos ( )sin ]axe bc ac bx a c bc bx+ + − ... (2)

Differentiating both sides of equation (2) with respect to x, we get

2

2

d y

dx
 = 2 1 2 1[( ) ( sin ) ( ) ( cos )]axe bc a c b bx ac bc b bx+ − + −

+ 
2 1 2 1[( ) cos ( ) sin ] .axbc ac bx ac bc bx e a+ + −

= 2 2 2 2
2 1 2 1 2 1[( 2 ) sin ( 2 ) cos ]axe a c abc b c bx a c abc b c bx− − + + −

Substituting the values of 

2

2
,

d y dy

dxdx
 and y in the given differential equation, we get

L.H.S.  = 2 2 2 2
2 1 2 1 2 1[ 2 )sin ( 2 )cos ]axe a c abc b c bx a c abc b c bx− − + + −

2 1 2 12 [( )cos ( )sin ]axae bc ac bx ac bc bx− + + −

2 2
1 2( ) [ cos sin ]axa b e c bx c bx+ + +

=
( )2 2 2 2 2

2 1 2 2 1 2 2

2 2 2 2 2
1 2 1 2 1 1 1

2 2 2 sin

( 2 2 2 )cos

ax
a c abc b c a c abc a c b c bx

e

a c abc b c abc a c a c b c bx

 − − − + + +
 
 + + − − − + + 

= [0 sin 0cos ]axe bx bx× + = eax × 0 = 0  = R.H.S.

Hence, the given function is a solution of the given differential equation.

Example 20 Find the particular solution of the differential equation log 3 4
dy

x y
dx

  = + 
 

given that y = 0 when x = 0.

Solution The given differential equation can be written as

dy

dx
 = e(3x + 4y)
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or
dy

dx
 = e3x . e4y ... (1)

Separating the variables, we get

4 y

dy

e
= e3x dx

Therefore
4 y

e dy
−

∫ =
3x

e dx∫

or

4

4

ye−

−  =

3

C
3

xe
+

or 4 e3x + 3 e– 4y + 12 C = 0 ... (2)

Substituting x = 0 and y = 0 in (2), we get

4 + 3 + 12 C = 0 or C = 
7

12

−

Substituting the value of C in equation (2), we get

4 e3x + 3 e– 4y – 7 = 0,

which is a particular solution of the given differential equation.

Example 21 Solve the differential equation

(x dy – y dx) y sin 
y

x

 
 
 

 = (y dx + x dy) x cos 
y

x

 
 
 

.

Solution The given differential equation can be written as

2 2sin cos cos sin
y y y y

x y x dy xy y dx
x x x x

          − = +                    

or
dy

dx
 =

2

2

cos sin

sin cos

y y
xy y

x x

y y
xy x

x x

   +   
   
   −   
   

Dividing numerator and denominator on RHS by x2, we get

dy

dx
 =

2

2
cos sin

sin cos

y y y y

x x xx

y y y

x x x

    +    
    
   −   
   

... (1)
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Clearly, equation (1) is a homogeneous differential equation of the form 
dy y

g
dx x

 =  
 

.

To solve it, we make the substitution

y = vx ... (2)

or
dy

dx
 =

dv
v x

dx
+

or
dv

v x
dx

+  =

2
cos sin

sin cos

v v v v

v v v

+
− (using (1) and (2))

or
dv

x
dx

 =
2 cos

sin cos

v v

v v v−

or
sin cos

cos

v v v
dv

v v

− 
 
 

 =
2 dx

x

Therefore
sin cos

cos

v v v
dv

v v

− 
 
 ∫  =

1
2 dx

x∫

or
1

tan v dv dv
v

−∫ ∫  =
1

2 dx
x∫

or log sec log | |v v−  = 12log | | log | C |x +

or 2

sec
log

v

v x
 = log | C

1
|

or 2

secv

v x
 = ± C

1
... (3)

Replacing v by 
y

x
 in equation (3), we get

2

sec

( )

y

x

y
x

x

 
 
 

 
 
 

 = C where, C = ± C
1

or sec
y

x

 
 
 

 = C xy

which is the general solution of the given differential equation.
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Example 22 Solve the differential equation

(tan–1y  – x) dy = (1 + y2) dx.

Solution The given differential equation can be written as

2
1

dx x

dy y
+

+
 =

1

2

tan

1

y

y

−

+
... (1)

Now (1) is a linear differential equation of the form 1P
dx

dy
+  x = Q

1
,

where, P
1
 = 2

1

1 y+
 and 

1

1 2

tan
Q

1

y

y

−

=
+

.

Therefore, I .F = 12

1

tan1
dy

yye e
−+∫ =

Thus, the solution of the given differential equation is

1tan y
xe

−
 =

1
1

tan

2

tan
C

1

yy
e dy

y

−
− 

+ 
+ 

∫ ... (2)

Let I =
1

1
tan

2

tan

1

yy
e dy

y

−
− 

 
+ 

∫

Substituting tan–1 y = t so that 
2

1

1
dy dt

y

  = + 
, we get

I =
t

t e dt∫ = t et – ∫1 . et dt = t et – et = et (t – 1)

or I =
1tan y

e
−

(tan–1y –1)

Substituting the value of I in equation (2), we get

1 1tan tan 1
. (tan 1) C

y y
x e e y

− − −= − +

or x =
11 tan

(tan 1) C
y

y e
−− −− +

which is the general solution of the given differential equation.

Miscellaneous Exercise on Chapter 9

1. For each of the differential equations given below, indicate its order and degree

(if defined).
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(i)

22

2
5 6 log

d y dy
x y x

dxdx

 + − = 
 

         (ii)  

3 2

4 7 sin
dy dy

y x
dx dx

   − + =   
   

(iii)

4 3

4 3
sin 0

d y d y

dx dx

 
− = 

 

2. For each of the exercises given below, verify that the given function (implicit or

explicit) is a solution of the corresponding differential equation.

(i) xy = a ex + b e–x + x2 :

2
2

2
2 2 0

d y dy
x xy x

dxdx
+ − + − =

(ii) y = ex (a cos x + b sin x) :

2

2
2 2 0

d y dy
y

dxdx
− + =

(iii) y = x sin 3x :

2

2
9 6cos3 0

d y
y x

dx
+ − =

(iv) x2 = 2y2 log y :
2 2

( ) 0
dy

x y xy
dx

+ − =

3. Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation

(x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.

4. Find the general solution of the differential equation 

2

2

1
0

1

dy y

dx x

−
+ =

−
.

5. Show that the general solution of the differential equation 

2

2

1
0

1

dy y y

dx x x

+ +
+ =

+ +
 is

given by (x + y + 1) = A (1 – x – y – 2xy), where A is parameter.

6. Find the equation of the curve passing through the point 0,
4

π 
 
 

 whose differential

equation is sin x cos y dx + cos x sin y dy = 0.

7. Find the particular solution of the differential equation

(1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.

8. Solve the differential equation 2
( 0)

x x

y yy e dx x e y dy y
 
 = + ≠  .
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9. Find a particular solution of the differential equation  (x – y) (dx + dy) = dx – dy,

given that y = –1, when x = 0. (Hint: put x – y = t)

10. Solve the differential equation 
2

1( 0)
x

e y dx
x

dyx x

− 
− = ≠ 

 
.

11. Find a particular solution of the differential equation cot
dy

y x
dx

+  = 4x cosec x

(x ≠ 0), given that y = 0 when 
2

x
π

= .

12. Find a particular solution of the differential equation (x + 1) 
dy

dx
 = 2 e–y – 1,  given

that y = 0 when x = 0.

13. The general solution of the differential equation 0
y dx x dy

y

−
=  is

(A) xy = C (B) x = Cy2 (C) y = Cx (D) y = Cx2

14. The general solution of a differential equation of the type 1 1P Q
dx

x
dy

+ =  is

(A) ( )1 1P P

1Q C
dy dy

y e e dy∫ ∫= +∫

(B) ( )1 1P P

1. Q C
dx dx

y e e dx∫ ∫= +∫

(C) ( )1 1P P

1Q C
dy dy

x e e dy∫ ∫= +∫

(D) ( )1 1P P

1Q C
dx dx

x e e dx∫ ∫= +∫

15. The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is

(A) x ey + x2 = C (B) x ey + y2 = C

(C) y ex + x2 = C (D) y ey + x2 = C
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Summary

® An equation involving derivatives of the dependent variable with respect to

independent variable (variables) is known as a differential equation.

® Order of a differential equation is the order of the highest order derivative

occurring in the differential equation.

® Degree of a differential equation is defined if it is a polynomial equation in its

derivatives.

® Degree (when defined) of a differential equation is the highest power (positive

integer only) of the highest order derivative in it.

® A function which satisfies the given differential equation is called its solution.

The solution which contains as many arbitrary constants as the order of the

differential equation is called a general solution and the solution free from

arbitrary constants is called particular solution.

® Variable separable method is used to solve such an equation in which variables

can be separated completely i.e. terms containing y should remain with dy

and terms containing x should remain with dx.

® A differential equation which can be expressed in the form

( , ) or ( , )
dy dx

f x y g x y
dx dy

= = where, f (x, y) and g(x, y) are homogenous

functions of degree zero is called a homogeneous differential equation.

® A differential equation of the form +P Q
dy

y
dx

= , where P and Q are  constants

or functions of x only  is called a first order linear differential equation.

Historical Note

One of the principal languages of Science is that of differential equations.

Interestingly, the date of birth of differential equations is taken to be November,

11,1675, when Gottfried Wilthelm Freiherr Leibnitz (1646 - 1716) first put in black

and white the identity 21

2
y dy y=∫ , thereby introducing both the symbols ∫ and dy.

Leibnitz was actually interested in the problem of finding a curve whose tangents

were prescribed. This led him to discover the ‘method of separation of variables’

1691. A year later he formulated the ‘method of solving the homogeneous
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—vvvvv—

differential equations of the first order’. He went further in a very short time

to the discovery of the ‘method of solving a linear differential equation of the

first-order’. How surprising is it that all these methods came from a single man

and that too within 25 years of the birth of differential equations!

In the old days, what we now call the ‘solution’ of a differential equation, was

used to be referred to as ‘integral’ of the differential equation, the word being

coined by James Bernoulli (1654 - 1705) in 1690. The word ‘solution was first

used by Joseph Louis Lagrange (1736 - 1813) in 1774, which was almost hundred

years since the birth of differential equations. It was Jules Henri Poincare

(1854 - 1912) who strongly advocated the use of the word ‘solution’ and thus the

word ‘solution’ has found its deserved place in modern terminology. The name of

the ‘method of separation of variables’ is due to John Bernoulli (1667 - 1748),

a younger brother of James Bernoulli.

Application to geometric problems were also considered. It was again John

Bernoulli who first brought into light the intricate nature of differential equations.

In a letter to Leibnitz, dated May 20, 1715, he revealed the solutions of the

differential equation

x2 y″ = 2y,

which led to three types of curves, viz., parabolas, hyperbolas and a class of

cubic curves. This shows how varied the solutions of such innocent looking

differential equation can be. From the second half of the twentieth century attention

has been drawn to the investigation of this complicated nature of the solutions of

differential equations, under the heading ‘qualitative analysis of differential

equations’. Now-a-days, this has acquired prime importance being absolutely

necessary in almost all investigations.
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v In most sciences one generation tears down what another has built and what

one has established another undoes. In Mathematics alone each generation

builds a new story to the old structure. – HERMAN HANKEL v

10.1  Introduction

In our day to day life, we come across many queries such

as – What is your height? How should a football player hit

the ball to give a pass to another player of his team? Observe

that a possible answer to the first query may be 1.6 meters,

a quantity that involves only one value (magnitude) which

is a real number. Such quantities are called scalars.

However, an answer to the second query is a quantity (called

force) which involves muscular strength (magnitude) and

direction (in which another player is positioned). Such

quantities are called vectors. In mathematics, physics and

engineering, we frequently come across with both types of

quantities, namely, scalar quantities such as length, mass,

time, distance, speed, area, volume, temperature, work,

money, voltage, density, resistance etc. and vector quantities like displacement, velocity,

acceleration,  force, weight, momentum, electric field intensity etc.

In this chapter, we will study some of the basic concepts about vectors, various

operations on vectors, and their algebraic and geometric properties. These two type of

properties, when considered together give a full realisation to the concept of vectors,

and lead to their vital applicability in various areas as mentioned above.

10.2  Some Basic Concepts

Let ‘l’ be any straight line in plane or three dimensional space. This line can be given

two directions by means of arrowheads. A line with one of these directions prescribed

is called a directed line (Fig 10.1 (i), (ii)).

Chapter 10

VECTOR ALGEBRA

W.R. Hamilton

(1805-1865)
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Now observe that if we restrict the line l to the line segment AB, then a magnitude

is prescribed on the line l with one of the two directions, so that we obtain a directed

line segment (Fig 10.1(iii)). Thus, a directed line segment has magnitude as well as

direction.

Definition 1 A quantity that has magnitude as well as direction is called a vector.

Notice that a directed line segment is a vector (Fig 10.1(iii)), denoted as  or

simply as , and read as ‘vector ’ or ‘vector ’.

The point A from where the vector  starts is called its initial point, and the

point B where it ends is called its terminal point. The distance between initial and

terminal points of a vector is called the magnitude (or length) of the vector, denoted as

| |, or | |, or a. The arrow indicates the direction of the vector.

ANote   Since the length is never negative, the notation | | < 0 has no meaning.

Position Vector

From Class XI, recall the three dimensional right handed rectangular coordinate system

(Fig 10.2(i)). Consider a point P in space, having coordinates (x, y, z) with respect to

the origin O(0, 0, 0). Then, the vector  having O and P as its initial and terminal

points, respectively, is called the position vector of the point P with respect

to O. Using distance formula (from Class XI), the magnitude of  (or ) is given by

| |= 2 2 2
x y z+ +

In practice, the position vectors of points A, B, C, etc., with respect to the origin O

are denoted by , , , etc., respectively (Fig 10.2 (ii)).

Fig 10.1
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A

O

P

a
90°

X

Y

Z

X

A

O
B

P( )x,y,z

C

a
b

g

P( )x,y,z

r

x

y

z

Direction Cosines

Consider the position vector  of a point P(x, y, z) as in Fig 10.3. The angles α,
β, γ made by the vector  with the positive directions of x, y and z-axes respectively,

are called its direction angles. The cosine values of these angles, i.e., cos α, cosβ and

cos γ are called direction cosines of the vector , and usually denoted by l, m and n,

respectively.

Fig 10.3

From  Fig 10.3, one may note that the triangle OAP is right angled, and in it, we

have . Similarly, from the right angled triangles OBP and

OCP, we may write cos  and cos
y z

r r
β = γ = . Thus, the coordinates of the point P may

also be expressed as (lr, mr,nr).  The numbers lr, mr and nr, proportional to the direction

cosines are called as direction ratios of vector , and denoted as a, b and c, respectively.

Fig 10.2
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ANote   One may note that l2 + m2 + n2 = 1 but a2 + b2 + c2 ≠ 1, in general.

10.3  Types of Vectors

Zero Vector A vector whose initial and terminal points coincide, is called a zero vector

(or null vector), and denoted as . Zero vector can not be assigned a definite direction

as it has zero magnitude. Or, alternatively otherwise, it may be regarded as having any

direction. The vectors  represent the zero vector,

Unit Vector A vector whose magnitude is unity (i.e., 1 unit) is called a unit vector. The

unit vector in the direction of a given vector  is denoted by â .

Coinitial Vectors Two or more vectors having the same initial point are called coinitial

vectors.

Collinear Vectors Two or more vectors are said to be collinear if they are parallel to

the same line, irrespective of their magnitudes and directions.

Equal Vectors Two vectors  are said to be equal, if they have the same

magnitude and direction regardless of the positions of their initial points, and written

as .

Negative of a Vector A vector whose magnitude is the same as that of a given vector

(say, ), but direction is opposite to that of it, is called negative of the given vector.

For example, vector  is negative of the vector , and written as  = – .

Remark The vectors defined above are such that any of them may be subject to its

parallel displacement without changing its magnitude and direction. Such vectors are

called free vectors. Throughout this chapter, we will be dealing with free vectors only.

Example 1 Represent graphically a displacement

of 40 km, 30° west of south.

Solution The vector  represents the required

displacement (Fig 10.4).

Example 2 Classify the following measures as

scalars and vectors.

(i) 5 seconds

(ii) 1000 cm3

Fig 10.4
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Fig 10.5

(iii) 10 Newton (iv) 30 km/hr (v) 10 g/cm3

(vi) 20 m/s towards north

Solution

(i) Time-scalar (ii) Volume-scalar (iii) Force-vector

(iv) Speed-scalar (v) Density-scalar (vi) Velocity-vector

Example 3 In Fig 10.5, which of the vectors are:

(i) Collinear (ii) Equal (iii) Coinitial

Solution

(i) Collinear vectors : .

(ii) Equal vectors : 

(iii) Coinitial vectors : 

EXERCISE 10.1

1. Represent graphically a displacement of 40 km, 30° east of north.

2. Classify the following measures as scalars and vectors.

(i) 10 kg (ii) 2 meters north-west (iii) 40°

(iv) 40 watt (v) 10–19 coulomb (vi) 20 m/s2

3. Classify the following as scalar and vector quantities.

(i) time period (ii) distance (iii) force

(iv) velocity (v) work done

4. In Fig 10.6 (a square),  identify the following vectors.

(i) Coinitial (ii) Equal

(iii) Collinear but not equal

5. Answer the following as true or false.

(i)  and –  are collinear.

(ii) Two collinear vectors are always equal in

magnitude.

(iii) Two vectors having same magnitude are collinear.

(iv) Two collinear vectors having the same magnitude are equal.

Fig 10.6
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10.4  Addition of Vectors

A vector  simply means the displacement from a point

A to the point B. Now consider a situation that a girl

moves from A to B and then from B to C

(Fig 10.7). The net displacement made by the girl from

point A to the point C, is given by the vector  and

expressed as

 = 

This is known as the triangle law of vector addition.

In general, if we have two vectors  and  (Fig 10.8 (i)), then to add them, they are

positioned so that the initial point of one coincides with the terminal point of the other

(Fig 10.8(ii)).

Fig 10.7

a

b

a

b

(i) (iii)

A

C

a

b

(ii)

a
b+

A

C

B B

a
b

–

–b

C’

Fig 10.8

For example, in Fig 10.8 (ii), we have shifted vector  without changing its magnitude

and direction, so that it’s initial point coincides with the terminal point of . Then, the

vector  + , represented by the third side AC of the triangle ABC, gives us the sum (or

resultant) of the vectors  and  i.e., in triangle ABC (Fig 10.8 (ii)), we have

 =

Now again, since , from the above equation, we have

This means that when the sides of a triangle are taken in order, it leads to zero

resultant as the initial and terminal points get coincided (Fig 10.8(iii)).
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Now, construct a vector  so that its magnitude is same as the vector , but the

direction opposite to that of it (Fig 10.8 (iii)), i.e.,

 =

Then, on applying triangle law from the Fig 10.8 (iii), we have

 =  

The vector  is said to represent the difference of .

Now, consider a boat in a river going from one bank of the river to the other in a

direction perpendicular to the flow of the river. Then, it is acted upon by two velocity

vectors–one is the velocity imparted to the boat by its engine and other one is the

velocity of the flow of river water. Under the simultaneous influence of these two

velocities, the boat in actual starts travelling with a different velocity. To have a precise

idea about the effective speed and direction

(i.e., the resultant velocity) of the boat, we have

the following law of vector addition.

If we have two vectors  represented

by the two adjacent sides of a parallelogram

in magnitude and direction (Fig 10.9), then their

sum  is represented in magnitude and

direction by the diagonal of the parallelogram

through their common point. This is known as

the parallelogram law of vector addition.

ANote    From Fig 10.9, using the triangle law, one may note that

 =

or  =                                   (since  )

which is parallelogram law. Thus, we may say that the two laws of vector

addition are equivalent to each other.

Properties of vector addition

Property 1 For any two vectors ,

 = (Commutative property)

Fig 10.9
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Proof Consider the parallelogram ABCD

(Fig 10.10). Let  then using

the triangle law, from triangle ABC, we have

Now, since the opposite sides of a

parallelogram are equal and parallel, from

Fig 10.10, we have,  and

. Again using triangle law, from

triangle ADC, we have

Hence  =

Property 2 For any three vectors , anda b c
   

 = (Associative property)

Proof Let the vectors  be represented by , respectively, as

shown in Fig 10.11(i) and (ii).

Fig 10.11

Then  =

and  =

So  =

Fig 10.10
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a a1
2

1
2

a
–
2

a

a
2

and  =

Hence  =

Remark The associative property of vector addition enables us to write the sum of

three vectors  without using brackets.

Note that for any vector a
 

, we have

 =

Here, the zero vector  is called the additive identity for the vector addition.

10.5  Multiplication of a Vector by a Scalar

Let  be a given vector and λ a scalar. Then the product of the vector  by the scalar

λ, denoted as λ , is called the multiplication of vector  by the scalar λ. Note that, λ
is also a vector, collinear to the vector . The vector λ  has the direction same (or

opposite) to that of vector  according as the value of λ is positive (or negative). Also,

the magnitude of vector λ  is |λ | times the magnitude of the vector , i.e.,

|λ | = | λ | | |

A geometric visualisation of multiplication of a vector by a scalar is given

in Fig 10.12.

Fig 10.12

When λ = –1, then λ = – , which is a vector having magnitude equal to the

magnitude of  and direction opposite to that of the direction of . The vector –  is

called the negative (or additive inverse) of vector  and we always have

 + (– ) = (– ) +  = 

Also, if 
1

=
| |a

λ  , provided  ≠ 0 i.e.  is not a null vector, then

| λ | = |λ | | | = 
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So, λ  represents the unit vector in the direction of . We write it as

â  =
1

| |

r
r a
a

ANote  For any scalar k, 0 = 0.
r r
k

10.5.1  Components of a vector

Let us take the points A(1, 0, 0), B(0, 1, 0) and C(0, 0, 1) on the x-axis, y-axis and

z-axis, respectively. Then, clearly

| | = 1, |  | = 1 and | | = 1

The vectors , each having magnitude 1,

are called unit vectors along the axes OX, OY and OZ,

respectively, and denoted by ˆˆ ˆ,    and  i j k , respectively

(Fig 10.13).

Now, consider the position vector  of a point P (x, y, z)

as in Fig 10.14. Let P
1
 be the foot of the perpendicular from P on the plane XOY.

We, thus, see that P
1 
P is parallel to z-axis. As ˆˆ ˆ,  and i j k  are the unit vectors along the

x, y and z-axes, respectively, and by the definition of the coordinates of P, we have

. Similarly,  and .

Fig 10.13

Fig 10.14
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Therefore, it follows that  =

and  =

Hence, the position vector of P with reference to O is given by

 =

This form of any vector is called its component form. Here, x, y and z are called

as the scalar components of , and ˆˆ ˆ,   andxi yj zk  are called the vector components

of  along the respective axes. Sometimes x, y and z are also termed as rectangular

components.

The length of any vector  = ˆˆ ˆr xi yj zk= + + 
, is readily determined by applying the

Pythagoras theorem twice. We note that in the right angle triangle OQP
1
 (Fig 10.14)

 = ,

and in the right angle triangle OP
1
P, we have

 =

Hence, the length of any vector   = ˆˆ ˆ +r xi yj zk= + 
 is given by

|  |  =

If  are any two vectors given in the component form 1 2 3
ˆˆ ˆ+a i a j a k+  and

1 2 3
ˆˆ ˆb i b j b k+ + , respectively, then

(i) the sum (or resultant) of the vectors  is given by

 = 1 1 2 2 3 3
ˆˆ ˆ( ) ( ) ( )a b i a b j a b k+ + + + +

(ii) the difference of the vector  is given by

 = 1 1 2 2 3 3
ˆˆ ˆ( ) ( ) ( )a b i a b j a b k− + − + −

(iii) the vectors  are equal if and only if

a
1
 = b

1
, a

2
 = b

2
   and   a

3
 = b

3

(iv) the multiplication of vector  by any scalar λ is given by

λ  =
1 2 3

ˆˆ ˆ( ) ( ) ( )a i a j a kλ + λ + λ
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The addition of vectors and the multiplication of a vector by a scalar together give

the following distributive laws:

Let  be any two vectors, and k and m be any scalars. Then

(i)

(ii)

(iii)

Remarks

(i) One may observe that whatever be the value of λ, the vector λ  is always

collinear to the vector . In fact, two vectors  are collinear if and only if

there exists a nonzero scalar λ such that . If the vectors  are given

in the component form, i.e.  = 1 2 3
ˆˆ ˆa a i a j a k= + + 

 and , then the

two vectors are collinear if and only if

1 2 3
ˆˆ ˆb i b j b k+ +  = 1 2 3

ˆˆ ˆ( )a i a j a kλ + +

⇔ 1 2 3
ˆˆ ˆb i b j b k+ +  = 1 2 3

ˆˆ ˆ( ) ( ) ( )a i a j a kλ + λ + λ

⇔ 1 1b a= λ , 2 2 3 3,b a b a= λ = λ

⇔ 1

1

b

a
 = 32

2 3

bb

a a
= = λ

(ii) If  = 1 2 3
ˆˆ ˆa a i a j a k= + + 
, then a

1
, a

2
, a

3
 are also called direction ratios of .

(iii) In case if it is given that  l, m, n are direction cosines of a vector, then ˆˆ ˆli mj nk+ +

= ˆˆ ˆ(cos ) (cos ) (cos )i j kα + β + γ  is the unit vector in the direction of that vector,

where α, β and γ are the angles which the vector makes with x, y and z axes

respectively.

Example 4 Find the values of x, y and z so that the vectors  and

 are equal.

Solution Note that two vectors are equal if and only if their corresponding components

are equal. Thus, the given vectors  will be equal if and only if

x = 2, y = 2, z = 1
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Example 5 Let  and . Is ? Are the vectors  equal?

Solution We have  and 

So, . But, the two vectors are not equal since their corresponding components

are distinct.

Example 6 Find unit vector in the direction of vector 

Solution The unit vector in the direction of a vector  is given by .

Now  = 2 2 2
2 3 1 14+ + =

Therefore
1 ˆˆ ˆˆ (2 3 )
14

a i j k= + +  =
2 3 1 ˆˆ ˆ
14 14 14

i j k+ +

Example 7 Find a vector in the direction of vector  that has magnitude

7 units.

Solution The unit vector in the direction of the given vector  is

 =
1 1 2ˆ ˆ ˆ ˆ( 2 )
5 5 5

i j i j− = −

Therefore, the vector having magnitude equal to 7 and in the direction of  is

7a
∧

 =
1 2

7
5 5

i j
∧ ∧ − 

 
 = 

7 14ˆ ˆ
5 5

i j−

Example 8 Find the unit vector in the direction of the sum of the vectors, 

and .

Solution The sum of the given vectors is

and  = 2 2 2
4 3 ( 2) 29+ + − =
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Thus, the required unit vector is

 
1 4 3 2ˆ ˆˆ ˆ ˆ ˆ(4 3 2 )
29 29 29 29

i j k i j k= + − = + −

Example 9  Write the direction ratio’s of the vector  and hence calculate

its direction cosines.

Solution Note that the direction ratio’s a, b, c of a vector  are just

the respective components x, y and z of the vector. So, for the given vector, we have

a = 1, b = 1 and c = –2. Further, if l, m and n are the direction cosines of the given

vector, then

Thus, the direction cosines are 
1 1 2

, , –
6 6 6

 
 
 

.

10.5.2  Vector joining two points

If P
1
(x

1
, y

1
, z

1
) and P

2
(x

2
, y

2
, z

2
) are any two

points, then the vector joining P
1
 and P

2
 is the

vector  (Fig 10.15).

Joining the points P
1
 and P

2
 with the origin

O, and applying triangle law, from the triangle

OP
1
P

2
, we have

 =

Using the properties of vector addition, the

above equation becomes

 =

i.e.    = 2 2 2 1 1 1
ˆ ˆˆ ˆ ˆ ˆ( ) ( )x i y j z k x i y j z k+ + − + +

=
2 1 2 1 2 1

ˆˆ ˆ( ) ( ) ( )x x i y y j z z k− + − + −

The magnitude of vector  is given by

| | = 2 2 2
2 1 2 1 2 1( ) ( ) ( )x x y y z z− + − + −

Fig 10.15
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Example 10 Find the vector joining the points P(2, 3, 0) and Q(– 1, – 2, – 4) directed

from P to Q.

Solution Since the vector is to be directed from P to Q, clearly P is the initial point

and Q is the terminal point. So, the required vector joining P and Q is the vector ,

given by

 = ˆˆ ˆ( 1 2) ( 2 3) ( 4 0)i j k− − + − − + − −

i.e.  = ˆˆ ˆ3 5 4 .i j k− − −

10.5.3  Section formula

Let P and Q be two points represented by the position vectors , respectively,

with respect to the origin O. Then the line segment

joining the points P and Q may be divided by a third

point, say R, in two ways – internally (Fig 10.16)

and externally (Fig 10.17). Here, we intend to find

the position vector  for the point R with respect

to the origin O. We take the two cases one by one.

Case I When R divides PQ internally (Fig 10.16).

If R divides  such that  = ,

where m and n are positive scalars, we say that the point R divides  internally in the

ratio of m : n. Now  from triangles ORQ and OPR, we have

 =

and  = ,

Therefore, we have  =    (Why?)

or  = (on simplification)

Hence, the position vector of the point R which divides P and Q internally in the

ratio of m : n is given by

 =

Fig 10.16
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Case II When R divides PQ externally (Fig 10.17).

We leave it to the reader as an exercise to verify

that the position vector of the point R which divides

the line segment PQ externally in the ratio

m : n 
PR

i.e.  
QR

  
=  

  

m

n
 is given by

 =

Remark If R is the midpoint of PQ , then m = n. And therefore, from Case I, the

midpoint R of  , will have its position vector as

 =

Example 11 Consider two points P and Q with position vectors  and

. Find the position vector of a point R which divides the line joining P and Q
in the ratio 2:1, (i) internally, and (ii) externally.

Solution

(i) The position vector of the point R dividing the join of P and Q internally in the

ratio 2:1 is

 =

(ii) The position vector of the point R dividing the join of P and Q externally in the

ratio 2:1 is

 =

Example 12 Show that the points ˆ ˆ ˆˆ ˆ ˆ ˆ ˆA(2 ), B( 3 5 ), C(3 4 4 )i j k i j k i j k− + − − − −  are

the vertices of a right angled triangle.

Solution We have

  = ˆˆ ˆ(1 2) ( 3 1) ( 5 1)i j k− + − + + − − ˆˆ ˆ2 6i j k= − − −

   = ˆˆ ˆ(3 1) ( 4 3) ( 4 5)i j k− + − + + − + ˆˆ ˆ2i j k= − +

and  = ˆˆ ˆ(2 3) ( 1 4) (1 4)i j k− + − + + +  ˆˆ ˆ3 5i j k= − + +

Fig 10.17
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Further, note that

 =

Hence, the triangle is a right angled triangle.

EXERCISE 10.2

1. Compute the magnitude of the following vectors:

 = ˆ ˆ ;i j k+ +      = ˆˆ ˆ2 7 3 ;i j k− −       =
1 1 1 ˆˆ ˆ
3 3 3

i j k+ −

2. Write two different vectors having same magnitude.

3. Write two different vectors having same direction.

4. Find the values of x and y so that the vectors ˆ ˆ ˆ ˆ2 3   and  i j xi yj+ +  are equal.

5. Find the scalar and vector components of the vector with initial point (2, 1) and

terminal point (– 5, 7).

6. Find the sum of the vectors  = ˆˆ ˆ2 ,i j k− +   = ˆˆ ˆ2 4 5i j k− + + and   = ˆˆ ˆ6  – 7c i j k= − 
.

7. Find the unit vector in the direction of the vector  = ˆˆ ˆ 2a i j k= + + 
.

8. Find the unit vector in the direction of vector , where P and Q are the points

(1, 2, 3) and (4, 5, 6), respectively.

9. For given vectors,  = ˆˆ ˆ2 2i j k− + and  = ˆˆ ˆi j k− + − , find the unit vector in the

direction of the vector .

10. Find a vector  in the direction of vector ˆˆ ˆ5 2i j k− +  which has magnitude 8 units.

11. Show that the vectors ˆ ˆˆ ˆ ˆ ˆ2 3 4   and 4 6 8i j k i j k− + − + −  are collinear.

12. Find the direction cosines of the vector ˆˆ ˆ2 3i j k+ + .

13. Find the direction cosines of the vector joining the points A (1, 2, –3) and

B (–1, –2, 1), directed from A to B.

14. Show that the vector ˆˆ ˆi j k+ +  is equally inclined to the axes OX, OY and OZ.

15. Find the position vector of a point R which divides the line joining two points  P

and Q whose position vectors are ˆ ˆˆ ˆ ˆ ˆ2   and –i j k i j k+ − + +  respectively, in the

ratio 2 : 1

(i) internally (ii) externally

Reprint 2024-25



VECTOR ALGEBRA 355

16. Find the position vector of the mid point of the vector joining the points  P(2, 3, 4)

and Q(4, 1, –2).

17. Show that the points A, B and C with position vectors,  = ˆˆ ˆ3 4 4 ,i j k− −

 = ˆˆ ˆ2i j k− +  and  = ˆˆ ˆ3 5i j k− − , respectively form the vertices of a right angled

triangle.

18. In triangle ABC (Fig 10.18), which of the following is not true:

(A)

(B)

(C)

(D)

19. If  are two collinear vectors, then which of the following are incorrect:

(A)

(B)

(C) the respective components of  are not proportional

(D) both the vectors  have same direction, but different magnitudes.

10.6  Product of Two Vectors

So far we have studied about addition and subtraction of vectors. An other algebraic

operation which we intend to discuss regarding vectors is their product. We may

recall that product of two numbers is a number, product of two matrices is again a

matrix. But in case of functions, we may multiply them in two ways, namely,

multiplication of two functions pointwise and composition of two functions. Similarly,

multiplication of two vectors is also defined in two ways, namely, scalar (or dot)

product where the result is a scalar, and vector (or cross) product where the

result is a vector. Based upon these two types of products for vectors, they have

found various applications in geometry, mechanics and engineering. In this section,

we will discuss these two types of products.

10.6.1  Scalar (or dot) product of two vectors

Definition 2 The scalar product of two nonzero vectors , denoted by , is

Fig 10.18
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defined as  =

where, θ is the angle between  (Fig 10.19).

If either  then θ is not defined, and in this case, we

define 

Observations

1.  is a real number.

2. Let be two nonzero vectors, then  if and only if are

perpendicular to each other. i.e.

3. If θ = 0, then 

In particular,  as θ in this case is 0.

4. If θ = π, then | | | |⋅ = −

r rr r
a b a b

In particular, , as θ in this case is π.

5. In view of the Observations 2 and 3, for mutually perpendicular unit vectors

ˆˆ ˆ, and ,i j k  we have

ˆ ˆ ˆ ˆi i j j⋅ = ⋅  = ˆ ˆ 1,k k⋅ =

ˆˆ ˆ ˆi j j k⋅ = ⋅  = ˆ ˆ 0k i⋅ =

6. The angle between two nonzero vectors is given by

 or

7. The scalar product is commutative. i.e.

          (Why?)

Two important properties of scalar product

Property 1 (Distributivity of scalar product over addition) Let  be

any three vectors, then

Fig 10.19
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(i)

B

CA

l

B

l
AC

(ii)

A

B

C l

(iv)

lC

B

A

(iii)

θ θ

θ
θ

p p

p p

a

aa

a

(90 <    < 180 )
0 0

θ(0 <    < 90 )
0 0

θ

(270 <    < 360 )
0 0

θ(180 <    < 270 )
0 0

θ

Property 2 Let  be any two vectors, and l be any scalar. Then

If two vectors are given in component form as 1 2 3
ˆˆ ˆa i a j a k+ +  and

1 2 3
ˆˆ ˆb i b j b k+ + , then their scalar product is given as

 = 1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆ( ) ( )a i a j a k b i b j b k+ + ⋅ + +

= 1 1 2 3 2 1 2 3
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( )a i b i b j b k a j b i b j b k⋅ + + + ⋅ + +  + 3 1 2 3

ˆ ˆˆ ˆ( )a k b i b j b k⋅ + +

= 1 1 1 2 1 3 2 1 2 2 2 3
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )a b i i a b i j a b i k a b j i a b j j a b j k⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

 + 3 1 3 2 3 3
ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )a b k i a b k j a b k k⋅ + ⋅ + ⋅ (Using the above Properties 1 and 2)

= a
1
b

1
 + a

2
b

2
 + a

3
b

3
(Using Observation 5)

Thus  =  1 1 2 2 3 3a b a b a b+ +

10.6.2  Projection of a vector on a line

Suppose a vector  makes an angle θ with a given directed line l (say), in the

anticlockwise direction  (Fig 10.20). Then the projection of  on l is a vector 

(say) with magnitude , and the direction of   being the same (or opposite)

to that of the line l, depending upon whether cosθ is positive or negative. The vector 

Fig 10.20
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is called the projection vector, and its magnitude | | is simply called as the projection

of the vector  on the directed line l.

For example, in each of the following figures (Fig 10.20(i) to (iv)), projection vector

of  along the line l is vector .

Observations

1. If p̂  is the unit vector along a line l, then the projection of a vector  on the line

l is given by ˆa p⋅
 

.

2. Projection of a vector  on other vector 
r
b , is given by

ˆ,a b⋅
 

   or   

3. If  θ = 0, then the projection vector of  will be  itself and if θ = π, then the

projection vector of  will be .

4. If =
2

π
θ  or 

3
=

2

π
θ , then the projection vector of  will be zero vector.

Remark If α, β and γ are the direction angles of vector 1 2 3
ˆˆ ˆa i a j a k= + + , then its

direction cosines may be given as

Also, note that  are respectively the projections of

 along OX, OY and OZ. i.e., the scalar components a
1
, a

2
 and a

3
 of the vector , are

precisely the projections of  along x-axis, y-axis and z-axis, respectively. Further, if 

is a unit vector, then it may be expressed in terms of its direction cosines as

ˆˆ ˆcos cos cosi j k= α + β + γ

Example 13 Find the angle between two vectors with magnitudes 1 and 2

respectively and  when   =1.

Solution Given . We have
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Example 14 Find angle ‘θ’ between the vectors .

Solution The angle θ between two vectors is given by

cosθ =

Now  = ˆ ˆˆ ˆ ˆ ˆ( ) ( ) 1 1 1 1i j k i j k+ − ⋅ − + = − − = − .

Therefore, we have   cosθ =
1

3

−

hence the required angle is θ =

Example 15 If , then show that the vectors

 are perpendicular.

Solution We know that two nonzero vectors are perpendicular if their scalar product

is zero.

Here  = ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(5 3 ) ( 3 5 ) 6 2 8i j k i j k i j k− − + + − = + −

and  = ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(5 3 ) ( 3 5 ) 4 4 2i j k i j k i j k− − − + − = − +

So      ( ) . ( ) ˆ ˆˆ ˆ ˆ ˆ(6 2 8 ) (4 4 2 ) 24 8 16 0.i j k i j k= + − ⋅ − + = − − =

Hence  are perpendicular vectors.

Example 16 Find the projection of the vector ˆˆ ˆ2 3 2i j k= + + on the vector

ˆˆ ˆ2i j k= + + .

Solution The projection of vector  on  the vector 
r
b  is given by

 = 
2 2 2

(2 1 3 2 2 1) 10 5
6

36(1) (2) (1)

× + × + ×
= =

+ +

Example 17 Find , if two vectors are such that 

and .

Solution We have

=
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B

C

A

a
b+

a

b

=

=
2 2(2) 2(4) (3)− +

Therefore  = 5

Example 18 If  is a unit vector and , then find .

Solution Since  is a unit vector, . Also,

                          

or  = 8

or                                        

Therefore  = 3 (as magnitude of a vector is non negative).

Example 19 For any two vectors , we always have   (Cauchy-

Schwartz inequality).

Solution The inequality holds trivially when either 0  or  0= =

rr rr
a b . Actually, in such a

situation we have . So, let us assume that .

Then, we have

 = | cos | 1θ ≤

Therefore                             

Example 20 For any two vectors , we always

have (triangle inequality).

Solution The inequality holds trivially in case either

 (How?). So, let . Then,

        

=

=  (scalar product is commutative)

≤ (since | |x x x≤ ∀ ∈ R )

≤ (from Example 19)

=

Fig 10.21
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Hence                                   

Remark If the equality holds in triangle inequality (in the above Example 20), i.e.

 = ,

then  =

showing that the points A, B and C are collinear.

Example 21 Show that the points ˆ ˆˆ ˆ ˆ ˆA( 2 3 5 ),  B( 2 3 )i j k i j k− + + + +  and ˆˆC(7 )i k−
are collinear.

Solution We have

  = ˆ ˆˆ ˆ ˆ ˆ(1 2) (2 3) (3 5) 3 2i j k i j k+ + − + − = − − ,

 = ˆ ˆˆ ˆ ˆ ˆ(7 1) (0 2) ( 1 3) 6 2 4i j k i j k− + − + − − = − − ,

 = ˆ ˆˆ ˆ ˆ ˆ(7 2) (0 3) ( 1 5) 9 3 6i j k i j k+ + − + − − = − −

 =

Therefore                      

Hence the points A, B and C are collinear.

ANote   In Example 21, one may note that although  but the

points A, B and C do not form the vertices of a triangle.

EXERCISE 10.3

1. Find the angle between two vectors with magnitudes 3  and 2 ,

respectively having .

2. Find the angle between the vectors ˆ ˆˆ ˆ ˆ ˆ2 3   and  3 2i j k i j k− + − + and ˆ ˆˆ ˆ ˆ ˆ2 3   and  3 2i j k i j k− + − +

3. Find the projection of the vector ˆ ˆi j−  on the vector ˆ ˆi j+ .

4. Find the projection of the vector ˆˆ ˆ3 7i j k+ +  on the vector ˆˆ ˆ7 8i j k− + .

5. Show that each of the given three vectors is a unit vector:

1 1 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(2 3 6 ),  (3 6 2 ),   (6 2 3 )
7 7 7

i j k i j k i j k+ + − + + −

Also, show that they are mutually perpendicular to each other.
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6. Find , if .

7. Evaluate the product .

8. Find the magnitude of two vectors , having the same magnitude and such

that the angle between them is 60o and their scalar product is 
1

2
.

9. Find , if for a unit vector , .

10. If are such that is

perpendicular to , then find the value of λ.

11. Show that  is perpendicular to , for any two nonzero

vectors .

12. If , then what can be concluded about the vector ?

13. If are unit vectors such that , find the value of

.

14. If either vector . But the converse need not be

true. Justify your answer with an example.

15. If the vertices A, B, C of a triangle ABC are (1, 2, 3), (–1, 0, 0), (0, 1, 2),

respectively, then find ∠ABC. [∠ABC is the angle between the vectors  and

].

16. Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear.

17. Show that the vectors ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 , 3 5 and 3 4 4i j k i j k i j k− + − − − −  form the vertices

of a right angled triangle.

18. If  is a nonzero vector of magnitude ‘a’ and λ a nonzero scalar, then λ  is unit

vector if

(A) λ = 1 (B) λ = – 1 (C) a = |λ | (D) a = 1/| λ |

10.6.3  Vector (or cross) product of two vectors

In Section 10.2, we have discussed on the three dimensional right handed rectangular

coordinate system. In this system, when the positive x-axis is rotated counterclockwise
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into the positive y-axis, a right handed (standard) screw would advance in the direction

of the positive z-axis (Fig 10.22(i)).

In a right handed coordinate system, the thumb of the right hand points in the

direction of the positive z-axis when the fingers are curled in the direction away from

the positive x-axis toward the positive y-axis (Fig 10.22(ii)).

Fig 10.22 (i), (ii)

Definition 3 The vector product of two nonzero vectors , is denoted by 

and defined as

 = ,

where, θ is the angle between , 0 ≤ θ ≤ π  and n̂  is a

unit vector perpendicular to both , such that

 form a right handed system (Fig 10.23). i.e., the

right handed system rotated from moves in the direction

of n̂ .

If either , then θ is not defined and in this case, we define .

Observations

1.  is a vector.

2. Let  be two nonzero vectors. Then  if and only if are

parallel (or collinear) to each other, i.e.,

 =

Fig 10.23
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In particular, and , since in the first situation, θ = 0 and

in the second one, θ = π, making the value of sin θ to be 0.

3. If 
2

π
θ =  then .

4. In view of the Observations 2 and 3, for mutually perpendicular

unit vectors ˆˆ ˆ, andi j k  (Fig 10.24), we have

ˆ ˆi i×  = 

ˆ ˆi j× = ˆ ˆ ˆˆ ˆ ˆ ˆ, ,   k j k i k i j× = × =

5. In terms of vector product, the angle between two vectors may be

given as

sin θ =

6. It is always true that the vector product is not commutative, as  = .

Indeed, , where  form a right handed system,

i.e., θ is traversed from , Fig 10.25 (i). While, , where

 form a right handed system i.e. θ is traversed from ,

Fig 10.25(ii).

Fig 10.25 (i), (ii)

Thus, if we assume to lie in the plane of the paper, then 1
ˆ ˆ and n n  both

will be perpendicular to the plane of the paper. But, n̂  being directed above the

paper while 1n̂  directed below the paper. i.e. 1̂
ˆn n= − .

Fig 10.24
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Hence  =

=

7. In view of the Observations 4 and 6, we have

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ,  and   .j i k k j i i k j× = − × = − × = −

8. If represent the adjacent sides of a triangle then its area is given as

.

By definition of the area of a triangle, we have from

Fig 10.26,

Area of triangle ABC = 
1

AB CD.
2

⋅

But  (as given), and CD =  sin θ.

Thus,  Area of triangle ABC = 

9. If  represent the adjacent sides of a  parallelogram, then its area is given

by .

From Fig 10.27, we have

Area of parallelogram ABCD = AB. DE.

But  (as given), and

.

Thus,

Area of parallelogram ABCD =

We now state two important properties of vector product.

Property 3 (Distributivity of vector product over addition): If 

are any three vectors and λ be a scalar, then

(i)

(ii)

Fig 10.26

 Fig 10.27
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Let  be two vectors given in component form as 1 2 3
ˆˆ ˆa i a j a k+ + and

1 2 3
ˆˆ ˆb i b j b k+ + , respectively. Then their cross product may be given by

 = 1 2 3

1 2 3

ˆˆ ˆi j k

a a a

b b b

Explanation We have

 = 1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆ( ) ( )a i a j a k b i b j b k+ + × + +

= 1 1 1 2 1 3 2 1
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )a b i i a b i j a b i k a b j i× + × + × + ×

+ 2 2 2 3
ˆˆ ˆ ˆ( ) ( )a b j j a b j k× + ×

+  
3 1 3 2 3 3

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )a b k i a b k j a b k k× + × + × (by Property 1)

=
1 2 1 3 2 1

ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( )a b i j a b k i a b i j× − × − ×

+  
2 3 3 1 3 2

ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )a b j k a b k i a b j k× + × − ×
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(as 0  and  ,   and  )i i j j k k i k k i j i i j k j j k× = × = × = × = − × × = − × × = − ×

= 1 2 1 3 2 1 2 3 3 1 3 2
ˆ ˆˆ ˆ ˆ ˆa b k a b j a b k a b i a b j a b i− − + + −

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(as ,   and  )i j k j k i k i j× = × = × =

= 2 3 3 2 1 3 3 1 1 2 2 1
ˆˆ ˆ( ) ( ) ( )a b a b i a b a b j a b a b k− − − + −

= 1 2 3

1 2 3

ˆˆ ˆi j k

a a a

b b b

Example 22 Find 

Solution We have

 =

ˆˆ ˆ

2 1 3

3 5 2

i j k

−

= ˆˆ ˆ( 2 15) ( 4 9) (10 – 3)i j k− − − − − + ˆˆ ˆ17 13 7i j k= − + +

Hence  = 2 2 2( 17) (13) (7) 507− + + =
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Example 23 Find a unit vector perpendicular to each of the vectors  and

where .

Solution We have 

A vector which is perpendicular to both and+ −

r rr r
a b a b  is given by

 =

Now  = 4 16 4 24 2 6+ + = =
Therefore, the required unit vector is

| |

r

r
c

c
 =

1 2 1 ˆˆ ˆ
6 6 6

i j k
−

+ −

ANote   There are two perpendicular directions to any plane. Thus, another unit

vector perpendicular to  will be 
1 2 1 ˆˆ ˆ .
6 6 6

i j k− +  But that will

be a consequence of .

Example 24 Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3)

and C(2, 3, 1) as its vertices.

Solution We have . The area of the given triangle

is .

Now,  =

ˆˆ ˆ

ˆˆ ˆ0 1 2 4 2

1 2 0

i j k

i j k= − + −

Therefore  = 16 4 1 21+ + =

Thus, the required area is 
1

21
2
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Example 25 Find the area of a parallelogram whose adjacent sides are given

by the vectors 

Solution The area of a parallelogram with as its adjacent sides is given

by .

Now  =

ˆˆ ˆ

ˆˆ ˆ3 1 4 5 4

1 1 1

i j k

i j k= + −
−

Therefore  = 25 1 16 42+ + =

and hence, the required area is 42 .

EXERCISE 10.4

1. Find .

2. Find a unit vector perpendicular to each of the vector , where

.

3. If a unit vector  makes angles ˆ ˆwith , with
3 4

i j
π π

 and an acute angle θ with

k̂ , then find θ and hence, the components of .

4. Show that

5. Find λ and µ if .

6. Given that  and . What can you conclude about the vectors

?

7. Let the vectors  be given as 1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆ, ,a i a j a k b i b j b k+ + + +

1 2 3
ˆˆ ˆc i c j c k+ + . Then show that .

8. If either  then . Is the converse true? Justify your

answer with an example.

9. Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
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10. Find the area of the parallelogram whose adjacent sides are determined by the

vectors and .

11. Let the vectors be such that , then  is a unit

vector, if the angle between is

(A) π/6 (B) π/4 (C) π/3 (D) π/2

12. Area of a rectangle having vertices A, B, C and D with position vectors

1 1ˆ ˆˆ ˆ ˆ ˆ– 4 , 4
2 2

i j k i j k+ + + + , 
1 ˆˆ ˆ 4
2

i j k− +  and 
1 ˆˆ ˆ– 4
2

i j k− + , respectively is

(A)
1

2
(B) 1

(C) 2 (D) 4

Miscellaneous Examples

Example 26 Write all the unit vectors in XY-plane.

Solution Let  be a unit vector in XY-plane (Fig 10.28). Then, from the

figure, we have x = cos θ and y = sin θ (since |  | = 1). So, we may write the vector  as

= ˆ ˆcos sini jθ + θ ... (1)

Clearly, |  | = 2 2cos sin 1θ + θ =

Fig 10.28

Also, as θ varies from 0 to 2π, the point P (Fig 10.28) traces the circle x2 + y2 = 1
counterclockwise, and this covers all possible directions. So, (1) gives every unit vector
in the XY-plane.
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Example 27 If ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 2 5 , 3 2 3   and  6+ + + + − − −i j k i j i j k i j k  are the position

vectors of points A, B, C and D respectively, then find the angle between  and .

Deduce that  and  are collinear.

Solution Note that if θ is the angle between AB and CD, then θ is also the angle

between  and .

Now  = Position vector of B – Position vector of A

= ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(2 5 ) ( ) 4i j i j k i j k+ − + + = + −

Therefore | | = 2 2 2(1) (4) ( 1) 3 2+ + − =

Similarly  = ˆˆ ˆ2 8 2   and  |CD | 6 2− − + =

uuur
i j k

Thus cos θ =

=
1( 2) 4( 8) ( 1)(2) 36

1
36(3 2)(6 2)

− + − + − −
= = −

Since 0 ≤ θ ≤ π, it follows that θ = π. This shows that  and  are collinear.

Alternatively,  which implies that  and  are collinear vectors.

Example 28 Let  be three vectors such that  and

each one of them being perpendicular to the sum of the other two, find .

Solution Given 

Now                              

=

+ 

=

= 9 + 16 + 25 = 50

Therefore  = 50 5 2=
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Example 29 Three vectors  satisfy the condition . Evaluate

the quantity .

Solution Since , we have

 = 0

or  = 0

Therefore                                                              ... (1)

Again,  = 0

or                                                                           ... (2)

Similarly  = – 4. ... (3)

Adding (1), (2) and (3), we have

 = – 29

or 2µ = – 29, i.e., µ =
29

2

−

Example 30 If with reference to the right handed system of mutually perpendicular

unit vectors , then express  in the form

is parallel to  is perpendicular to 

Solution Let  is a scalar, i.e., .

Now  = ˆˆ ˆ(2 3 ) (1 ) 3i j k− λ + + λ − .

Now, since 
2β

r
 is to be perpendicular to α

r
, we should have . i.e.,

3(2 3 ) (1 )− λ − + λ  = 0

or λ =
1

2

Therefore
1
 =

3 1ˆ ˆ
2 2

i j−   and 

Reprint 2024-25



 MATHEMATICS372

Miscellaneous Exercise on Chapter 10

1. Write down a unit vector in XY-plane, making an angle of 30° with the positive

direction of x-axis.

2. Find the scalar components and magnitude of the vector joining the points

P(x
1
, y

1
, z

1
) and Q (x

2
, y

2
, z

2
).

3. A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of

north and stops. Determine the girl’s displacement from her initial point of

departure.

4. If , then is it true that  ? Justify your answer.

5. Find the value of x for which ˆˆ ˆ( )x i j k+ +  is a unit vector.

6. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors

.

7. If , find a unit vector parallel

to the vector .

8. Show that the points A (1, – 2, – 8), B(5, 0, –2) and C(11, 3, 7) are collinear, and

find the ratio in which B divides AC.

9. Find the position vector of a point R which divides the line joining two points

P and Q whose position vectors are  externally in the ratio

1 : 2. Also, show that P is the mid point of the line segment RQ.

10. The two adjacent sides of a parallelogram are ˆ ˆˆ ˆ ˆ ˆ2 4 5  and  2 3i j k i j k− + − − .

Find the unit vector parallel to its diagonal. Also, find its area.

11. Show that the direction cosines of a vector equally inclined to the axes OX, OY

and OZ are ±






1

3

1

3

1

3
, , .

12. Let . Find a vector   which

is perpendicular to both  and , and .

13. The scalar product of the vector ˆˆ ˆi j k+ +  with a unit vector along the sum of

vectors ˆˆ ˆ2 4 5i j k+ −  and ˆˆ ˆ2 3i j kλ + +  is equal to one. Find the value of λ.

14. If  are mutually perpendicular vectors of equal magnitudes, show that the

vector  is equally inclined to .
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15. Prove that , if and only if  are perpendicular, given

.

Choose the correct answer in Exercises 16 to 19.

16. If θ is the angle between two vectors , then  only when

(A) 0
2

π
< θ < (B) 0

2

π
≤ θ ≤

(C) 0 < θ < π (D) 0 ≤ θ ≤ π

17. Let  be two unit vectors and θ is the angle between them. Then  is

a unit vector if

(A)
4

π
θ = (B)

3

π
θ = (C)

2

π
θ = (D)

2

3

π
θ =

18. The value of ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ.( ) ( ) ( )i j k j i k k i j× + ⋅ × + ⋅ ×  is

(A) 0 (B) –1 (C) 1 (D) 3

19. If θ is the angle between any two vectors , then when θ
is equal to

(A) 0 (B)
4

π
(C)

2

π
(D) π

Summary

® Position vector of a point P(x, y, z) is given as , and its

magnitude by 2 2 2x y z+ + .

® The scalar components of a vector are its direction ratios, and represent its

projections along the respective axes.

® The magnitude (r), direction ratios (a, b, c) and direction cosines (l, m, n) of

any vector are related as:

, ,
a b c

l m n
r r r

= = =
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® The vector sum of the three sides of a triangle taken in order is .

® The vector sum of two coinitial vectors is given by the diagonal of the

parallelogram whose adjacent sides are the given vectors.

® The multiplication of a given vector by a scalar λ, changes the magnitude of

the vector by the multiple |λ |, and keeps the direction same (or makes it

opposite) according as the value of λ is positive (or negative).

® For a given vector , the vector  gives the unit vector in the direction

of .

® The position vector of a point R dividing a line segment joining the points

P and Q whose position vectors are  respectively, in the ratio m : n

(i) internally, is given by .

(ii) externally, is given by .

® The scalar product of two given vectors having angle θ between

them is defined as

.

Also, when  is given, the angle ‘θ’ between the vectors may be

determined by

cosθ =

® If θ is the angle between two vectors , then their cross product is

given as

where n̂  is a unit vector perpendicular to the plane containing . Such

that form right handed system of coordinate axes.

® If we have two vectors , given in component form as

and λ any scalar,
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then  = 1 1 2 2 3 3
ˆˆ ˆ( ) ( ) ( )a b i a b j a b k+ + + + + ;

λ  = 1 2 3
ˆˆ ˆ( ) ( ) ( )a i a j a kλ + λ + λ ;

 = 1 1 2 2 3 3a b a b a b+ + ;

and  = 1 1 1

2 2 2

ˆˆ ˆ

.

i j k

a b c

a b c

Historical Note

The word vector has been derived from a Latin word vectus, which means

“to carry”. The germinal ideas of modern vector theory date from around 1800

when Caspar Wessel (1745-1818) and Jean Robert Argand (1768-1822) described

that how a complex number a + ib could be given a geometric interpretation with

the help of a directed line segment in a coordinate plane. William Rowen Hamilton

(1805-1865) an Irish mathematician was the first to use the term vector for a

directed line segment in his book Lectures on Quaternions (1853). Hamilton’s

method of quaternions (an ordered set of four real numbers given as:

ˆ ˆˆ ˆ ˆ ˆ, , ,a bi cj dk i j k+ + +  following certain algebraic rules) was a solution to the

problem of multiplying vectors in three dimensional space. Though, we must

mention here that in practice, the idea of vector concept and their addition was

known much earlier ever since the time of Aristotle (384-322 B.C.), a Greek

philosopher, and pupil of Plato (427-348 B.C.). That time it was supposed to be

known that the combined action of two or more forces could be seen by adding

them according to parallelogram law. The correct law for the composition of

forces, that forces add vectorially, had been discovered in the case of perpendicular

forces by Stevin-Simon (1548-1620). In 1586 A.D., he analysed the principle of

geometric addition of forces in his treatise DeBeghinselen der Weeghconst

(“Principles of the Art of Weighing”), which caused a major breakthrough in the

development of mechanics. But it took another 200 years for the general concept

of vectors to form.

In the 1880, Josaih Willard Gibbs (1839-1903), an American physicist and

mathematician, and Oliver Heaviside (1850-1925), an English engineer, created

what we now know as vector analysis, essentially by separating the real (scalar)
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part of quaternion from its imaginary (vector) part. In 1881 and 1884, Gibbs

printed a treatise entitled Element of Vector Analysis. This book gave a systematic

and concise account of vectors. However, much of the credit for demonstrating

the applications of vectors is due to the D. Heaviside and P.G. Tait (1831-1901)

who contributed significantly to this subject.

—vvvvv—
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v The moving power of mathematical invention is not

reasoning but imagination. – A.DEMORGAN v

11.1  Introduction

In Class XI, while studying Analytical Geometry in two

dimensions, and the introduction to three dimensional

geometry, we confined to the Cartesian methods only. In

the previous chapter of this book, we have studied some

basic concepts of vectors. We will now use vector algebra

to three dimensional geometry. The purpose of this

approach to 3-dimensional geometry is that it makes the

study simple and elegant*.

In this chapter, we shall study the direction cosines

and direction ratios of a line joining two points and also

discuss about the equations of lines and planes in space

under different conditions, angle between two lines, two

planes, a line and a plane, shortest distance between two

skew lines and distance of a point from a plane. Most of

the above results are obtained in vector form. Nevertheless, we shall also translate

these results in the Cartesian form which, at times, presents a more clear geometric

and analytic picture of the situation.

11.2  Direction Cosines and Direction Ratios of a Line

From Chapter 10, recall that if a directed line L passing through the origin makes

angles α, β and γ with x, y and z-axes, respectively, called direction angles, then cosine

of these angles, namely, cos α, cos β and cos γ are called direction cosines of the

directed line L.

If we reverse the direction of L, then the direction angles are replaced by their supplements,

i.e., ,  and . Thus, the signs of the direction cosines are reversed.

Chapter 11

THREE DIMENSIONAL GEOMETRY

* For various activities in three dimensional geometry, one may refer to the Book

“A Hand Book for designing Mathematics Laboratory in Schools”, NCERT, 2005

Leonhard Euler

(1707-1783)
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Note that a given line in space can be extended in two opposite directions and so it

has two sets of direction cosines. In order to have a unique set of direction cosines for

a given line in space, we must take the given line as a directed line. These unique

direction cosines are denoted by l, m and n.

Remark If the given line in space does not pass through the origin, then, in order to find

its direction cosines, we draw a line through the origin and parallel to the given line.

Now take one of the directed lines from the origin and find its direction cosines as two

parallel line have same set of direction cosines.

Any three numbers which are proportional to the direction cosines of a line are

called the direction ratios of the line. If l, m, n are direction cosines and a, b, c are

direction ratios of a line, then a = λl, b=λm and c = λn, for any nonzero λ ∈ R.

ANote   Some authors also call direction ratios as direction numbers.

Let a, b, c be direction ratios of a line and let l, m and n be the direction cosines
(d.c’s) of the line. Then

l

a
 = 

m

b
 =

n
k

c
=  (say), k being a constant.

Therefore l = ak, m = bk, n = ck ... (1)

But l2 + m2 + n2 = 1
Therefore k2 (a2 + b2 + c2) = 1

or k =
2 2 2

1

a b c
±

+ +

Fig 11.1
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Hence, from (1), the d.c.’s of the line are

2 2 2 2 2 2 2 2 2
, ,

a b c
l m n

a b c a b c a b c
= ± = ± = ±

+ + + + + +

where, depending on the desired sign of k, either a positive or a negative sign is to be

taken for l, m and n.

For any line, if a, b, c are direction ratios of a line, then ka, kb, kc; k ≠ 0 is also a

set of direction ratios. So, any two sets of direction ratios of a line are also proportional.

Also, for any line there are infinitely many sets of direction ratios.

11.2.1  Direction cosines of a line passing through two points

Since one and only one line passes through two given points, we can determine the

direction cosines of a line passing through the given points P(x
1
, y

1
, z

1
) and Q(x

2
, y

2
, z

2
)

as follows (Fig 11.2 (a)).

Fig 11.2

Let l, m, n be the direction cosines of the line PQ and let it makes angles α, β and  γ
with the x, y and z-axis, respectively.

Draw perpendiculars from P and Q to XY-plane to meet at R and S. Draw a

perpendicular from P to QS to meet at N. Now, in right angle triangle PNQ, ∠PQN= γ
(Fig 11.2 (b).

Therefore, cos γ =
2 1NQ

PQ PQ

z z−
=

Similarly cosα = 2 1 2 1and cos
PQ PQ

x x y y− −
β=

Hence, the direction cosines of the line segment joining the points P(x
1
, y

1
, z

1
) and

Q(x
2
, y

2
, z

2
) are
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2 1

PQ

x x−
, 2 1

PQ

y y−
, 

2 1

PQ

z z−

where PQ = ( )
22 2

2 1 2 1 2 1( ) ( )x x y y z z− + − + −

ANote   The direction ratios of the line segment joining P(x
1
, y

1
, z

1
) and Q(x

2
, y

2
, z

2
)

may be taken as

x
2 
– x

1
, y

2 
– y

1
, z

2 
– z

1
 or x

1 
– x

2
, y

1 
– y

2
, z

1 
– z

2

Example 1 If a line makes angle 90°, 60° and 30° with the positive direction of x, y and
z-axis respectively, find its direction cosines.

Solution Let the d .c . 's of the lines be l , m, n. Then l = cos 900 = 0, m = cos 600 = 
1

2
,

n = cos 300 = 
2

3
.

Example 2 If a line has direction ratios 2, – 1, – 2, determine its direction cosines.

Solution Direction cosines are

222 )2()1(2

2

−+−+
,  

222 )2()1(2

1

−+−+

−
,  

( ) 222
)2(12

2

−+−+

−

or  
2 1 2

,,
3 3 3

− −

Example 3 Find the direction cosines of the line passing through  the two points
(– 2, 4, – 5) and (1, 2, 3).

Solution We know the direction cosines of the line passing through  two points
P(x

1
, y

1
, z

1
) and Q(x

2
, y

2
, z

2
) are given by

2 1 2 1 2 1,,
PQ PQ PQ

x x y y z z− − −

where PQ = ( )2

12

2

12

2

12 )()( zzyyxx −+−+−

Here P is (– 2, 4, – 5) and Q is (1, 2, 3).

So PQ = 2 2 2
(1 ( 2)) (2 4) (3 ( 5))− − + − + − −  = 77

Thus, the direction cosines of the line joining two points is

3 2 8
, ,

77 77 77

−
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Example 4 Find the direction cosines of x, y and z-axis.

Solution The x-axis makes angles 0°, 90° and 90° respectively with x, y and z-axis.
Therefore, the direction cosines of x-axis are cos 0°, cos 90°, cos 90° i.e., 1,0,0.
Similarly, direction cosines of y-axis and z-axis are 0, 1, 0 and 0, 0, 1 respectively.

Example 5 Show that the points A (2, 3, – 4), B (1, – 2, 3) and C (3, 8, – 11) are
collinear.

Solution Direction ratios of line joining A and B are

1 – 2, – 2 – 3, 3 + 4 i.e., – 1, – 5, 7.

The direction ratios of line joining B and C are

3 –1, 8 + 2, – 11 – 3, i.e., 2, 10, – 14.

It is clear that direction ratios of AB and BC are proportional, hence, AB is parallel
to BC. But point B is common to both AB and BC. Therefore, A, B, C are
collinear points.

EXERCISE 11.1

1. If a line makes angles 90°, 135°, 45° with the x, y and z-axes respectively, find its

direction cosines.

2. Find the direction cosines of a line which makes equal angles with the coordinate

axes.

3. If a line has the direction ratios –18, 12, – 4, then what are its direction cosines ?

4. Show that the points (2, 3, 4), (– 1, – 2, 1), (5, 8, 7) are collinear.

5. Find the direction cosines of the sides of the triangle whose vertices are

(3, 5, – 4), (– 1, 1, 2) and (– 5, – 5, – 2).

11.3 Equation of a Line in Space

We have studied equation of  lines in two dimensions in Class XI, we shall now study

the vector and cartesian equations of a line in space.

A line is uniquely determined if

(i) it passes through a given point and has given direction, or

(ii) it passes through two given points.

11.3.1 Equation of a line through a given point and parallel to  given vector 

Let  be the position vector of the given point A with respect to the origin O of the

rectangular coordinate system. Let l be the line which passes through the point A and

is parallel to a given vector . Let   be the position vector of an arbitrary point P on the

line (Fig 11.3).
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Then AP
uuur

 is parallel to the vector ,  i.e.,

AP
uuur

 = λ ,  where λ is some real number.

But AP
uuur

 = OP – OA
uuur uuur

i.e. λ  = −
r r
r a

Conversely, for each value of the

parameter λ, this equation gives the position

vector of a point P on the line.  Hence, the

vector equation of the line is given by

 = »

rr
a + b ... (1)

Remark If ˆˆ ˆ= + +

r
b ai bj ck , then a, b, c are direction ratios of the line and conversely,

if a, b, c are direction ratios of a line, then ˆˆ ˆ= + +

r
b ai bj ck  will be the parallel to

the line. Here, b should not be confused with | |.

Derivation of cartesian form from vector form

Let the coordinates of the given point A be (x
1
, y

1
, z

1
) and the direction  ratios of

the line be a, b, c. Consider the coordinates of any point P be (x, y, z). Then

ˆ ˆ ˆr xi yj zk= + +
r

; 
1 1 1
ˆ ˆ ˆa x i y j z k= + +

r

and ˆˆ ˆ= + +

r
b a i b j c k

Substituting these values in (1) and equating the coefficients of ˆ ˆ,i j  and k̂ , we get

x = x
1
 + λ a;  y = y

1
 + λ b;  z = z

1
+ λ c ... (2)

These are parametric equations of the line. Eliminating the parameter λ from (2),
we get

1x – x

a
 =

1 1y – y z – z
=

b c
... (3)

This is the Cartesian equation of the line.

ANote   If l, m, n are the direction cosines of the line, the equation of the line is

1x – x

l
 =

1 1y – y z – z
=

m n

Example 6 Find the vector and the Cartesian equations of the line through the point

(5, 2, – 4) and which is parallel to the vector ˆˆ ˆ3 2 8i j k+ − .

Solution We have

 = ˆ ˆˆ ˆ ˆ ˆ5 2 4 and 3 2 8+ − = + −

r
i j k b i j k

Fig 11.3
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Therefore, the vector equation of the line is

 = ˆ ˆˆ ˆ ˆ ˆ5 2 4 ( 3 2 8 )i j k i j k+ − + λ + −

Now,  is the position vector of any point P(x, y, z) on the line.

Therefore, ˆˆ ˆxi y j z k+ +  = ˆ ˆˆ ˆ ˆ ˆ5 2 4 ( 3 2 8 )+ − + λ + −i j k i j k

= ˆ ˆˆ(5 3 ) (2 2 ) ( 4 8 )+ λ + + λ + − − λi j k
Eliminating λ , we get

5

3

x−
 =

2 4

2 8

y z− +
=

−

which is the equation of the line in Cartesian form.

11.4  Angle between Two Lines

Let L
1
 and L

2
 be two lines passing through the origin

and with direction ratios a
1
, b

1
, c

1
 and a

2
, b

2
, c

2
,

respectively. Let P be a point on L
1
 and Q be a point

on L
2
. Consider the directed lines OP and OQ as

given in Fig 11.6. Let θ be the acute angle between

OP and OQ. Now recall that the directed line

segments OP and OQ are vectors with components

a
1
, b

1
, c

1
 and a

2
, b

2
, c

2
, respectively. Therefore, the

angle θ between them is given by

cos θ =
1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a a b b c c

a b c a b c

+ ++ ++ ++ +

+ + + ++ + + ++ + + ++ + + +
... (1)

The angle between the lines in terms of sin θ is given by

sin θ = 2
1 cos− θ

=
( )( )

2
1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

( )
1

a a b b c c

a b c a b c

+ +
−

+ + + +

=
( )( ) ( )

( ) ( )

22 2 2 2 2 2
1 1 1 2 2 2 1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a b c a b c a a b b c c

a b c a b c

+ + + + − + +

+ + + +

=

2 2 2
1 2 2 1 1 2 2 1 1 2 2 1

2 2 2 2 2 2
1 1 1 2 2 2

( ) ( ) ( )− + − + −

+ + + +

a b a b b c b c c a c a

a b c a b c
... (2)

Fig 11.4
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ANote   In case the lines L
1 
and L

2
 do not pass through the origin, we may take

lines 1 2L and L′ ′ which are parallel to L
1
 and L

2
 respectively and pass through

the origin.

If instead of direction ratios for the lines L
1
 and L

2
, direction cosines, namely,

l
1
, m

1
, n

1
 for L

1
 and l

2
, m

2
, n

2
 for L

2
 are given, then (1) and (2) takes the following form:

cos θ = | l
1 
l
2
 + m

1
m

2
 + n

1
n

2
|    (as 2 2 2

1 1 1 1l m n+ + = 2 2 2
2 2 2l m n= + + ) ... (3)

and sin θ = ( )
2 2 2

1 2 2 1 1 2 2 1 1 2 2 1( ) ( )l m l m m n m n n l n l− − − + −                    ... (4)

Two lines with direction ratios a
1
, b

1
, c

1
 and a

2
, b

2
, c

2
 are

(i) perpendicular i.e. if θ = 90° by (1)

a
1
a

2
 + b

1
b

2
 + c

1
c

2
 = 0

(ii) parallel i.e. if θ = 0 by (2)

1

2

a

a
 =

1 1

2 2

b c

b c
====

Now, we find the angle between two lines when their equations are given. If θ is

acute the angle between the lines

 =
1 1a b+ λ

  
 and   = 2 2+ µ

rr
a b

then cosθ =
1 2

1 2

⋅

r r

r r
b b

b b

In Cartesian form, if θ is the angle between the lines

1

1

x x

a

−
 =

1 1

1 1

y y z z

b c

− −
= ... (1)

and
2

2

x x

a

−
 =

2 2

2 2

y y z z

b c

− −
= ... (2)

where, a
1
, b

1,
 c

1 
and a

2,
 b

2
, c

2 
are the direction ratios of the lines (1) and (2), respectively,

then

cos θ =
1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a a b b c c

a b c a b c

+ +

+ + + +

Example 7 Find the angle between the pair of lines given by

 = ˆ ˆˆ ˆ ˆ ˆ3 2 4 ( 2 2 )i j k i j k+ − + λ + +

Reprint 2024-25



THREE DIMENSIONAL GEOMETRY 385

and  = ˆˆ ˆ ˆ ˆ5 2 (3 2 6 )i j i j k− + µ + +

Solution Here 
1

r
b  = ˆˆ ˆ2 2i j k+ +  and 

2

r
b  = ˆˆ ˆ3 2 6i j k+ +

The angle θ between the two lines is given by

cos θ =
1 2

1 2

ˆ ˆˆ ˆ ˆ ˆ( 2 2 ) (3 2 6 )

1 4 4 9 4 36

⋅ + + ⋅ + +
=

+ + + +

r r

r r
b b i j k i j k

b b

=
3 4 12 19

3 7 21

+ +
=

×

Hence θ = cos–1 
19

21

 
 
 

Example 8 Find the angle between the pair of lines

3

3

x +
 =

1 3

5 4

y z− +
=

and
1

1

x +
 =

4 5

1 2

y z− −
=

Solution The direction ratios of the first line are 3, 5, 4 and the direction ratios of the

second line are 1, 1, 2.  If θ is the angle between them, then

cos θ =
2 2 2 2 2 2

3.1 5.1 4.2 16 16 8 3

1550 6 5 2 63 5 4 1 1 2

+ +
= = =

+ + + +

Hence, the required angle is cos–1
8 3

15

 
  
 

.

11.5  Shortest Distance between Two Lines

If two lines in space intersect at a point,

then the shortest distance between them is

zero. Also, if two lines in space are parallel,

then the shortest distance between them

will be the perpendicular distance, i.e. the

length of the perpendicular drawn from a

point on one line onto the other line.

Further, in a space, there are lines which

are neither intersecting nor parallel. In fact,

such pair of lines are non coplanar and

are called skew lines. For example, let us

consider a room of size 1, 3, 2 units along

x, y and z-axes respectively Fig 11.5.

Fig 11.5
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l2

S

T
Q

P
l1

The line GE that goes diagonally across the ceiling and the line DB passes through
one corner of the ceiling directly above A and goes diagonally down the wall. These
lines are skew because they are not parallel and also never meet.

By the shortest distance between two lines we mean the join of a point in one line
with one point on the other line so that the length of the segment so obtained is the
smallest.

For skew lines, the line of the shortest distance will be perpendicular to both
the lines.

11.5.1  Distance between two skew lines

We now determine the shortest distance between two skew lines in the following way:

Let l
1 
and l

2  
be two skew lines with equations (Fig. 11.6)

 = 1 1+ λ

rr
a b     ... (1)

and  =
2 2+ µ

rr
a b   ... (2)

Take any point S on l
1
 with position vector 

1a
r

 
and T on l

2
, with position vector  

2a
r

.

Then the magnitude of the shortest distance vector

will be equal to that of the projection of ST along the

direction of the line of shortest distance (See 10.6.2).

If  PQ
uuur

 is the shortest distance vector between l
1

and l
2 
, then it being perpendicular to both  

1

r
b  and 

2

r
b ,

the unit vector n̂  along PQ
uuur

 would therefore be

n̂  = 1 2

1 2| |

×

×

r r

r r
b b

b b
  ... (3)

Then PQ
uuur

 = d n̂

where, d is the magnitude of the shortest distance vector. Let θ be the angle between

ST
uur

 and PQ
uuur

. Then
PQ = ST | cos θ |

But cos θ =
PQ ST

| PQ | | ST |

⋅

uuur uur

uuuur uur

 = 2 1
ˆ ( )

ST

⋅ −
r r

d n a a

d
(since  

2 1ST )= −

uur r r
a a

=
1 2 2 1

1 2

( ) ( )

ST

× ⋅ −

×

r r r r

r r
b b a a

b b
[From (3)]

Fig 11.6
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Hence, the required shortest distance is

d = PQ = ST |cos θ |

or d =
( × ) . ( )

| × |

1 2 2 1

1 2

r r r r

r r
b b a a

b b

×

Cartesian form

The shortest distance between the lines

l
1 
: 

x x

a

−
1

1

 =
y y

b

z z

c

−
=

−
1

1

1

1

and l
2  

: 
x x

a

−
2

2

 =
y y

b

z z

c

−
=

−
2

2

2

2

is

x x y y z z

a b c

a b c

b c b c c a c a a b

2 1 2 1 2 1

1 1 1

2 2 2

1 2 2 1

2

1 2 2 1

2

1 2

−− −− −−

−− ++ −− ++( ) ( ) ( −−−− a b2 1

2
)

11.5.2 Distance between parallel lines

If two lines l
1
 and  l

2 
are parallel, then they are coplanar.  Let the lines be given by

... (1)

and … (2)

where, 
1a
r

is the position vector of a point S on l
1 
and  

2a
r

is the position vector of a point T on l
2
 Fig 11.7.

As l
1
, l

2 
are coplanar, if the foot of the perpendicular

from T on the line l
1
 is P, then the distance between the

lines l
1 
and l

2 
=  |TP |.

Let θ be the angle between the vectors ST
uur

 and .

Then

ST× =

uurr
b  ˆ ... (3)

where n̂  is the unit vector perpendicular to the plane of the lines l
1 
and l

2.

But ST
uur

 = 2 1−
r r
a a

Fig 11.7
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Therefore, from (3), we get

2 1( )× −

r r r
b a a  = ˆ| PT

r
b n        (since PT = ST sin θ)

i.e.,
2 1| ( )|× −

r r r
b a a  = | | PT 1⋅

r
b        (as | |n̂  = 1)

Hence, the distance between the given parallel lines is

d =

Example 9 Find the shortest distance between the lines l
1
 and l

2 
whose vector

equations are

 = ˆˆ ˆ ˆ ˆ(2 )i j i j k+ + λ − + ... (1)

and  = ˆ ˆˆ ˆ ˆ ˆ2 (3 5 2 )i j k i j k+ − + µ − + ... (2)

Solution Comparing (1) and (2) with  = 
1 1+ λ

rr
a b  and  

2 2r a bµ= +

rr r
 respectively,

we get
1a
r

 =
1

ˆˆ ˆ ˆ ˆ, 2+ = − +

r
i j b i j k

2a
r

 = 2 î  + ĵ – k̂  and 
2

r
b  = 3 î  – 5 ĵ  + 2 k̂

Therefore
2 1−
r r
a a  = ˆî k−

and 1 2×

r r
b b  = ˆ ˆˆ ˆ ˆ ˆ( 2 ) ( 3 5 2 )i j k i j k− + × − +

=

ˆˆ ˆ

ˆˆ ˆ2 1 1 3 7

3 5 2

i j k

i j k− = − −

−

So 1 2 || ×

r r
b b  = 9 1 49 59+ + =

Hence, the shortest distance between the given lines is given by

d  = 1 2 2 1

1 2

( b b ) . ( a a )

| b b |

× −

×

r r r r
r r   

59

10

59

|703|
=

+−
=

Example 10 Find the distance between the lines l
1
 and l

2 
given by

 = ˆ ˆˆ ˆ ˆ ˆ2 4 ( 2 3 6 )i j k i j k+ − + λ + +

and  = ˆ ˆˆ ˆ ˆ ˆ3 3 5 ( 2 3 6 )i j k i j k+ − + µ + +
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Solution The two lines are parallel (Why? ) We have

1a
r

 = ˆˆ ˆ2 4i j k+ − , 
2a
r

 = ˆˆ ˆ3 3 5i j k+ −  and  = ˆˆ ˆ2 3 6i j k+ +

Therefore, the distance between the lines is given by

d = 2 1( )

| |

× −

r r r
r

b a a

b
 = 

ˆˆ ˆ

2 3 6

2 1 1

4 9 36

i j k

−

+ +

or =
ˆˆ ˆ| 9 14 4 | 293 293

749 49

i j k− + −
= =

EXERCISE 11.2

1. Show that the three lines with direction cosines

12 3 4 4 12 3 3 4 12
, , ; , , ; , ,

13 13 13 13 13 13 13 13 13

− − −
 are mutually perpendicular.

2. Show that the line through the points (1, – 1, 2), (3, 4, – 2) is perpendicular to the

line through the points (0, 3, 2) and (3, 5, 6).

3. Show that the line through the points (4, 7, 8), (2, 3, 4) is parallel to the line

through the points (– 1, – 2, 1), (1, 2, 5).

4. Find the equation of the line which passes through the point (1, 2, 3) and is

parallel to the vector ˆˆ ˆ3 2 2i j k+ − .

5. Find the equation of the line in vector and in cartesian form that passes through

the point with position vector ˆˆ2 4i j k− + and is in the direction ˆˆ ˆ2i j k+ − .

6. Find the cartesian equation of the line which passes through the point (– 2, 4, – 5)

and parallel to the line given by 
3 4 8

3 5 6

x y z+ − +
= = .

7. The cartesian equation of a line is 
5 4 6

3 7 2

x y z− + −
= = . Write its vector form.

8. Find the angle between the following pairs of lines:

(i) ˆ ˆˆ ˆ ˆ ˆ2 5 (3 2 6 )= − + + λ + +
r
r i j k i j k  and

ˆ ˆˆ ˆ ˆ7 6 ( 2 2 )= − + µ + +
r
r i k i j k
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(ii) ˆ ˆˆ ˆ ˆ ˆ3 2 ( 2 )= + − + λ − −
r
r i j k i j k  and

ˆ ˆˆ ˆ ˆ ˆ2 56 (3 5 4 )= − − + µ − −
r
r i j k i j k

9. Find the angle between the following pair of lines:

(i)
2 1 3 2 4 5

and
2 5 3 1 8 4

x y z x y z− − + + − −
= = = =

− −

(ii)
5 2 3

and
2 2 1 4 1 8

x y z x y z− − −
= = = =

10. Find the values of p so that the lines 
1 7 14 3

3 2 2

x y z

p

− − −
= =

and  
7 7 5 6

3 1 5

x y z

p

− − −
= =  are at right angles.

11. Show that the lines 
5 2

7 5 1

x y z− +
= =

−
 and 

1 2 3

x y z
= =  are perpendicular to

each other.

12. Find the shortest distance between the lines

ˆˆ ˆ( 2 )= + +
r
r i j k  + ˆˆ ˆ( )i j kλ − +  and

ˆ ˆˆ ˆ ˆ ˆ2 (2 2 )= − − + µ + +
r
r i j k i j k

13. Find the shortest distance between the lines

1 1 1

7 6 1

x y z+ + +
= =

−
   and  

3 5 7

1 2 1

x y z− − −
= =

−

14. Find the shortest distance between the lines whose vector equations are

ˆˆ ˆ( 2 3 )= + +
r
r i j k  + ˆˆ ˆ( 3 2 )i j kλ − +

and  ˆ ˆˆ ˆ ˆ ˆ4 5 6 (2 3 )= + + + µ + +
r
r i j k i j k

15. Find the shortest distance between the lines whose vector equations are

ˆˆ ˆ(1 ) ( 2) (3 2 )= − + − + −
r
r t i t j t k  and

ˆˆ ˆ( 1) (2 1) (2 1)= + + − − +
r
r s i s j s k

Miscellaneous Exercise on Chapter 11

1. Find the angle between the lines whose direction ratios are a, b, c and

b – c, c – a, a – b.

2. Find the equation of a line parallel to x-axis and passing through the origin.
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3. If the lines 
1 2 3 1 1 6

and
3 2 2 3 1 5

x y z x y z

k k

− − − − − −
= = = =

− −
 are perpendicular,

find the value of k.

4. Find the shortest distance between lines ˆ ˆˆ ˆ ˆ ˆ6 2 2 ( 2 2 )= + + + λ − +
r
r i j k i j k

and ˆ ˆˆ ˆ ˆ4 (3 2 2 )= − − + µ − −
r
r i k i j k .

5. Find the vector equation of the line passing through the point (1, 2, – 4) and

perpendicular to the two lines:

7

10

16

19

3

8 −
=

−

+
=

− zyx
and 

15

3

x −
 = 

29 5

8 5

y z− −
=

−
.

Summary

® Direction cosines of a line are the cosines of the angles made by the line

with the positive directions of the coordinate axes.

® If l, m, n are the direction cosines of a line, then l2 + m2 + n2 = 1.

® Direction cosines of a line joining two points P(x
1
, y

1
, z

1
) and Q(x

2
, y

2
, z

2
) are

2 1 2 1 2 1, ,
PQ PQ PQ

x x y y z z− − −

where PQ =   ( )2

12

2

12

2

12 )()( zzyyxx −+−+−

® Direction ratios of a line are the numbers which are proportional to the

direction cosines of a line.

® If l, m, n are the direction cosines and a, b, c are the direction ratios of a line

then

l = 
222

cba

a

++
; m = 

222 cba

b

++
; n = 

222 cba

c

++

® Skew lines are lines in space which are neither parallel nor intersecting.

They lie in different planes.

® Angle between skew lines is the angle between two intersecting lines

drawn from any point (preferably through the origin) parallel to each of the
skew lines.

® If  l
1
, m

1
, n

1
 and l

2
, m

2
, n

2
 are the direction cosines of two lines; and  θ  is the

acute angle between the two lines; then

cosθ  =  | l
1
l
2
 + m

1
m

2
 + n

1
n

2
|
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® If a
1
, b

1
, c

1
 and a

2
, b

2
, c

2
 are the direction ratios of two lines and θ is the

acute angle between the two lines; then

cosθ = 
1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a a b b c c

a b c a b c

+ +

+ + + +

® Vector equation of a line that passes through the given point whose position

vector is  and parallel to a given vector  is = + λ

rr r
r a b  .

® Equation of a line through a point (x
1
, y

1
, z

1
) and having direction cosines l, m, n is

1 1 1x x y y z z

l m n

− − −
= =

® The vector equation of a line which passes through two points whose position

vectors are  and  is ( )= + λ −

rr r r
r a b a .

® If θ is the acute angle between 
1 1= + λ

rr r
r a b  and 

2 2= + λ

rr r
r a b , then

1 2

1 2

cos
| | | |

⋅
θ =

r r

r r
b b

b b

® If  
1

1

1

1

1

1

n

zz

m

yy

l

xx −
=

−
=

−
 and  

2

2

2

2

2

2

n

zz

m

yy

l

xx −
=

−
=

−

are the equations of two lines,  then the  acute angle between the two lines is
given by cos θ  = | l

1
l
2
 + m

1
m

2
 + n

1
n

2
|.

® Shortest distance between two skew lines is the line segment perpendicular

to both the lines.

® Shortest distance between 
1 1= + λ

rr r
r a b  and 

2 2= + µ

rr r
r a b  is

1 2 2 1

1 2

( ) ( – )

| |

× ⋅

×

r r r r
r r

b b a a

b b

® Shortest distance between the lines: 1 1 1

1 1 1

x x y y z z

a b c

− − −
= =  and

2 2

2 2

x x y y

a b

− −
=  = 

2

2

z z

c

−
 is
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2 1 2 1 2 1

1 1 1

2 2 2

2 2 2
1 2 2 1 1 2 2 1 1 2 2 1( ) ( ) ( )

x x y y z z

a b c

a b c

b c b c c a c a a b a b

− − −

− + − + −

® Distance between parallel lines 
1= + λ

rr r
r a b  and 

2= + µ

rr r
r a b  is

2 1( )

| |

× −

r r r
r

b a a

b

—vvvvv—
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vThe mathematical experience of the student is incomplete if he never had

the opportunity to solve a problem invented by himself. – G. POLYA v

12.1  Introduction

In earlier classes, we have discussed systems of linear

equations and their applications in day to day problems. In

Class XI, we have studied linear inequalities and systems

of linear inequalities in two variables and their solutions by

graphical method. Many applications in mathematics

involve systems of inequalities/equations. In this chapter,

we shall apply the systems of linear inequalities/equations

to solve some real life problems of the type as given below:

A furniture dealer deals in only two items–tables and

chairs. He has Rs 50,000 to invest and has storage space

of at most 60 pieces. A table costs Rs 2500 and a chair

Rs 500. He estimates that from the sale of one table, he

can make a profit of Rs 250 and that from the sale of one

chair a profit of Rs 75. He wants to know how many tables and chairs he should buy

from the available money so as to maximise his total profit, assuming that he can sell all

the items which he buys.

Such type of problems which seek to maximise (or, minimise) profit (or, cost) form

a general class of problems called optimisation problems. Thus, an optimisation

problem may involve finding maximum profit, minimum cost, or minimum use of

resources etc.

A special but a very important class of optimisation problems is linear programming

problem. The above stated optimisation problem is an example of linear programming

problem. Linear programming problems are of much interest because of their wide

applicability in industry, commerce, management science etc.

In this chapter, we shall study some linear programming problems and their solutions

by graphical method only, though there are many other methods also to solve such

problems.

Chapter 12

LINEAR PROGRAMMING

L. Kantorovich

Reprint 2024-25



LINEAR PROGRAMMING         395

12.2  Linear Programming Problem and its Mathematical Formulation

We begin our discussion with the above example of furniture dealer which will further

lead to a mathematical formulation of the problem in two variables. In this example, we

observe

(i) The dealer can invest his money in buying tables or chairs or combination thereof.

Further he would earn different profits by following different investment

strategies.

(ii) There are certain overriding conditions or constraints viz., his investment is

limited to a maximum of Rs 50,000 and so is his storage space which is for a

maximum of 60 pieces.

Suppose he decides to buy tables only and no chairs, so he can buy 50000 ÷ 2500,

i.e., 20 tables. His profit in this case will be Rs (250 × 20), i.e., Rs 5000.

Suppose he chooses to buy chairs only and no tables. With his capital of Rs 50,000,

he can buy 50000 ÷ 500, i.e. 100 chairs. But he can store only 60 pieces. Therefore, he

is forced to buy only 60 chairs which will give him a total profit of Rs (60 × 75), i.e.,

Rs 4500.

There are many other possibilities, for instance, he may choose to buy 10 tables

and 50 chairs, as he can store only 60 pieces. Total profit in this case would be

Rs (10 × 250 + 50 × 75), i.e., Rs 6250 and so on.

We, thus, find that the dealer can invest his money in different ways and he would

earn different profits by following different investment strategies.

Now the problem is : How should he invest his money in order to get maximum

profit? To answer this question, let us try to formulate the problem mathematically.

12.2.1 Mathematical formulation of the problem

Let x be the number of tables and y be the number of chairs that the dealer buys.

Obviously, x and y must be non-negative, i.e.,

0 ... (1)
(Non-negative constraints)

... (2)0

x

y

≥  
 

≥  

The dealer is constrained by the maximum amount he can invest (Here it is

Rs 50,000) and by the maximum number of items he can store (Here it is 60).

Stated mathematically,

2500x + 500y ≤ 50000 (investment constraint)

or 5x + y ≤ 100 ... (3)

and x + y ≤ 60  (storage constraint) ... (4)
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The dealer wants to invest in such a way so as to maximise his profit, say, Z which

stated as a function of x and y is given by

Z = 250x + 75y (called objective function) ... (5)

Mathematically, the given problems now reduces to:

Maximise Z = 250x + 75y

subject to the constraints:

5x + y ≤ 100

x + y ≤ 60

x ≥ 0,  y ≥ 0

So, we have to maximise the linear function Z subject to certain conditions determined

by a set of linear inequalities with variables as non-negative. There are also some other

problems where we have to minimise a linear function subject to certain conditions

determined by a set of linear inequalities with variables as non-negative. Such problems

are called Linear Programming Problems.

Thus, a Linear Programming Problem is one that is concerned with finding the

optimal value (maximum or minimum value) of  a linear function (called objective

function) of several variables (say x and y), subject to the conditions that the variables

are non-negative and satisfy a set of linear inequalities (called linear constraints).

The term linear implies that all the mathematical relations used in the problem are

linear relations while the term programming refers to the method of determining a

particular programme or plan of action.

Before we proceed further, we now formally define some terms (which have been

used above) which we shall be using in the linear programming problems:

Objective function Linear function Z = ax + by, where a, b are constants, which has

to be maximised or minimized is called a linear objective function.

In the above example, Z = 250x + 75y is a linear objective function. Variables x and

y are called decision variables.

Constraints The linear inequalities or equations or restrictions on the variables of a

linear programming problem are called constraints. The conditions x ≥ 0, y ≥ 0 are

called non-negative restrictions. In the above example, the set of inequalities (1) to (4)

are constraints.

Optimisation problem A problem which seeks to maximise or minimise a linear

function (say of two variables x and y) subject to certain constraints as determined by

a set of linear inequalities is called an optimisation problem. Linear programming

problems are special type of optimisation problems. The above problem of investing a
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given sum by the dealer in purchasing chairs and tables is an example of an optimisation
problem as well as of a linear programming problem.

We will now discuss how to find solutions to a linear programming problem. In this
chapter, we will be concerned only with the graphical method.

12.2.2 Graphical method of solving linear programming problems

In Class XI, we have learnt how to graph a system of linear inequalities involving two

variables x and y and to find its solutions graphically. Let us refer to the problem of

investment in tables and chairs discussed in Section 12.2. We will now solve this problem

graphically.  Let us graph the constraints stated as linear inequalities:

5x + y ≤ 100 ... (1)

x + y ≤ 60 ... (2)

x ≥ 0 ... (3)

y ≥ 0 ... (4)

The graph of this system (shaded region) consists of the points common to all half

planes determined by the inequalities (1) to (4) (Fig 12.1). Each point in this region

represents a feasible choice open to the dealer for investing in tables and chairs. The

region, therefore, is called the feasible region for the problem. Every point of this

region is called a feasible solution to the problem. Thus, we have,

Feasible region The common region determined by all the constraints including

non-negative constraints x, y ≥ 0 of a linear programming problem is called the feasible

region (or solution region) for the problem. In Fig 12.1, the region OABC (shaded) is

the feasible region for the problem. The region other than feasible region is called an

infeasible region.

Feasible solutions Points within and on the

boundary of the feasible region represent

feasible solutions of the constraints. In

Fig 12.1, every point within and on the

boundary of the feasible region OABC

represents feasible solution to the problem.

For example, the point (10, 50) is a feasible

solution of the problem and so are the points

(0, 60), (20, 0) etc.

Any point outside the feasible region is

called an  infeasible solution. For example,

the point (25, 40) is an infeasible solution of

the problem.
Fig 12.1
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Optimal (feasible) solution: Any point in the feasible region that gives the optimal

value (maximum or minimum) of the objective function is called an optimal solution.

Now, we see that every point in the feasible region OABC satisfies all the constraints

as given in (1) to (4), and since there are infinitely many points, it is not evident how

we should go about finding a point that gives a maximum value of the objective function

Z = 250x + 75y. To handle this situation, we use the following theorems which are

fundamental in solving linear programming problems. The proofs of these theorems

are beyond the scope of the book.

Theorem 1 Let R be the feasible region (convex polygon) for a linear programming

problem and let Z = ax + by be the objective function. When Z has an optimal value

(maximum or minimum), where the variables x and y are subject to constraints described

by linear inequalities, this optimal value must occur at a corner point* (vertex) of the

feasible region.

Theorem 2 Let R be the feasible region for a linear programming problem, and let

Z = ax + by be the objective function. If R is bounded**, then the objective function

Z has both a maximum and a minimum value on R and each of these occurs at a

corner point (vertex) of R.

Remark If R is unbounded, then a maximum or a minimum value of the objective

function may not exist. However, if it exists, it must occur at a corner point of R.

(By Theorem 1).

In the above example, the corner points (vertices) of the bounded (feasible) region

are: O, A, B and C and it is easy to find their coordinates as (0, 0), (20, 0), (10, 50) and

(0, 60) respectively. Let us now compute the values of Z at these points.

We have

* A corner point of a feasible region is a point in the region which is the intersection of two boundary lines.

** A feasible region of a system of linear inequalities is said to be bounded if it can be enclosed within a

circle. Otherwise, it is called unbounded. Unbounded means that the feasible region does extend

indefinitely in any direction.

Vertex of the Corresponding value

Feasible Region of Z (in Rs)

O (0,0) 0

C (0,60) 4500

B (10,50) 6250

A (20,0)  5000

Maximum←
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We observe that the maximum profit to the dealer results from the investment

strategy (10, 50), i.e. buying 10 tables and 50 chairs.

This method of solving linear programming problem is referred as Corner Point

Method. The method comprises of the following steps:

1. Find the feasible region of the linear programming problem and determine its

corner points (vertices) either by inspection or by solving the two equations of

the lines intersecting at that point.

2. Evaluate the objective function Z = ax + by at each corner point. Let M and m,

respectively denote the largest and smallest values of these points.

3. (i) When the feasible region is bounded, M and m are the maximum and

minimum values of Z.

(ii) In case, the feasible region is unbounded, we have:

4. (a) M is the maximum value of Z, if the open half plane determined by

ax + by > M has no point in common with the feasible region. Otherwise, Z

has no maximum value.

(b) Similarly, m is the minimum value of Z, if the open half plane determined by

ax + by < m has no point in common with the feasible region. Otherwise, Z

has no minimum value.

We will now illustrate these steps of Corner Point Method by considering some

examples:

Example 1 Solve the following linear programming problem graphically:

Maximise Z = 4x + y ... (1)

subject to the constraints:

x + y ≤ 50 ... (2)

3x + y ≤ 90 ... (3)

x ≥ 0, y ≥ 0 ... (4)

Solution The shaded region in Fig 12.2 is the feasible region determined by the system

of constraints (2) to (4). We observe that the feasible region OABC is bounded. So,

we now use Corner Point Method to determine the maximum value of Z.

The coordinates of the corner points O, A, B and C are (0, 0), (30, 0), (20, 30) and

(0, 50) respectively. Now we evaluate Z at each corner point.
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Fig 12.2

Hence, maximum value of Z is 120 at the point (30, 0).

Example 2 Solve the following linear programming problem graphically:

Minimise Z = 200 x + 500 y ... (1)

subject to the constraints:

x + 2y ≥ 10 ... (2)

3x + 4y ≤ 24 ... (3)

x ≥ 0, y ≥ 0 ... (4)

Solution The shaded region in Fig 12.3 is the feasible region ABC determined by the

system of constraints (2) to (4), which is bounded. The coordinates of corner points

Corner Point Corresponding value

of Z

(0, 0) 0

(30, 0) 120 ← Maximum

(20, 30) 110

(0, 50) 50

Corner Point Corresponding value

of Z

(0, 5) 2500

(4, 3) 2300

(0, 6) 3000

Minimum←

Fig 12.3
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A, B and C are (0,5), (4,3) and (0,6) respectively. Now we evaluate Z  = 200x + 500y

at these points.

Hence, minimum value of Z is 2300 attained at the point (4, 3)

Example 3 Solve the following problem graphically:

Minimise and Maximise Z = 3x + 9y ... (1)

subject to the constraints: x + 3y ≤ 60 ... (2)

x + y ≥ 10 ... (3)

x ≤ y ... (4)

x ≥ 0, y ≥ 0 ... (5)

Solution First of all, let us graph the feasible region of the system of linear inequalities

(2) to (5). The feasible region ABCD is shown in the Fig 12.4. Note that the region is

bounded. The coordinates of the corner points A, B, C and D are (0, 10), (5, 5), (15,15)

and (0, 20) respectively.

Fig 12.4

Corner Corresponding value of

Point  Z = 3x + 9y

A (0, 10) 90

B (5, 5) 60

C (15, 15) 180

D (0, 20) 180

Minimum

Maximum

(Multiple

optimal

solutions)

←

}←

We now find the minimum and maximum value of Z. From the table, we find that

the minimum value of Z is 60 at the point B (5, 5) of the feasible region.

The maximum value of Z on the feasible region occurs at the two corner points

C (15, 15) and D (0, 20) and it is 180 in each case.

Remark Observe that in the above example, the  problem  has multiple optimal solutions

at the corner points C and D, i.e. the both points produce same maximum value 180. In

such cases, you can see that every point on the line segment CD joining the two corner

points C and D also give the same maximum value. Same is also true in the case if the

two points produce same minimum value.
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Example 4 Determine graphically the minimum value of the objective function

Z = – 50x + 20y ... (1)

subject to the constraints:

2x – y ≥ – 5 ... (2)

3x + y ≥ 3 ... (3)

2x – 3y ≤ 12 ... (4)

x ≥ 0, y ≥ 0 ... (5)

Solution First of all, let us graph the feasible region of the system of inequalities (2) to

(5). The feasible region (shaded) is shown in the Fig 12.5. Observe that the feasible

region is unbounded.

We now evaluate Z at the corner points.

From this table, we find that  – 300 is the smallest value of Z at the corner point

(6, 0). Can we say that minimum value of Z is – 300? Note that if the region would

have been bounded, this smallest value of Z is the minimum value of Z (Theorem 2).

But here we see that the feasible region is unbounded. Therefore, – 300 may or may

not be the minimum value of Z. To decide this issue, we graph the inequality

– 50x + 20y < – 300 (see Step 3(ii) of corner Point Method.)

i.e., – 5x + 2y < – 30

and check whether the resulting open half plane has points in common with feasible

region or not. If it has common points, then –300 will not be the minimum value of Z.

Otherwise, –300 will be the minimum value of Z.

Fig 12.5

Corner Point Z = – 50x + 20y

(0, 5) 100

(0, 3) 60

(1, 0) –50

(6, 0) – 300 smallest←
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As shown in the Fig 12.5, it has common points. Therefore, Z = –50 x + 20 y

has no minimum value subject to the given constraints.

In the above example, can you say whether z = – 50 x + 20 y has the maximum

value 100 at (0,5)? For this, check whether the graph of – 50 x + 20 y > 100 has points

in common with the feasible region. (Why?)

Example 5 Minimise Z = 3x + 2y

subject to the constraints:

x + y ≥ 8 ... (1)

3x + 5y ≤ 15 ... (2)

x ≥ 0, y ≥ 0 ... (3)

Solution Let us graph the inequalities (1) to (3) (Fig 12.6). Is there any feasible region?

Why is so?

From Fig 12.6, you can see that

there is no point satisfying all the

constraints simultaneously. Thus, the

problem is having no feasible region and

hence no feasible solution.

Remarks From the examples which we

have discussed so far, we notice some

general features of linear programming

problems:

(i) The feasible region is always a

convex region.

(ii) The maximum (or minimum)

solution of the objective function occurs at the vertex (corner) of the feasible

region. If two corner points produce the same maximum (or minimum) value

of the objective function, then every point on the line segment joining these

points will also give the same maximum (or minimum) value.

EXERCISE 12.1

Solve the following Linear Programming Problems graphically:

1. Maximise Z =  3x + 4y

subject to the constraints : x + y ≤ 4, x  ≥  0, y ≥ 0.

Fig 12.6
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2. Minimise Z = – 3x + 4 y

subject to x + 2y ≤ 8, 3x + 2y ≤ 12,  x  ≥  0, y ≥ 0.

3. Maximise Z = 5x + 3y

subject to 3x + 5y  ≤ 15, 5x + 2y ≤ 10, x  ≥ 0, y ≥ 0.

4. Minimise Z = 3x + 5y

such that x + 3y
 
 ≥ 3, x + y

 
 ≥ 2, x, y ≥ 0.

5. Maximise Z = 3x + 2y

subject to x + 2y ≤ 10, 3x + y ≤ 15, x, y ≥ 0.

6. Minimise Z = x + 2y

subject to 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0.

Show that the minimum of Z occurs at more than two points.

7. Minimise and Maximise Z = 5x + 10 y

subject to x + 2y  ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x, y ≥ 0.

8. Minimise and Maximise Z = x + 2y

subject to x + 2y ≥ 100, 2x – y ≤ 0, 2x + y ≤ 200; x, y ≥ 0.

9. Maximise Z = – x + 2y, subject to the constraints:

x ≥ 3, x + y ≥ 5, x + 2y ≥ 6, y ≥ 0.

10. Maximise Z = x + y, subject to x – y ≤ –1, –x + y ≤  0,  x, y  ≥ 0.

Summary

® A linear programming problem is one that is concerned with finding the optimal

value (maximum or minimum) of a linear function of several variables (called

objective function) subject to the conditions that the variables are

non-negative and satisfy a set of linear inequalities (called linear constraints).

Variables are sometimes called decision variables and are non-negative.

Historical Note

In the World War II, when the war operations had to be planned to economise

expenditure, maximise damage to the enemy, linear programming problems

came to the forefront.

The first problem in linear programming was formulated in 1941 by the Russian

mathematician, L. Kantorovich and the American economist, F. L. Hitchcock,
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both of whom worked at it independently of each other. This was the well

known transportation problem. In 1945, an English economist, G.Stigler,

described yet another linear programming problem – that of determining an

optimal diet.

In 1947, the American economist, G. B. Dantzig suggested an efficient method

known as the simplex method which is an iterative procedure to solve any

linear programming problem in a finite number of steps.

L. Katorovich and American mathematical economist, T. C. Koopmans were

awarded the nobel prize in the year 1975 in economics for their pioneering

work in linear programming. With the advent of computers and the necessary

softwares, it has become possible to apply linear programming model to

increasingly complex problems in many areas.

—vvvvv—
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vThe theory of probabilities is simply the Science of logic

quantitatively treated. – C.S. PEIRCE v

13.1  Introduction

In earlier Classes, we have studied the probability as a
measure of uncertainty of events in a random experiment.
We discussed the axiomatic approach formulated by
Russian Mathematician, A.N. Kolmogorov (1903-1987)
and treated probability as a function of outcomes of the
experiment. We have also established equivalence between
the axiomatic theory and the classical theory of probability
in case of equally likely outcomes. On the basis of this
relationship, we obtained probabilities of events associated
with discrete sample spaces. We have also studied the
addition rule of probability. In this chapter, we shall discuss
the important concept of conditional probability of an event
given that another event has occurred, which will be helpful
in understanding the Bayes' theorem, multiplication rule of
probability and independence of events. We shall also learn
an  important concept of  random variable and its probability
distribution and also the mean and variance of a probability  distribution. In the last
section of the chapter, we shall study an important discrete probability distribution
called  Binomial distribution. Throughout this chapter, we shall take up the experiments
having equally likely outcomes, unless stated otherwise.

13.2  Conditional Probability

Uptill now in probability, we have discussed the methods of finding the probability of
events. If we have two events from the same sample space, does the information
about the occurrence of one of the events affect the probability of the other event? Let
us try to answer this question by taking up a random experiment in which the outcomes
are equally likely to occur.

Consider the experiment of tossing three fair coins. The sample space of the
experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Chapter 13

PROBABILITY

Pierre de Fermat

(1601-1665)
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Since the coins are fair, we can assign the probability  
1

8
  to each sample point. Let

E be the event ‘at least two heads appear’ and  F be the event ‘first coin shows tail’.

Then

E = {HHH, HHT, HTH, THH}

and F = {THH, THT, TTH, TTT}

Therefore P(E) = P ({HHH}) + P ({HHT}) + P ({HTH}) + P ({THH})

=
1 1 1 1 1

8 8 8 8 2
+ + + =  (Why ?)

and P(F) = P ({THH}) + P ({THT}) + P ({TTH}) + P ({TTT})

=
1 1 1 1 1

8 8 8 8 2
+ + + =

Also E ∩ F = {THH}

with P(E ∩ F) = P({THH}) = 
1

8

Now, suppose we are given that the first coin shows tail, i.e. F occurs, then what is

the probability of occurrence of E? With the information of occurrence of F, we are

sure that the cases in which first coin does not result into a tail should not be considered

while finding the probability of E. This information reduces our sample space from the

set S to its subset F for the event E. In other words, the additional information really

amounts to telling us that the situation may be considered as being that of a new

random experiment for which the sample space consists of all those outcomes only

which are favourable to the occurrence of the event F.

Now, the sample point of F which is favourable to event E is THH.

Thus, Probability of E considering F as the sample space = 
1

4
,

or Probability of E given that the event F has occurred = 
1

4

This probability of the event E is called the conditional probability of E given

that F has already occurred, and is denoted by P (E|F).

Thus P(E|F) =
1

4

Note that the elements of F which favour the event E are the common elements of

E and F, i.e. the sample points of E ∩ F.
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Thus, we can also write the conditional probability of E given that F has occurred as

P(E|F) =
Numberof elementaryeventsfavourable to E F

Numberof elementaryevents whicharefavourable to F

∩

=
(E F)

(F)

n

n

∩

Dividing the numerator and the denominator by total number of elementary events

of the sample space, we see that P(E|F) can also be written as

P(E|F) =

(E F)

P(E F)(S)

(F) P(F)

(S)

n

n

n

n

∩
∩

= ... (1)

Note that (1) is valid only when P(F) ≠ 0 i.e., F ≠ φ (Why?)

Thus, we can define the conditional probability as follows :

Definition 1 If  E and F are two events associated with the same sample space of a

random experiment, the conditional probability of the event E given that F has occurred,

i.e. P (E|F) is given by

P(E|F) =
P(E F)

P(F)

∩
 provided P(F) ≠ 0

13.2.1  Properties of conditional probability

Let E and F be events of a sample space S of an experiment, then we have

Property 1 P (S|F) = P(F|F) = 1

We know that

P(S|F) =
P(S F) P(F)

1
P(F) P(F)

∩
= =

Also P(F|F) =
P(F F) P(F)

1
P(F) P(F)

∩
= =

Thus P(S|F) = P(F|F) = 1

Property 2 If A and B are any two events of a sample space S and F is an event

of S such that P(F) ≠ 0, then

P((A ∪ B)|F) = P(A|F) + P(B|F) – P((A ∩ B)|F)
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In particular, if A and B are disjoint events, then

P((A∪B)|F) = P(A|F) + P(B|F)

We have

P((A ∪B)|F) =
P[(A B) F]

P(F)

∪ ∩

=
P[(A F) (B F)]

P(F)

∩ ∪ ∩

(by distributive law of union of sets over  intersection)

=
P(A F)+ P(B F) – P(A B F)

P(F)

∩ ∩ ∩ ∩

=
P(A F) P(B F) P[(A B) F]

P(F) P(F) P(F)

∩ ∩ ∩ ∩
+ −

= P(A|F) + P (B|F) – P ((A ∩B)|F)

When A and B are disjoint events, then

P((A ∩ B)|F) = 0

⇒ P((A ∪ B)|F) = P(A|F) + P(B|F)

Property 3 P (E′|F) = 1 − P (E|F)

From Property 1, we know that P(S|F) = 1

⇒ P(E ∪ E′|F) = 1    since  S = E ∪ E′
⇒ P(E|F) + P (E′|F) = 1     since E and E′ are disjoint events

Thus, P (E′|F) = 1 − P (E|F)

Let us now take up some examples.

Example 1 If P (A) = 
7

13
, P(B) = 

9

13
 and P (A ∩ B) = 

4

13
, evaluate P (A|B).

Solution We have 

4
P(A B) 413P(A|B)=

9P(B) 9

13

∩
= =

Example 2 A family has two children. What is the probability that both the children are

boys given that at least one of them is a boy ?
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Solution Let b stand for boy and g for girl. The sample space of the experiment is

S = {(b, b), (g, b), (b, g), (g, g)}

Let E and F denote the following events :

E : ‘both the children are boys’

F : ‘at least one of the child is a boy’

Then E = {(b,b)} and F = {(b,b), (g,b), (b,g)}

Now E ∩ F = {(b,b)}

Thus P(F) =
3

4
 and P (E ∩ F )= 

1

4

Therefore P(E|F) =

1

P(E F) 14
3P( F) 3

4

∩
= =

Example 3  Ten cards  numbered 1 to 10 are placed in a box, mixed up thoroughly and

then one card is drawn randomly. If it is known that the number on the drawn card is

more than 3, what is the probability that it is an even number?

Solution Let A be the event ‘the number on the card drawn is even’ and B be the

event ‘the number on the card drawn is  greater than 3’. We have to find P(A|B).

Now, the sample space of the experiment is S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Then A = {2, 4, 6, 8, 10},  B = {4, 5, 6, 7, 8, 9, 10}

and A ∩ B = {4, 6, 8, 10}

Also P(A) =
5 7 4

, P(B) = and P(A B)
10 10 10

∩ =

Then P(A|B) =

4
P(A B) 410

7P(B) 7

10

∩
= =

Example 4 In a school, there are 1000 students, out of which 430 are girls. It is known

that out of 430, 10% of the girls study in class XII. What is the probability that a student

chosen randomly studies in Class XII given that the chosen student is a girl?

Solution Let E denote the event that a student chosen randomly studies in Class XII

and F be the event that the randomly chosen student is a girl. We have to find P (E|F).
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Now  P(F) =
430

0.43
1000

=  and  
43

P(E F)= 0.043
1000

∩ =   (Why?)

Then  P(E|F) =
P(E F) 0.043

0.1
P(F) 0.43

∩
= =

Example 5 A die is thrown three times. Events A and B are defined as below:

A : 4 on the third throw

B : 6 on the first and 5 on the second throw

Find the probability of A given that B has already occurred.

Solution The sample space has 216 outcomes.

Now A =

(1,1,4)   (1,2,4) ... (1,6,4) (2,1,4) (2,2,4) ... (2,6,4)

(3,1,4) (3,2,4) ... (3,6,4) (4,1,4) (4,2,4) ...(4,6,4)

(5,1,4) (5,2,4) ... (5,6,4) (6,1,4) (6,2,4) ...(6,6,4)

 
 
 
 
 

B = {(6,5,1), (6,5,2), (6,5,3), (6,5,4), (6,5,5), (6,5,6)}

and A ∩ B = {(6,5,4)}.

Now P(B) =
6

216
 and  P (A ∩ B) = 

1

216

Then P(A|B) =

1

P(A B) 1216
6P(B) 6

216

∩
= =

Example 6  A die is thrown twice and the sum of the numbers appearing is observed

to be 6. What is the conditional probability that the number 4 has appeared at least

once?

Solution  Let E be the event that ‘number 4 appears at least once’ and F be the event

that ‘the sum of the numbers appearing is 6’.

Then, E = {(4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (1,4), (2,4), (3,4), (5,4), (6,4)}

and F = {(1,5), (2,4), (3,3), (4,2), (5,1)}

We have P(E) =
11

36
and P (F) = 

5

36

Also E ∩F = {(2,4), (4,2)}
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Therefore P(E ∩F) =
2

36

Hence, the required probability

P(E|F) =

2

P(E F) 236
5P(F) 5

36

∩
= =

For the conditional probability discussed above, we have considered the elemen-

tary events of the experiment to be equally likely and the corresponding definition of

the probability of an event was used. However, the same definition can also be used in

the general case where the elementary events of the sample space are not equally

likely, the probabilities P (E ∩F) and P (F) being calculated accordingly. Let us take up

the following example.

Example 7 Consider the experiment of tossing a coin. If the coin shows head, toss it

again but if it shows tail, then throw a die.  Find the

conditional probability of the event that ‘the die shows

a number greater than 4’ given that ‘there is at least

one tail’.

Solution The outcomes of the experiment can be

represented in following diagrammatic manner called

the ‘tree diagram’.

The sample space of the experiment may be

described as

S = {(H,H), (H,T), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6)}

where (H, H) denotes that both the tosses result into

head and (T, i) denote the first toss result into a tail and

the number i appeared on the die for i = 1,2,3,4,5,6.

Thus, the probabilities assigned to the 8 elementary

events

(H, H), (H, T), (T, 1), (T, 2), (T, 3) (T, 4), (T, 5), (T, 6)

are 
1 1 1 1 1 1 1 1

, , , , , , ,
4 4 12 12 12 12 12 12

 respectively which  is

clear from the Fig 13.2.

Fig 13.1

Fig 13.2
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Let F be the event that ‘there is at least one tail’ and E be the event ‘the die shows

a number greater than 4’. Then

F = {(H,T), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6)}

E = {(T,5), (T,6)} and E ∩ F = {(T,5), (T,6)}

Now P(F) = P({(H,T)}) + P ({(T,1)}) + P ({(T,2)}) + P ({(T,3)})

+ P ({(T,4)}) + P({(T,5)}) + P({(T,6)})

=
1 1 1 1 1 1 1 3

4 12 12 12 12 12 12 4
+ + + + + + =

and P(E ∩ F) = P ({(T,5)}) + P ({(T,6)}) = 
1 1 1

12 12 6
+ =

Hence P(E|F) =

1
P(E F) 26

3P(F) 9

4

∩
= =

EXERCISE 13.1

1. Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and

P(E ∩ F) = 0.2, find P (E|F) and P (F|E)

2. Compute P(A|B), if P(B) = 0.5 and  P (A ∩ B) = 0.32

3. If  P (A) = 0.8,  P (B) = 0.5 and P (B|A) = 0.4, find

(i) P (A ∩ B) (ii) P(A|B) (iii) P(A ∪ B)

4. Evaluate P(A ∪ B), if 2P(A) = P(B) = 
5

13
 and P(A|B) = 

2

5

5. If P(A) = 
6

11
 , P(B) = 

5

11
 and P(A ∪ B) 

7

11
= , find

(i) P(A∩B) (ii) P(A|B) (iii) P(B|A)

Determine P(E|F) in Exercises 6 to 9.

6. A coin is tossed three times, where

(i) E : head on third toss  ,      F : heads on first two tosses

(ii) E : at least two heads  ,     F : at most two heads

(iii) E : at most two tails    ,      F : at least one tail
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7. Two coins are tossed once, where

(i) E : tail appears on one coin, F : one coin shows head

(ii) E :  no tail appears, F : no head appears

8. A die is thrown three times,

E : 4 appears on the third toss, F : 6 and 5 appears respectively

on first two tosses

9. Mother, father and son line up at random for a family picture

E : son on one end, F : father in middle

10. A black and a red dice are rolled.

(a) Find the conditional probability of obtaining a sum greater than 9, given

that the black die resulted in a 5.

(b) Find the conditional probability of obtaining the sum 8, given that the red die

resulted in a number less than 4.

11. A fair die is rolled. Consider events E = {1,3,5},  F = {2,3} and G = {2,3,4,5}

Find

(i) P (E|F) and P (F|E) (ii) P (E|G) and P (G|E)

(iii) P ((E ∪ F)|G) and P ((E ∩ F)|G)

12. Assume that each born child is equally likely to be a boy or a girl. If a family has
two children, what is the conditional probability that both are girls given that

(i) the youngest is a girl, (ii) at least one is a girl?

13. An instructor has a question bank consisting of 300 easy True / False questions,

200 difficult True / False questions, 500 easy multiple choice questions and 400

difficult multiple choice questions. If a question is selected at random from the
question bank, what is the probability that it will be an easy question given that it

is a multiple choice question?

14. Given that the two numbers appearing on throwing two dice are different. Find

the probability of the event ‘the sum of numbers on the dice is 4’.

15. Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the

die again and if any other number comes, toss a coin. Find the conditional probability
of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.

In each of the Exercises 16 and 17 choose the correct answer:

16. If  P (A) = 
1

2
, P (B) = 0, then P (A|B) is

(A) 0 (B)
1

2
(C) not defined (D) 1
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17. If A and B are events such that P(A|B) = P(B|A), then

(A) A ⊂ B but A ≠ B (B) A = B

(C) A ∩ B = φ (D) P(A) = P(B)

13.3  Multiplication Theorem on Probability

Let E and F be two events associated with a sample space S. Clearly, the set E ∩ F

denotes the event that both E and F have occurred. In other words, E ∩ F denotes the

simultaneous occurrence of the events E and F. The event E ∩ F is also written as EF.

Very often we need to find the probability of  the event EF. For example, in the

experiment of drawing two cards one after the other, we may be interested in finding

the probability of the event ‘a king and a queen’. The probability of event EF is obtained

by using the conditional probability as obtained below :

We know that the conditional probability of event E given that F has occurred is

denoted by P(E|F) and is given by

P(E|F) =
P(E F)

,P(F) 0
P(F)

∩
≠

From this result, we can write

P (E ∩ F) = P(F) . P (E|F) ... (1)

Also, we know that

P (F|E) =
P(F E)

,P(E) 0
P(E)

∩
≠

or P(F|E) =
P(E F)

P(E)

∩
 (since E ∩ F = F ∩ E)

Thus, P(E ∩ F) = P(E). P(F|E) .... (2)

Combining (1) and (2), we find that

P (E ∩ F) = P(E) P(F|E)

= P(F) P(E|F) provided P(E) ≠ 0 and P(F) ≠ 0.

The above result is known as the multiplication rule of probability.

Let us now take up an example.

Example 8  An urn contains 10 black and 5 white balls. Two balls are drawn from the

urn one after the other without replacement. What is the probability that both drawn

balls are black?

Solution Let E and F denote respectively the events that first and second ball drawn

are black. We have to find P (E ∩ F) or P (EF).
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Now P(E) = P (black ball in first draw) = 
10

15

Also given that the first ball drawn is black, i.e., event E has occurred, now there

are 9 black balls and five white balls left in the urn. Therefore, the probability that the

second ball drawn is black, given that the ball in the first draw is black, is nothing but

the conditional probability of F given that E has occurred.

i.e. P(F|E) =
9

14

By multiplication rule of probability, we have

P (E ∩ F) = P(E) P (F|E)

=
10 9 3

15 14 7
× =

Multiplication rule of probability for more than two events If E, F and G are

three events of sample space, we have

P(E ∩ F ∩ G) = P (E) P (F|E) P (G|(E ∩ F)) = P (E) P (F|E) P (G|EF)

Similarly, the multiplication rule of probability can be extended for four or

more events.

The following example illustrates the extension of multiplication rule of probability

for three events.

Example 9 Three cards are drawn successively, without replacement from a pack of

52 well shuffled cards. What is the probability that first two cards are kings and the

third card drawn is an ace?

Solution Let K denote the event that the card drawn is king and A be the event that

the card drawn is an ace. Clearly, we have to find P (KKA)

Now P(K) =
4

52

Also, P (K|K) is the probability of second king with the condition that one king has

already been drawn. Now there are three kings in (52 − 1) = 51 cards.

Therefore P(K|K) =
3

51

Lastly, P(A|KK) is the probability of third drawn card to be an ace, with the condition

that two kings have already been drawn. Now there are four aces in left 50 cards.
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Therefore P(A|KK) =
4

50

By multiplication law of probability, we have

P(KKA) = P(K)   P(K|K)  P(A|KK)

=
4 3 4 2

52 51 50 5525
× × =

13.4  Independent Events

Consider the experiment of drawing a card from a deck of 52 playing cards, in which

the elementary events are assumed to be equally likely. If E and F denote the events

'the card drawn is a spade' and 'the card drawn is an ace' respectively, then

P(E) =
13 1 4 1

and P(F)
52 4 52 13

= = =

Also E and F is the event ' the card drawn is the ace of spades' so that

P(E ∩F) =
1

52

Hence P(E|F) =

1

P(E F) 152
1P(F) 4

13

∩
= =

Since P(E) = 
1

4
= P (E|F), we can say that the occurrence of event F has not

affected the probability of occurrence of the event E.

We also have

P(F|E) =

1

P(E F) 152 P(F)
1P(E) 13

4

∩
= = =

Again,  P (F) = 
1

13
 = P (F|E) shows that occurrence of event E has not affected

the probability of occurrence of the event F.

Thus, E and F are two events such that the probability of occurrence of one of
them is not affected by occurrence of the other.

Such events are called independent events.
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Definition 2 Two events E and F are said to be independent, if

P (F|E) = P (F)  provided P (E)  ≠ 0

and P (E|F) = P (E)  provided P (F)  ≠ 0

Thus, in this definition we need to have P (E) ≠ 0 and  P(F) ≠ 0

Now, by the multiplication rule of probability, we have

P(E ∩ F) = P(E) . P (F|E) ... (1)

If E and F are independent, then (1) becomes

P(E ∩ F) = P(E) . P(F) ... (2)

Thus, using (2), the independence of two events is also defined as follows:

Definition 3 Let E and F be two events associated with the same random experiment,

then E and F are said to be independent if

P (E ∩ F) = P(E) . P (F)

Remarks

(i) Two events E and F are said to be dependent if they are not independent, i.e. if

P(E ∩ F ) ≠ P (E) . P (F)

(ii) Sometimes there is a confusion between independent events and mutually

exclusive events. Term ‘independent’ is defined in terms of ‘probability of events’
whereas mutually exclusive is defined in term of events (subset of sample space).

Moreover, mutually exclusive events never have an outcome common, but

independent events, may have common outcome. Clearly, ‘independent’ and

‘mutually exclusive’ do not have the same meaning.

In other words, two independent events having nonzero probabilities of occurrence

can not be mutually exclusive, and conversely, i.e. two mutually exclusive events

having nonzero probabilities of occurrence can not be independent.

(iii) Two experiments are said to be independent if for every pair of events E and F,

where E is associated with the first experiment and F with the second experiment,

the probability of the simultaneous occurrence of the events E and F when the

two experiments are performed is the product of P(E) and P(F) calculated

separately on the basis of two experiments, i.e., P (E ∩ F) = P (E) . P(F)

(iv) Three events A, B and C are said to be mutually independent, if

P (A ∩ B) = P(A) P (B)

P(A ∩ C) = P(A) P (C)

P (B ∩ C) = P(B) P(C)

and P(A ∩ B ∩ C) = P(A) P (B) P (C)
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If at least one of the above is not true for three given events, we say that the

events are not independent.

Example 10 A die is thrown. If E is the event ‘the number appearing is a multiple of

3’ and F be the event ‘the number appearing is even’ then find whether E and F are

independent ?

Solution We know that the sample space is S = {1, 2, 3, 4, 5, 6}

Now E = { 3, 6}, F = { 2, 4, 6} and  E ∩ F = {6}

Then P(E) = 
2 1 3 1 1

, P(F) and P(E  F)
6 3 6 2 6

= = = ∩ =

Clearly P(E ∩ F) = P(E). P (F)

Hence E and F are independent events.

Example 11 An unbiased die is thrown twice. Let the event A be ‘odd number on the

first throw’ and B the event ‘odd number on the second throw’. Check the independence

of the events A and B.

Solution If all the 36 elementary events of the experiment are considered to be equally

likely, we have

P(A) =
18 1

36 2
=  and 

18 1
P(B)

36 2
= =

Also P(A ∩ B) = P (odd number on both throws)

=
9 1

36 4
=

Now P(A) P(B) =
1 1 1

2 2 4
× =

Clearly P(A ∩ B) = P(A) × P (B)

Thus, A and B are independent events

Example 12 Three coins are tossed simultaneously. Consider the event E ‘three heads

or three tails’, F ‘at least two heads’ and G ‘at most two heads’. Of the pairs (E,F),

(E,G) and (F,G), which are independent? which are dependent?

Solution The sample space of the experiment is given by

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Clearly E = {HHH, TTT}, F= {HHH, HHT, HTH, THH}
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and G = {HHT, HTH, THH, HTT, THT, TTH, TTT}

Also E ∩ F = {HHH}, E ∩ G = {TTT}, F ∩ G = {HHT, HTH, THH}

Therefore P(E) =
2 1 4 1 7

, P(F) , P(G)
8 4 8 2 8

= = = =

and P(E∩F) =
1 1 3

, P(E G) , P(F G)
8 8 8

∩ = ∩ =

Also P(E) . P (F) =
1 1 1 1 7 7

, P(E) P(G)
4 2 8 4 8 32

× = ⋅ = × =

and P(F) . P(G) =
1 7 7

2 8 16
× =

Thus P(E ∩ F) = P(E) . P(F)

P(E ∩ G) ≠ P(E) . P(G)

and P(F ∩ G) ≠ P (F) . P(G)

Hence, the events (E and F) are independent, and the events (E and G) and

(F and G) are dependent.

Example 13 Prove that if E and F are independent events, then so are the events

E and F′.

Solution Since E and F are independent, we have

P(E ∩ F) = P(E) . P(F) ....(1)

From the venn diagram in Fig 13.3, it is clear

that E ∩ F and E ∩ F ′ are mutually exclusive events

and also  E =(E ∩ F) ∪ (E ∩ F ′).

Therefore P(E) = P(E ∩ F) + P(E ∩ F ′)

or P (E ∩ F ′) = P(E) − P(E ∩ F)

= P(E) − P(E) . P(F)

(by  (1))

= P(E) (1−P(F))

= P(E).  P(F ′)

Hence,  E and F ′ are independent

(E F )’∩ (E F)’∩

E
F

S

(E F)∩

(E F )’ ’∩

Fig 13.3
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ANote In a similar manner, it can be shown that if the events E and F are

independent, then

(a) E ′ and F are independent,

(b) E ′ and F ′ are independent

Example 14 If A and B are two independent events, then the probability of occurrence

of at least one of A and B is given by 1– P(A′) P(B′)

Solution We have

P(at least one of A and B) = P(A ∪ B)

= P(A) + P(B) − P(A ∩ B)

= P(A) + P(B) − P(A) P(B)

= P(A) + P(B) [1−P(A)]

= P(A)  +  P(B). P(A′)
= 1− P(A′) + P(B) P(A′)
= 1− P(A′)  [1− P(B)]

= 1− P(A′) P (B′)

EXERCISE 13.2

1. If  P(A) 
3

5
=  and P (B) 

1

5
= , find P (A  ∩ B) if A and B are independent events.

2. Two cards are drawn at random and without replacement from a pack of 52

playing cards. Find the probability that both the cards are black.

3. A box of oranges is inspected by examining three randomly selected oranges

drawn without replacement. If all the three oranges are good, the box is approved

for sale, otherwise, it is rejected. Find the probability that a box containing 15

oranges out of which 12 are  good and 3 are bad ones will be approved for sale.

4. A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on

the coin’ and B be the event ‘3 on the die’. Check whether A and B are

independent events or not.

5. A die marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event,

‘the number is even,’ and B be the event, ‘the number is red’. Are A and B

independent?

6. Let E and F be events with P (E) 
3

5
= , P (F) 

3

10
=  and P (E ∩ F) = 

1

5
. Are

E and F independent?
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7. Given that the events A and B are such that P(A) = 
1

2
,  P(A ∪ B) = 

3

5
 and

P(B) = p. Find p if they are (i) mutually exclusive (ii) independent.

8. Let A and B be independent events with P (A) = 0.3 and P(B) = 0.4. Find

(i) P (A ∩ B) (ii) P (A ∪ B)
(iii) P (A|B) (iv) P (B|A)

9. If A and B are two events such that  P(A) = 
1

4
, P (B) = 

1

2
 and  P (A ∩ B) =

1

8
,

find P (not A and not B).

10. Events A and B are such that P (A) = 
1

2
, P(B) = 

7

12
 and P(not A or not B) = 

1

4
.

State whether A and B are independent ?

11. Given two independent events A and B such that P(A) = 0.3,  P(B) = 0.6.
Find

(i) P(A and B) (ii) P(A and not B)

(iii) P(A or B) (iv) P(neither A nor B)

12. A die is tossed thrice. Find the probability of getting an odd number at least once.

13. Two balls are drawn at random with replacement from a box containing 10 black
and 8 red balls. Find the probability that

(i) both balls are red.

(ii) first ball is black and second is red.

(iii) one of them is black and other is red.

14. Probability of solving specific problem independently by A and B are 
1

2
 and 

1

3
respectively. If both try to solve the problem independently, find the probability
that

(i) the problem is solved (ii) exactly one of them solves the problem.

15. One card is drawn at random from a well shuffled deck of 52 cards. In which of
the following cases are the events E and F independent ?

(i) E : ‘the card drawn is a spade’

F : ‘the card drawn is an ace’

(ii) E : ‘the card drawn is black’

F : ‘the card drawn is a king’

(iii) E : ‘the card drawn is a king or queen’

F : ‘the card drawn is a queen or jack’.
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16. In a hostel, 60% of the students read Hindi newspaper, 40% read English

newspaper and 20% read both Hindi and English newspapers. A student is

selected at random.

(a) Find the probability that she reads neither Hindi nor English newspapers.

(b) If she reads Hindi newspaper, find the probability that she reads English

newspaper.

(c) If she reads English newspaper, find the probability that she reads Hindi

newspaper.

Choose the correct answer in Exercises 17 and 18.

17. The probability of obtaining an even prime number on each die, when a pair of

dice is rolled is

(A) 0 (B)
1

3
(C)

1

12
(D)

1

36

18. Two events A and B will be independent, if

(A) A and B are mutually exclusive

(B) P(A′B′) = [1 – P(A)] [1 – P(B)]

(C) P(A) = P(B)

(D) P(A) + P(B) = 1

13.5  Bayes' Theorem

Consider that there are two bags I and II. Bag I contains 2 white and 3 red balls and

Bag II contains 4 white and 5 red balls. One ball is drawn at random from one of the

bags. We can find the probability of selecting any of the bags (i.e.
1

2
) or probability of

drawing a ball of a particular colour (say white) from a particular bag (say Bag I). In

other words, we can find the probability that the ball drawn is of a particular colour, if

we are given the bag from which the ball is drawn. But, can we find the probability that

the ball drawn is from a particular bag (say Bag II), if the colour of the ball drawn is

given? Here, we have to find the reverse probability of Bag II to be selected when an

event occurred after it is known. Famous mathematician, John Bayes' solved the problem

of finding reverse probability by using conditional probability. The formula developed

by him is known as ‘Bayes theorem’ which was published posthumously in 1763.

Before stating and proving the Bayes' theorem, let us first take up a definition and

some preliminary results.

13.5.1 Partition of a sample space

A set of events E
1
, E

2
, ..., E

n
 is said to represent a partition of the sample space S if

(a) E
i
 ∩ E

j
 = φ, i ≠ j, i, j = 1, 2, 3, ..., n
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Fig 13.4

(b) E
1
 ∪ Ε2 ∪ ... ∪ E

n
= S and

(c) P(E
i
)

 
>

 
0 for all i = 1, 2, ..., n.

In other words, the events E
1
, E

2
, ..., E

n
 represent a partition of the sample space

S if they are pairwise disjoint, exhaustive and have nonzero probabilities.

As an example, we see that any nonempty event E and its complement E′ form a

partition of the sample space S since they satisfy E ∩ E′ = φ and E ∪ E′ = S.

From the Venn diagram in Fig 13.3, one can easily observe that if E and F are any

two events associated with a sample space S, then the set  {E ∩ F′, E ∩ F, E′ ∩ F, E′ ∩ F′}
is a partition of the sample space S. It may be mentioned that the partition of a sample

space is not unique. There can be several partitions of the same sample space.

We shall now prove a theorem known as Theorem of total probability.

13.5.2  Theorem of total probability

Let   {E
1
, E

2
,...,E

n
}  be a partition of the sample space S,  and suppose that each of the

events E
1
, E

2
,..., E

n
 has nonzero probability of occurrence. Let A be any event associated

with S, then

P(A) = P(E
1
) P(A|E

1
) + P(E

2
) P(A|E

2
) + ... + P(E

n
) P(A|E

n
)

=
1

P(E ) P (A|E )
n

j j

j=
∑

Proof  Given that E
1
, E

2
,..., E

n
 is a partition of the sample space S (Fig 13.4). Therefore,

S = E
1
 ∪ E

2 
∪ ... ∪ E

n
 ... (1)

and E
i
 ∩ E

j
 = φ, i ≠ j, i, j = 1, 2, ..., n

Now, we know that for any event A,

A = A ∩ S
= A ∩ (E

1
 ∪ E

2
 ∪ ... ∪ E

n
)

= (A ∩ E
1
) ∪ (A ∩ E

2
) ∪ ...∪ (A ∩ E

n
)

Also A ∩ E
i
 and A ∩ E

j
 are respectively the subsets of E

i
 and E

j
. We know that

E
i 
 and E

j
 are disjoint, for i j≠ , therefore, A  ∩ E

i
 and A  ∩ E

j
  are also disjoint for all

i ≠ j,  i, j = 1, 2, ..., n.

Thus, P(A) = P [(A ∩ E
1
) ∪ (A ∩ E

2
)∪ .....∪ (A ∩ E

n
)]

= P (A ∩ E
1
) + P (A ∩ E

2
) + ... + P (A ∩ E

n
)

Now, by multiplication rule of probability, we have

P(A ∩ E
i
) = P(E

i
) P(A|E

i
) as  P (E

i
) ≠ 0∀i = 1,2,..., n
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Therefore, P (A) = P (E
1
) P (A|E

1
) + P (E

2
) P (A|E

2
) + ... + P (E

n
)P(A|E

n
)

or P(A) =
1

P(E ) P(A|E )
n

j j

j=
∑

Example 15 A person has undertaken a construction job. The probabilities are 0.65

that there will be strike, 0.80 that the construction job will be completed on time if there

is no strike, and 0.32 that the construction job will be completed on time if there is a

strike. Determine the probability that the construction job will be completed on time.

Solution Let A be the event that the construction job will be completed on time, and B

be the event that there will be a strike. We have to find P(A).

We have

P(B) = 0.65, P(no strike) = P(B′) = 1 − P(B) = 1 − 0.65 = 0.35

P(A|B) = 0.32, P(A|B′) = 0.80

Since events B and B′ form a partition of the sample space S, therefore, by theorem

on total probability, we have

P(A) = P(B) P(A|B) + P(B′) P(A|B′)
         = 0.65 × 0.32 + 0.35 × 0.8

         = 0.208 + 0.28 = 0.488

Thus, the probability that the construction job will be completed in time is 0.488.

We shall now state and prove the Bayes' theorem.

Bayes’ Theorem If E
1
, E

2
 ,..., E

n
 are n non empty events which constitute a partition

of sample space S, i.e. E
1
, E

2
 ,..., E

n
 are pairwise disjoint and E

1
∪ E

2
∪ ... ∪ E

n
 = S and

A is any event of nonzero probability, then

P(E
i
|A) =

1

P(E ) P(A|E )

P(E ) P(A|E )

i i

n

j j

j=
∑

   for any i = 1, 2, 3, ..., n

Proof By formula of conditional probability, we know that

P(E
i
|A) =

P(A E )

P(A)

i∩

=
P(E )P(A|E )

P(A)

i i
 (by multiplication rule of probability)

=

1

P(E ) P(A|E )

P(E )P(A|E )

i i

n

j j

j=
∑

 (by the result of theorem of total probability)
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Remark  The following terminology is generally used when Bayes' theorem is applied.

The events E
1
, E

2
, ..., E

n
 are  called hypotheses.

The probability P(E
i
) is called the priori probability of the hypothesis E

i

The conditional probability P(E
i 
|A) is called a posteriori probability of the

hypothesis E
i
.

Bayes' theorem is also called the formula for the probability of "causes". Since the

E
i
's are a partition of the sample space S, one and only one of the events E

i
 occurs (i.e.

one of the events E
i
 must occur and only one can occur). Hence, the above formula

gives us the probability of a particular E
i
 (i.e. a "Cause"), given that the event A has

occurred.

The Bayes'  theorem has its applications in variety of situations, few of which are

illustrated in following examples.

Example 16 Bag I contains 3 red and 4 black balls while another Bag II contains 5 red

and 6 black balls. One ball is drawn at random from one of the bags and it is found to

be red. Find the probability that it was drawn from Bag II.

Solution Let E
1
 be the event of choosing the bag I, E

2
 the event of choosing the bag II

and A be the event of drawing a red ball.

Then P(E
1
) = P(E

2
) =  

1

2

Also P(A|E
1
) = P(drawing a red ball from Bag I) = 

3

7

and P(A|E
2
) = P(drawing a red ball from Bag II) = 

5

11

Now, the probability of drawing a ball from Bag II, being given that it is red,

is P(E
2
|A)

By using Bayes' theorem, we have

P(E
2
|A) =

2 2

1 1 2 2

P(E )P(A|E )

P(E )P(A|E )+ P(E )P(A|E )
 = 

1 5

352 11
1 3 1 5 68

2 7 2 11

×
=

× + ×

Example 17 Given three identical boxes I, II and III, each containing two coins. In

box I, both coins are gold coins, in box II, both are silver coins and in the box III, there

is one gold and one silver coin. A person chooses a box at random and takes out a coin.

If the coin is of gold, what is the probability that the other coin in the box is also of gold?
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Solution Let E
1
, E

2
 and E

3
 be the events that boxes I, II and III are chosen, respectively.

Then P(E
1
) = P(E

2
) = P(E

3
) = 

1

3

Also, let A be the event that ‘the coin drawn is of gold’

Then P(A|E
1
) = P(a gold coin from bag I) = 

2

2
 = 1

P(A|E
2
) = P(a gold coin from bag II) = 0

P(A|E
3
) = P(a gold coin from bag III) = 

1

2

Now, the probability that the other coin in the box is of gold

= the probability that gold coin is drawn from the box I.

= P(E
1
|A)

By Bayes' theorem, we know that

P(E
1
|A) =

1 1

1 1 2 2 3 3

P(E )P(A|E )

P(E )P(A|E )+ P(E )P(A|E )+ P(E )P(A|E )

=

1
1

23
1 1 1 1 3

1 0
3 3 3 2

×
=

× + × + ×

Example 18 Suppose that the reliability of a HIV test is specified as follows:

Of people having HIV, 90% of the test detect the disease but 10% go undetected. Of

people free of HIV, 99% of the test are judged HIV–ive but 1% are diagnosed as

showing HIV+ive. From a large population of which only 0.1% have HIV, one person

is selected at random, given the HIV test, and the pathologist reports him/her as

HIV+ive. What is the probability that the person actually has HIV?

Solution Let E denote the event that the person selected is actually having HIV and A

the event that the person's HIV test is diagnosed as +ive. We need to find P(E|A).

Also E′ denotes the event that the person selected is actually not having HIV.

Clearly, {E, E′} is a partition of the sample space of all people in the population.

We are given that

P(E) = 0.1% 
0.1

0.001
100

= =
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P(E′) = 1 – P(E) = 0.999

P(A|E) = P(Person tested as HIV+ive given that he/she

is actually having HIV)

= 90% 
90

0.9
100

= =

and P(A|E′) = P(Person tested as HIV +ive given that he/she

is actually not having HIV)

= 1% = 
1

100
= 0.01

Now, by Bayes' theorem

P(E|A) =
P(E)P(A|E)

P(E)P(A|E)+ P(E )P(A|E )′ ′

=
0.001 0.9 90

0.001 0.9 0.999 0.01 1089

×
=

× + ×
= 0.083 approx.

Thus,  the probability that a person selected at random is actually having HIV

given that he/she is tested HIV+ive is 0.083.

Example 19 In a factory which manufactures bolts, machines A, B and C manufacture

respectively 25%, 35% and 40% of the bolts. Of their outputs, 5, 4 and 2 percent are

respectively defective bolts. A bolt is drawn at random from the product and is found

to be defective. What is the probability that it is manufactured by the machine B?

Solution Let events B
1
, B

2
, B

3
 be the following :

B
1
 : the bolt is manufactured by machine A

B
2
 : the bolt is manufactured by machine B

B
3
 : the bolt is manufactured by machine C

Clearly, B
1
, B

2
, B

3
 are mutually exclusive and exhaustive events and hence, they

represent a partition of the sample space.

Let the event E be ‘the bolt is defective’.

The event E occurs with B
1
 or with B

2
 or with B

3
. Given that,

P(B
1
) = 25% = 0.25,  P (B

2
) = 0.35 and P(B

3
) = 0.40

Again P(E|B
1
) = Probability that the bolt drawn is defective given that it is manu-

factured by machine A = 5% = 0.05

Similarly, P(E|B
2
) = 0.04,  P(E|B

3
) = 0.02.
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Hence, by Bayes' Theorem, we have

P(B
2
|E) =

2 2

1 1 2 2 3 3

P(B )P(E|B )

P(B )P(E|B )+ P(B )P(E|B )+P(B )P(E|B )

=
0.35 0.04

0.25 0.05 0.35 0.04 0.40 0.02

×
× + × + ×

=
0.0140 28

0.0345 69
=

Example 20 A doctor is to visit a patient. From the past experience, it is known that
the probabilities that he will come by train, bus, scooter or by other means of transport

are respectively 
3 1 1 2

, , and
10 5 10 5

. The probabilities that he will be late are 
1 1 1

, , and
4 3 12

,

if he comes by train, bus and scooter respectively, but if he comes by other means of
transport, then he will not be late. When he arrives, he is late. What is the probability
that he comes by train?

Solution Let E be the event that the doctor visits the patient late and let T
1
, T

2
, T

3
, T

4

be the events  that the doctor comes by train, bus, scooter, and other means of transport
respectively.

Then P(T
1
) = 2 3 4

3 1 1 2
, P(T ) ,P(T ) and P(T )

10 5 10 5
= = = (given)

P(E|T
1
) = Probability that the doctor arriving late comes by train = 

1

4

Similarly, P(E|T
2
) = 

1

3
, P(E|T

3
) = 

1

12
 and P(E|T

4
) = 0, since he is not late if  he

comes by other means of transport.

Therefore, by Bayes' Theorem, we have

P(T
1
|E) = Probability that the doctor arriving late comes by train

=
1 1

1 1 2 2 3 3 4 4

P(T )P(E|T )

P(T )P(E|T )+ P(T )P(E|T )+ P(T )P(E|T )+ P(T )P(E|T )

=

3 1

10 4
3 1 1 1 1 1 2

0
10 4 5 3 10 12 5

×

× + × + × + ×
 = 

3 120 1

40 18 2
× =

Hence, the required probability is 
1

2
.
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Example 21 A man is known to speak truth 3 out of 4 times. He throws a die and

reports that it is a six. Find the probability that it is actually a six.

Solution Let E be the event that the man reports that six occurs in the throwing of the

die and let S
1
 be the event that six occurs and S

2
 be the event that six does not occur.

Then P(S
1
) = Probability that six occurs = 

1

6

P(S
2
) = Probability that six does not occur = 

5

6

P(E|S
1
) = Probability that the man reports that six occurs when six has

actually occurred on the die

= Probability that the man speaks the truth = 
3

4

P(E|S
2
) = Probability that the man reports that six occurs  when six has

not actually occurred on the die

= Probability that the man does not speak the truth 
3 1

1
4 4

= − =

Thus, by Bayes' theorem, we get

P(S
1
|E) = Probability that the report of the man that six has occurred is

actually a six

=
1 1

1 1 2 2

P(S )P(E |S )

P(S )P(E|S )+P(S )P(E|S )

=

1 3

1 24 36 4
1 3 5 1 8 8 8

6 4 6 4

×
= × =

× + ×

Hence, the required probability is 
3.
8

Remark A random variable is a real valued function whose domain is the sample

space of a random experiment.

For example, let us consider the experiment of tossing a coin two times in succession.

The sample space of the experiment is  S = {HH, HT, TH, TT}.
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If X denotes the number of heads obtained, then X is a random variable and for

each outcome, its value is as given below :

X (HH) = 2, X (HT) = 1, X (TH) = 1, X (TT) = 0.

More than  one random variables can be defined on the same sample space. For

example, let Y denote the number of heads minus the number of tails for each outcome

of the above sample space S.

Then Y(HH) = 2, Y (HT) = 0, Y (TH) = 0, Y (TT) = – 2.

Thus, X and Y are two different random variables defined on the same sample

space S.

EXERCISE 13.3

1. An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is

noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn

are put in the urn and then a ball is drawn at random. What is the probability that

the second ball is red?

2.  A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black

balls. One of the two bags is selected at random and a ball is drawn from the bag

which is found to be red. Find the probability that the ball is drawn from the

first bag.

3. Of the students in a college, it is known that 60% reside in hostel and 40% are

day scholars (not residing in hostel). Previous year results report that 30% of all

students who reside in hostel attain A grade and 20% of day scholars attain A

grade in their annual examination. At the end of the year, one student is chosen

at random from the college and he has an A grade, what is the probability that the

student is a hostlier?

4. In answering a question on a multiple choice test, a student either knows the

answer or guesses. Let 
3

4
 be the probability that he knows the answer and 

1

4
be the probability that he guesses. Assuming that a student who guesses at the

answer will be correct with probability 
1

4
. What is the probability that the stu-

dent knows the answer given that he answered it correctly?

5. A laboratory blood test is 99% effective in detecting a certain disease when it is

in fact, present. However, the test also yields a false positive result for 0.5% of

the healthy person tested (i.e. if a healthy person is tested, then, with probability

0.005, the test will imply he has the disease). If 0.1 percent of the population
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actually has the disease, what is the probability that a person has the disease

given that his test result is positive ?

6. There are three coins. One is a two headed coin (having head on both faces),

another is a biased coin that comes up heads 75% of the time and third is an

unbiased coin. One of the three coins is chosen at random and tossed, it shows

heads, what is the probability that it was the two headed coin ?

7. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000

truck drivers. The probability of an accidents are 0.01, 0.03 and 0.15 respectively.

One of the insured persons meets with an accident. What is the probability that

he is a scooter driver?

8. A factory has two machines A and B. Past record shows that machine A produced

60% of the items of output and machine B produced 40% of the items. Further,

2% of the items produced by machine A and 1% produced by machine B were

defective. All the items are put into one stockpile and then one item is chosen at

random from this and is found to be defective. What is the probability that it was

produced by machine B?

9. Two groups are competing for the position on the Board of directors of a

corporation. The probabilities that the first and the second groups will win are

0.6 and 0.4 respectively. Further, if the first group wins, the probability of

introducing a new product is 0.7 and the corresponding probability is 0.3 if the

second group wins. Find the probability that the new product introduced was by

the second group.

10. Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin three times and

notes the number of heads. If she gets 1, 2, 3 or 4, she tosses a coin once and

notes whether a head or tail is obtained. If she obtained exactly one head, what

is the probability that she threw 1, 2, 3 or 4 with the die?

11. A manufacturer has three machine operators A, B  and C. The first operator A

produces 1% defective items, where as the other two operators B and C pro-

duce 5% and 7% defective items respectively. A is on the job for 50% of the

time, B is on the job for 30% of the time and C is on the job for 20% of the time.

A defective item is produced, what is the probability that it was produced by A?

12. A card from a pack of 52 cards is lost. From the remaining cards of the pack,

two cards  are drawn and are found to be both diamonds. Find the probability of

the lost card being a diamond.

13. Probability that A speaks truth is 
4

5
. A coin is tossed. A reports that a head

appears. The probability that actually there was head is
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(A)
4

5
(B)

1

2
(C)

1

5
(D)

2

5

14. If A and B are two events such that A ⊂ B and P(B) ≠  0, then which of the

following is correct?

(A)
P(B)

P(A | B)
P(A)

= (B) P(A|B) < P(A)

(C) P(A|B) ≥ P(A) (D) None of these

Miscellaneous Examples

Example 22 Coloured balls are distributed in four boxes as shown in the following table:

Box Colour

    Black      White       Red  Blue

I 3 4 5 6

II 2 2 2 2

III 1 2 3 1

IV 4 3 1 5

A box is selected at random and then a ball is randomly drawn from the selected

box. The colour of the ball is black, what is the probability that ball drawn is from the

box III?

Solution Let A, E
1
, E

2
, E

3
 and E

4
 be the events as defined below :

A : a black ball is selected E
1
 : box I is selected

E
2
 : box II is selected E

3
 : box III is selected

E
4 
: box IV is selected

Since the boxes are chosen at random,

Therefore P(E
1
) = P(E

2
) = P(E

3
) = P(E

4
) = 

1

4

Also P(A|E
1
) =

3

18
, P(A|E

2
) = 

2

8
, P(A|E

3
) = 

1

7
 and  P(A|E

4
) = 

4

13
P(box III is selected, given that the drawn ball is black) = P(E

3
|A). By Bayes'

theorem,
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P(E
3
|A) = 

3 3

1 1 2 2 3 3 4 4

P(E ) P(A|E )

P(E )P(A|E ) P(E )P(A|E )+P(E )P(A|E ) P(E )P(A|E )

⋅
+ +

= 

1 1

4 7 0.165
1 3 1 1 1 1 1 4

4 18 4 4 4 7 4 13

×
=

× + × + × + ×

Example 23 A and B throw a die alternatively  till one of them gets a ‘6’ and wins the

game. Find their respective probabilities of winning, if A starts first.

Solution Let S denote the success (getting a ‘6’) and F denote the failure (not getting

a ‘6’).

Thus, P(S) =
1 5

, P(F)
6 6

=

P(A wins in the first throw) = P(S) = 
1

6

A gets the third throw, when the first throw by A and second throw by B result into

failures.

Therefore, P(A wins in the 3rd throw) = P(FFS) = 
5 5 1

P(F)P(F)P(S)=
6 6 6

× ×

=

2
5 1

6 6

  × 
 

P(A wins in the 5th throw) = P (FFFFS) = 











5

6

1

6

4

and so on.

Hence, P(A wins) =
1

6

5

6

1

6

5

6

1

6

2 4

+ 











+ 











+ ...

=

1

6
25

1
36

−
 = 

6

11

P(B wins) = 1 – P (A wins) = 
6 5

1
11 11

− =

Remark If a + ar + ar2 + ... + arn–1 + ..., where | r | < 1, then sum of this infinite G.P.

is given by .
1

a

r−
 (Refer A.1.3 of Class XI Text book).
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Example 24 If a machine is correctly set up, it produces 90% acceptable items. If it is

incorrectly set up, it produces only 40% acceptable items. Past experience shows that

80% of the set ups are correctly done. If after a certain set up, the machine produces

2 acceptable items, find the probability that the machine is correctly setup.

Solution Let A be the event that the machine produces 2 acceptable items.

Also let B
1
 represent the event of correct set up and B

2
 represent the event of

incorrect setup.

Now P(B
1
) = 0.8, P(B

2
) = 0.2

P(A|B
1
) = 0.9 × 0.9  and P(A|B

2
) =  0.4 × 0.4

Therefore P(B
1
|A) =

1 1

1 1 2 2

P(B ) P(A|B )

P(B ) P(A|B ) + P(B ) P(A|B )

=
0.8× 0.9 × 0.9 648

0.95
0.8× 0.9 × 0.9 + 0.2 × 0.4 × 0.4 680

= =

Miscellaneous Exercise on Chapter 13

1. A and B are two events such that P (A) ≠ 0. Find P(B|A), if

(i) A is a subset of B (ii) A ∩ B = φ

2 . A couple has two children,

(i) Find the probability that both children are males, if it is known that at least

one of the children is male.

(ii) Find the probability that both children are females, if it is known that the

elder child is a female.

3. Suppose that 5% of men and 0.25% of women have grey hair. A grey haired

person is selected at random. What is the probability of this person being male?

Assume that there are equal number of males and females.

4. Suppose that 90% of people are right-handed. What  is the probability that

at most 6 of a random sample of 10 people are right-handed?

5. If a leap year is selected at random, what is the chance that it will contain 53

tuesdays?

6. Suppose we have four boxes A,B,C and D containing coloured marbles as given

below:
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Box Marble colour

Red White Black

A 1 6 3

B 6 2 2

C 8 1 1

D 0 6 4

   One of the boxes has been selected at random and a single marble is drawn from

it. If the marble is red, what is the probability that it was drawn from box A?, box B?,

box C?

7. Assume that the chances of a patient having a heart attack is 40%. It is also

assumed that a meditation and yoga course reduce the risk of heart attack by

30% and prescription of certain drug reduces its chances by 25%. At a time a

patient can choose any one of the two options with equal probabilities. It is given

that after going through one of the two options the patient selected at random

suffers a heart attack. Find the probability that the patient followed a course of

meditation and yoga?

8. If each element of a second order determinant is either zero or one, what is the

probability that the value of the determinant is positive? (Assume that the indi-

vidual entries of the determinant are chosen independently, each value being

assumed with probability 
1

2
).

9. An electronic assembly consists of two subsystems, say, A and B. From previ-

ous testing procedures, the following probabilities are assumed to be known:

P(A fails) = 0.2

P(B fails alone) = 0.15

P(A and B fail) = 0.15

Evaluate the following probabilities

(i) P(A fails|B has failed) (ii) P(A fails alone)

10. Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls.

One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II.

The ball so drawn is found to be red in colour. Find the probability that the

transferred ball is black.

Choose the correct answer in each of the following:

11. If A and B are two events such that P(A) ≠ 0 and P(B | A) = 1, then

(A) A ⊂ B (B) B ⊂ A (C) B = φ (D) A = φ
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12. If P(A|B) > P(A), then which of the following is correct :

(A) P(B|A) < P(B) (B) P(A ∩ B) < P(A) . P(B)

(C) P(B|A) > P(B) (D) P(B|A) = P(B)

13. If A and B are any two events such that P(A) + P(B) – P(A and B) = P(A), then

(A) P(B|A) = 1 (B) P(A|B) = 1

(C) P(B|A) = 0 (D) P(A|B) = 0

Summary

The salient features of the chapter are –

® The conditional probability of an event E, given the occurrence of the event F

is given by 
P(E F)

P(E | F)
P(F)

∩
= , P(F) ≠ 0

® 0 ≤ P (E|F) ≤ 1, P (E′|F) = 1 – P (E|F)

P ((E ∪ F)|G) = P (E|G) + P (F|G) – P ((E ∩ F)|G)

® P (E ∩ F) = P (E) P (F|E), P (E) ≠ 0

P (E ∩ F) = P (F)  P (E|F), P (F) ≠ 0

® If E and F are independent, then

P (E ∩ F) = P (E) P (F)

P (E|F) = P (E), P (F) ≠ 0

P (F|E) = P (F), P(E) ≠ 0

® Theorem of total probability

Let {E
1
, E

2
, ...,E

n
) be a partition of a sample space and suppose that each of

E
1
, E

2
, ..., E

n
 has nonzero probability. Let A be any event associated with S,

then

P(A) = P(E
1
) P (A|E

1
) + P (E

2
) P (A|E

2
) + ... + P (E

n
) P(A|E

n
)

® Bayes' theorem If E
1
, E

2
, ..., E

n
 are events which constitute a partition of

sample space S, i.e. E
1
, E

2
, ..., E

n
 are pairwise disjoint and E

1 
4 E

2 
4 ... 4 E

n
 = S

and A be any event with nonzero probability, then

P(E A
P(E ) P(A|E )

P(E )P(A|E )

i i
i

j j

j

n
| ) =

=
∑

1
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Historical Note

The earliest indication on measurement of chances in game of dice appeared

in 1477 in a commentary on Dante's Divine Comedy. A treatise on gambling

named liber de Ludo Alcae, by Geronimo Carden (1501-1576) was published

posthumously in 1663. In this treatise, he gives the number of favourable cases

for each event when two dice are thrown.

Galileo (1564-1642) gave casual remarks concerning the correct evaluation

of chance in a game of three dice. Galileo analysed that when three dice are

thrown, the sum of the number that appear is more likely to be 10 than the sum 9,

because the number of cases favourable to 10 are more than the number of

cases for the appearance of number 9.

Apart from these early contributions, it is generally acknowledged that the

true origin of the science of probability lies in the correspondence between two

great men of the seventeenth century, Pascal (1623-1662) and Pierre de Fermat

(1601-1665). A French gambler, Chevalier de Metre asked Pascal to explain

some seeming contradiction between his theoretical reasoning and the

observation gathered from gambling. In a series of letters written around 1654,

Pascal and Fermat laid the first foundation of science of probability. Pascal solved

the problem in algebraic manner while Fermat used the method of combinations.

Great Dutch Scientist, Huygens (1629-1695), became acquainted with the

content of the correspondence between Pascal and Fermat and published a first

book on probability, "De Ratiociniis in Ludo Aleae" containing solution of many

interesting rather than difficult problems on probability in games of chances.

The next great work on probability theory is by Jacob Bernoulli (1654-1705),

in the form of a great book, "Ars Conjectendi" published posthumously in 1713

by his nephew, Nicholes Bernoulli. To him is due the discovery of one of the most

important probability distribution known as Binomial distribution. The next

remarkable work on probability lies in 1993. A. N. Kolmogorov (1903-1987) is

credited with the axiomatic theory of probability. His book, ‘Foundations of

probability’ published in 1933, introduces probability as a set function and is

considered a ‘classic!’.

—vvvvv—
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